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Secondary breakup of axisymmetric liquid drops. I. Acceleration
by a constant body force
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The secondary breakup of liquid drops, accelerated by a constant body force, is examined for small
density differences between the drops and the surrounding fluid. Two cases are examined in detail:
a density ratio close to unity (rd /ro51.15, where the Boussinesq approximation is valid! and a
density ratio of ten. A finite difference/front tracking numerical technique is used to solve the
unsteady Navier–Stokes equations for both the drops and the surrounding fluid. The breakup is
controlled by the Eo¨tvös number~Eo!, the Ohnesorge number~Oh!, and the viscosity and density
ratios. If viscous effects are small~small Oh!, the Eötvös number is the main controlling parameter.
In the Boussinesq limit, as Eo increases the drops break up in a backward facing bag, transient
breakup, and a forward facing bag mode. At a density ratio of ten, similar breakup modes are
observed, with the exception that the forward facing bag mode is replaced by a shear breakup mode.
Similar breakup modes have been seen experimentally for much larger density ratios. Although a
backward facing bag is seen at low Oh, where viscous effects are small, comparisons with
simulations of inviscid flows show that the bag breakup is a viscous phenomenon, due to boundary
layer separation and the formation of a wake. At higher Oh, where viscous effects modify the
evolution, the simulations show that the main effect of increasing Oh is to move the boundary
between the different breakup modes to higher Eo. The results are summarized by ‘‘breakup maps’’
where the different breakup modes are shown in the Eo–Oh plane for different values of the
viscosity and the density ratios. ©1999 American Institute of Physics.@S1070-6631~99!01112-5#
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I. INTRODUCTION

In spray combustion, liquid atomization is a two sta
process: In the primary breakup, a liquid jet emerging fro
the injector breaks up into drops which subsequently
dergo secondary breakup into even smaller drops. Secon
breakup increases the total surface area of the fuel–air in
face, thus enhancing the rate at which the fuel evaporates
burns.

Current computational models used for engineering p
dictions of spray combustion do not resolve the motion
individual drops. Instead, the effect of the drops is accoun
for by subgrid models, computed in either an Eulerian o
Lagrangian way. For recent descriptions and reviews,
Drew and Passman1 and Crowe, Sommerfeld, and Tsuji.2 In
Lagrangian models, the drops are represented by point
ticles, that can be split into two or more particles to repres
drop breakup. For a description and application of brea
models in spray combustion simulations, see Reitz
Diwakar,3 O’Rourke and Amsden,4 Liu, Mather, and Reitz,5

Liu and Reitz,6 Kim and Wang,7 and Kong, Han, and Reitz.8

Two different approaches are typically used to model
breakup. The Taylor analogy breakup~TAB! model of
O’Rourke and Amsden4 is based on an analogy between
oscillating and distorting liquid drop and a spring-mass s
tem suggested by Taylor.9 The Reitz wave instability model,6

on the other hand, is based on a linear stability analysis
liquid jets. Both of these simplified models contain adju
3651070-6631/99/11(12)/3650/18/$15.00
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able parameters that must be determined by experime
studies.

In experiments, the drops are usually accelerated b
shock wave causing a step change in the velocity of the d
relative to the surrounding fluid, or by a constant body for
such as gravity. The results are generally presented in te
of four nondimensional parameters: the relative strength
inertia and surface tension which is characterized by the W
ber number for an impulsive acceleration and the Eo¨tvös
number for an acceleration by a constant body force;
ratio of viscous stresses and surface tension given by
Ohnesorge number; the density ratio; and the viscosity r
of the drop and surrounding fluids.

Early experimental studies of drop breakup due to i
pulsive acceleration include those of Lane,10 who studied the
shattering of liquid drops in steady or transient streams
air, and Hinze.11 The findings of Lane10 and Hinze11 have
been extended to a broader range of parameters by Ha12

Hanson, Domich, and Adams,13 Ranger and Nicholls,14

Gel’fand, Gubin, Kogarko, and Komar,15 Borisov, Gel’fand,
Natanzon, and Kossov,16 and others. Krzeczkowski17 showed
that the effect of drop viscosity is not significant when t
Ohnesorge number based on the drop properties is less
about 0.1. Pilch and Erdman18 examined the drop size distri
bution for the so-called bag breakup mode and found tha
was made up of a large number of small drops produ
from the burst of the bag, and a few large drops originat
from the annular rim. Wierzba19 reviewed the literature and
0 © 1999 American Institute of Physics
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found that there was a large variation in the reported val
of the critical Weber numbers for the onset of the bag ty
breakup. His own experiments showed that small change
the experimental conditions could affect the drop break
significantly. Experimental investigations of the breakup
falling drops have typically been motivated by interest in t
evolution of raindrops. For early experiments, see the st
of the breakup of large drops by Magarvey and Taylor,20 for
example. The secondary breakup of liquid drops due to b
impulsive and continuous disturbances has been exam
extensively by Hsiang and Faeth21–23using a shock tube an
drop towers. The majority of the data are for atmosphe
conditions (rd /ro.500, Re.100, Ohd,0.1), although a
limited number of studies for smaller density ratios a
higher viscosity were also done. For the impulsive dist
bance case, droplet deformation and breakup maps simil
those produced by Hinze11 and Krzeczkowski17 were con-
structed for a wide range of parameters. Joseph, Belan
and Beavers24 studied the breakup of both Newtonian a
non-Newtonian drops in a high-speed air stream. Their
periments, using a shock tube, resulted in a very high in
acceleration of drops and the authors stated that
Rayleigh–Taylor instability was the primary cause
breakup. For a more extensive review of experimental st
ies of secondary breakup of drops, see Clift, Grace,
Weber,25 Lefebvre,26 Bayvel and Orzechowski,27 and Sadhal,
Ayyaswamy, and Chung.28

Most of the experimental studies mentioned previou
are concerned with the breakup of liquid drops in air due
impulsive accelerations. The density and viscosity ratios
much higher than those considered in the present st
While those experimental results are not directly compara
to our simulations, the major breakup modes remain sim
We therefore summarize the major results of experime
studies of impulsively accelerated drops here. When
Ohnesorge number is small, the effects of drop viscosity
be neglected. At low We, the drops deform but do not bre
up. As the acceleration increases past a critical value,
drops become progressively flatter and eventually break
As the Weber number is increased, four well defined brea
modes are observed~see, for example, Nigmatulin29!.

~1! Vibrational breakup mode where the drop disintegra
into two or four equal-sized smaller drops.

~2! Bag breakup mode where the original drop deforms i
a torus-shaped rim spanned by a thin fluid film that ru
tures into tiny droplets, followed by disintegration of th
rim into larger droplets.

~3! Shear breakup mode where small drops are continuo
stripped off the rim of the original drop.

~4! Explosive breakup mode where strong surface wa
disintegrate the drop in a violent manner.

This categorization and terminology are somewhat a
trary, and other variations have been suggested by othe
searchers. For example, mode 3 has also been c
‘‘stripping-type breakup.’’18,19For low viscosity drops where
the transition process shows no significant dependencie
Ohd , the critical Weber number is approximately 10 for t
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first transition, 20–60 for the second, and 1000 for the th
These numbers should be considered only as a rough g
because there are large variations in the critical Weber n
bers in the available experimental data due to different
conditions. At higher Ohd , the We required for the onset o
deformation and breakup increases with increasing Ohd .

Other researchers have examined the evolution of liq
drops in another liquid with a density comparable to the d
density, moving due to gravity. The deformation of miscib
liquid drops at low Reynolds numbers was studied
Kojima, Hinch, and Acrivos,30 who observed that the drop
form vortex rings. The stability of drops moving in immis
cible fluids was investigated by Koh and Leal,31,32 who
showed computational results for zero Reynolds number
ing a boundary integral method and experimental results
low Reynolds numbers. A similar investigation of the inst
bility of drops, also using a boundary integral method w
reported by Pozrikidis.33 Experiments by Baumann, Josep
Mohr, and Renardy34 showed that vortex rings can also b
created in immiscible liquids.

A few investigators have simulated the deformation a
breakup of liquid drops numerically. However, due to t
difficulties in dealing with large deformation of the interfac
and in accurately including surface tension along with v
cous and inertial forces, such numerical simulations h
often been based on considerable simplifications. The ste
motion of deformable axisymmetric drops was investiga
by Dandy and Leal35 at several Reynolds and Weber num
bers using a finite-difference method. The steady rise of
axisymmetric drop in an unbounded surrounding fluid w
examined by Volkov36 for intermediate Reynolds number
Bozzi, Feng, Scott, and Pearlstein37 presented finite-elemen
simulations of the steady motion of axisymmetric drops
bounded domains. Fritts, Fyre, and Oran38 used a two-
dimensional Lagrangian finite-difference method to simul
the breakup of fuel droplets and Liang, Eastes, a
Gharakhari39 presented simulations of axisymmetric dro
breakup using a Volume-of-Fluid method for a limited num
ber of cases. Other numerical studies of the deformation
breakup of two-dimensional drops can be found in Deng a
Jeng,40 Deng, Liaw, and Chou,41 Seung, Chen, and Chen,42

and Zaleski, Li, and Succi.43 However, these numerical re
sults are still preliminary.

In spite of the progress made by previous investigato
several aspects of the secondary breakup are still not
understood, including the breakup of drops at high press
and temperature, where experimental difficulties are enco
tered. It is also necessary to more closely examine the ti
dependent characteristics of the breakup. In existing sp
models, the drop breakup is considered to occur insta
neously. Recent experimental evidence indicates, howe
that secondary breakup takes finite time. Therefore, it is p
sible that the drop breakup should be treated as a ti
dependent process.

In this paper, a numerical method based on a front tra
ing technique that can accommodate large deformation of
drops is developed to simulate the breakup of liquid dro
accelerated by a constant body force. The governing eq
tions for axisymmetric geometry are solved numerically o



op
o
f

si

ar
try
de
ol
g

dis
n
fo
qu

nd

tor
l
s

the
,
ut

ody

om-

ads

n-

er-

ns
on-

re-
ite-
n.
tric
ns

al-
ffi-
on

fic

ion
r–
en-

es.
ered

3652 Phys. Fluids, Vol. 11, No. 12, December 1999 J. Han and G. Tryggvason
nonuniform grid using a finite-difference method. The dr
interface is represented by connected marker points, wh
positions are updated explicitly at each time-step. Results
a wide range of parameters are presented, and the phy
significance of the results is discussed.

II. FORMULATION AND NUMERICAL METHOD

The physical problem and computational domain
sketched in Fig. 1; the left boundary is the axis of symme
We follow the motion of the fluids both inside and outsi
the drop and write a single set of equations for the wh
flow field, using the conservative form of the governin
equations to allow the density and viscosity to change
continuously. Surface tension is added as a delta functio
provide the proper interface boundary conditions. Written
an axisymmetric coordinate system, the Navier–Stokes e
tions are
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FIG. 1. Schematic illustration of the computational setup.
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Here,u andv are the velocity components in the radial a
axial directions,p is the pressure, andr andm are the dis-
continuous density and viscosity fields,s is the surface ten-
sion, k is twice the mean curvature,î r and î z are the radial
and axial components of the surface unit normal vec
pointing outward from the drop, andd is a three-dimensiona
delta function. In~1! and~2!, the surface tension is treated a
a body force. The integral over the surface of the drop,S,
results in a force that is smooth and continuous along
drop surface. In the numerical method, the delta functiond,
is approximated by a smooth function with a compact b
finite support. The constant acceleration gives rise to a b
force in the axial direction denoted byraz .

The above equations are supplemented by the inc
pressibility condition

1

r

]ru

]r
1

]v
]z

50, ~3!

which, when combined with the momentum equations, le
to an elliptic equation for the pressure

“•S“p

r D5
1

r
R, ~4!

whereR is the divergence of the vector form of the mome
tum equations~1! and ~2!, excluding the pressure term.

We also have equations of state for the physical prop
ties of the drop and the surrounding fluid

Dr

Dt
50;

Dm

Dt
50, ~5!

whereD/Dt is the material derivative. These two equatio
state that the physical properties of each fluid remain c
stant.

The numerical technique used for the simulations p
sented in this paper is based on the front-tracking/fin
difference method discussed in Unverdi and Tryggvaso44

The code employed in the present study is an axisymme
version of the method. Since the axisymmetric code ru
much faster than the fully three-dimensional version, it
lows more runs and higher resolution. To improve the e
ciency of the computations, the method was implemented
stretched grids to allow clustering of grid points in speci
regions.

The momentum equations and the continuity equat
are discretized using an explicit second-order predicto
corrector time-integration method and a second-order c
tered difference approximation for the spatial derivativ
The discretized equations are solved on a fixed, stagg
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grid using the Marker-and-Cell method developed by Harl
and Welch.45 The full-slip boundary condition is applied t
all four boundaries.

To maintain a well defined boundary between the dro
and the surrounding fluid, the boundary is marked by c
nected points~the front! that are advected by the fluid veloc
ity, interpolated from the fixed grid. The new position of th
marker points is used to construct a new density field
distributing the density jump to the grid points next to t
front using area weighting, and integrating the jump to fi
the density everywhere. Once the density is known, the
cosity is set as a function of the density. The marker po
are also used to find the surface tension, which is then
signed to the nearest grid points in the same way as
density jump, and added to the discrete Navier–Stokes e
tions. For a more detailed description of the front-tracki
method, see Unverdi and Tryggvason44 and Tryggvason,
Bunner, Ebrat, and Tauber.46

The implementation of the numerical technique to t
drop breakup problem is straightforward and the meth
works well for a broad range of parameters. However,
rd /ro is raised, the computational cost increases, partly
cause of the appearance of the coefficient 1/r in the pressure
equation~4! but also because the effect of the surround
fluid is weaker when the density ratio is large and the d
travels a longer distance before breaking up. In order
avoid having to use a very long computational domain,
move the computational domain with the drop. The mot
of the domain is determined from the solution, and an ex
acceleration term is added to the governing equations to
count for the time-dependent motion of the domain. T
boundary conditions have also been modified to includ
constant inflow at the bottom and a zero velocity gradien
the normal direction at the top.

The majority of the simulations presented here were c
ried out on HP 9000 workstations. A typical run requir
between 4000 and 120000 timesteps and took 12–240 ho
depending on the parameters of the problem.

Dimensional analysis shows that four independent
mensionless parameters govern the dynamics of drop de
mation and breakup. When the drop is subject to an ac
eration by a constant body force, it is convenient to use
Eötvös number, Eo~interchangeably called the Bond num
ber, Bo! and the Ohnesorge number of the drop, Ohd , de-
fined as

Eo5
azDrD2

s
, ~6!

Ohd5
md

ArdDs
, ~7!

whereDr is the density difference between the drop and
surrounding fluid andD is the initial diameter of the drop
The density and the viscosity ratios,

rd

ro
;

md

mo
, ~8!
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can be selected as the other two parameters. The visc
ratio is sometimes replaced by the Ohnesorge number b
on the properties of the surrounding fluid

Oho5
mo

AroDs
. ~9!

The subscripts,d ando, denote the properties of the drop an
the surrounding fluid, respectively. Time is nondimension
ized with respect to the drop diameter and the accelerati

t* 5
t

AD/az

. ~10!

III. RESULTS AND DISCUSSION

Numerical simulations are presented first forrd /ro

510, using a moving computational domain. To examine
effect of the density ratio, simulations are also carried out
a small density ratio,rd /ro51.15, using a fixed computa
tional domain. For each density ratio, the effects of vary
the other dimensionless parameters, Eo, Oho , and Ohd , are
studied.

A. Validation

In order to validate the numerical method, grid refin
ment tests were performed. Typical results are presente
Fig. 2 where the shape of the drop is plotted at time interv
Dtp* 53.873, using two different grids: 2563512 ~left! and
51231024 ~right!. The nondimensional parameters a
rd /ro51.15, Eo5144, Oho50.05, and Ohd50.0466. Ini-
tially ( t* 50), the drops are spherical and the velocities
zero everywhere. Despite the large deformation of the dr
the results agree well. In Fig. 3, the aspect ratio and
centroid velocity are plotted versus nondimensional tim

FIG. 2. Resolution test. The breakup of a drop computed using a
3512 grid ~left! and a 51231024 grid ~right!. rd /ro51.15, Eo5144,
Oho50.05, Ohd50.0466. The drop shape is plotted everyDtp* 53.873.
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The aspect ratio is defined as the drop thickness at the ce
terline divided by the maximum width of the drop. The cen
troid velocity is found by taking the volume average of the
vertical velocity inside the drop. The results corresponding
Fig. 2 are shown along with results using a coarser gri
1283256. The result from the 1283256 grid shows a small
difference but the two finer grids give nearly identical re
sults.

In addition, we have compared our results to the stead
state results for a single axisymmetric deformable drop com
puted by Dandy and Leal.35 They specified the Reynolds
number and the Weber number and found the drag coef
cient, Cd , as a part of the solution. In our transient simula
tion, it is not possible to specify Re and Wea priori, since
the velocity of the drop is computed as part of the solution
However, once the drag coefficient is known, the Eo¨tvös
number and Ohnesorge number can be found by

FIG. 3. Resolution test. Aspect ratio and centroid velocity plotted versust* .
Results using three different grids, 1283256, 2563512, and 51231024,
are shown.rd /ro51.15, Eo5144, Oho50.05, Ohd50.0466.
n-
-

o
:

y
-

fi-
-

.

Eo5
3

4
WeCd; Oho5AWe

Re2. ~11!

For a drop translating at a Reynolds number equal to 100
Weber number equal to 4, withrd /ro50.91 andmd /mo

51, Dandy and Leal35 found Cd50.919 in an unbounded
domain. This gives Eo52.75 and Oho50.02. Our computa-
tion was done using a 2563768 grid in a domain 5 and 15
times the initial diameter of the drop in the radial and ax
directions, respectively. The computed Reynolds and We
numbers differ from those given by Dandy and Leal35 by less
than 1% when the drop reaches a steady state. Formd /mo

54 and the same Re, We,rd /ro as in the previous case
Dandy and Leal35 found Cd51.10. Our computation was
done using Eo53.3, Oho50.02, and the samerd /ro and
md /mo , with the same resolution and domain size as in
previous case. The result givesCd51.13, which is approxi-
mately 3% higher. This is due to the finite size of our co
putational domain. Computations using domains of half a
twice the original size in the radial direction yieldCd

51.19 and 1.12, respectively.

B. The Boussinesq approximation

Before presenting further computational results,
pause to examine the validity of the Boussinesq approxim
tion. The Boussinesq approximation states that if the den
difference is small, density variations are only importa
when multiplied by gravity.Dr is therefore no longer an
independent parameter and it is sufficient to simulate
breakup for only one value of the density ratio in this lim
Results for other values ofDr can be obtained by simply
rescaling time. For a discussion of the Boussinesq appr
mation to stratified flows, see, for example, Dahm, Sch
and Tryggvason.47 The relative magnitude of the density di
ference is better expressed by the Atwood number, defi
by

A5
rd2ro

rd1ro
. ~12!

WhenA is sufficiently small (rd /ro → 1!, time and veloci-
ties can be scaled by the average static pressure to yield

t̂5
t

AD/~Aaz!
, ~13!

û5
u

AAazD
; v̂5

v

AAazD
. ~14!

The Eötövs number and the Ohnesorge number must also
redefined as

Eô5
ravAazD

2

s
, ~15!

Oĥo5
mo

AravDs
, ~16!

whererav50.5(rd1ro). Note that the constant acceleratio
appears only asAaz instead ofaz alone.
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In order to check the validity of the Boussinesq appro
mation, tests were done for different values ofA. In Fig. 4,
results for Eô572, Oĥo50.241, andmd /mo51 are pre-
sented. The computation was done using a 2563768 grid
and the size of the computational domain was 5 and 15 ti
the initial drop diameter in the radial and the axial directio
respectively. The aspect ratioa and the nondimensionalize
centroid velocityV̂c are plotted versust̂ in ~a! and ~b!, re-
spectively. In each graph, simulations using four values oA
are shown: 0.07, 0.11, 0.2, and 0.33, corresponding to
density ratios: 1.15, 1.25, 1.5, and 2.0. The plots confirm
the scaling works well whenA is less than about 0.2 to 0.3
The ability to cover this density range by a single simulat
is obviously a considerable simplification.

C. Effect of Eo at small Oh

When Oh is small and surface tension is much m
important than viscous stresses, Oh has little influence on

FIG. 4. Test of the Boussinesq approximation. Aspect ratio and cent

velocity plotted versust̂ . Results are shown for four different Atwood num
bers: 0.07, 0.11, 0.2, and 0.33. The corresponding density ratios are
1.25, 1.5, and 2.0. Eô572, Oĥo50.241, andmd /mo51.
-

es
,

e
at

e
he

breakup and Eo is the only controlling parameter. Here,
present results for different Eo when Oh is small. When
drop is set into motion by a constant body force, the hyd
dynamic pressure is higher at the poles and lower at
equator and the drop deforms into an oblate ellipsoid. T
deformation is opposed by the surface tension. Dependin
the relative strength of the pressure forces and the sur
tension, measured by Eo, different breakup modes are
served.

In Fig. 5, the effect of Eo is presented forrd /ro510 and
Oho5Ohd50.05. The simulations are done using a movi
coordinate system where the origin is fixed at the centroid
the drop. The domain has dimensions of five and fifte
times the initial drop diameter in the radial and axial dire
tions, respectively. The centroid of the drop is fixed at
position five times the initial drop diameter above the botto
boundary. The evolution of the drop is shown for nine d
ferent values of Eo@~a! to ~i!#. In each column, the drop
interface is plotted at fixed time intervals. The separat
between two successive drops is equal to the distance
the drop travels during the time interval.

In ~a!, the drop is shown for Eo512. As the drop starts
falling, the back side becomes flat while the front side reta
a rounded shape. After the initial deformation, the dr
reaches a steady state and no further change in the
shape is seen. When Eo is increased to 24 in~b!, the drop
deformation is more pronounced. Initially, the drop assum
a shape similar to that shown in~a!, but then the back of the
drop becomes increasingly more convex and eventually
drop deforms into a thin disk-like shape that moves a
nearly steady state. The drop shown in~c! for Eo528.8
evolves in the same way until it has deformed into a disk-l
shape. Then the thickness of the drop near the symmetry
continues to decrease, and most of the drop fluid moves
ward toward the edge of the drop. Finally, the center of
front surface is pushed upward, forming a backward-fac
bag. At this stage, most of the drop fluid is contained in
annular-shaped rim. As time progresses, the bag expa
both radially outward and vertically upward. Experimen
evidence indicates that the drop will eventually break in
small drops. The evolution shown in~d! for Eo536 is very
similar to that in~c!, displaying a backward-facing bag. Th
only difference is that the rate of deformation is higher a
the backward-facing bag expands more rapidly.

When Eo is further increased to 48 in~e!, a different
mode of breakup is observed. The initial deformation is n
very different from the previous cases, and an indentat
develops on the back surface, but instead of deforming in
disk-like shape, the drop remains relatively thick near
symmetry axis and the edge of the drop is swept back in
downstream direction. A large wave then develops on
drop interface and as this wave propagates, the drop defo
in an erratic manner. The evolution of the drop shown in~f!
for Eo560 reveals another mode of deformation. The init
evolution is similar to the previous cases, but the results
different at later times. As the indentation at the top progr
sively deepens, the drop does not deform into a thin disk-
shape. Instead, the edge of the drop is deflected in the do
stream direction and drawn out into a thin film with a blob

id
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FIG. 5. Effect of Eo on the deformation of drops withrd /ro510. Oho5Ohd50.05. The simulations are done using a 2563768 grid for a moving
computational domain of dimensions 5315 times the initial drop diameter. The boundaries of the column do not indicate the actual boundaries
computational domain. The gap between two successive drops in each column represents the distance the drop travels at a fixed time interval
interface is plotted att* 5 ~a! 11.19;~b! 15.82;~c! 14.85;~d! 13.83;~e! 11.19;~f! 7.15; ~g! 7.83; ~h! 6.78; ~i! 5.54.
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drop fluid at the end. The appearance of this film is simila
the skirted drop shapes observed in experimental studie
liquid drops moving at a steady state~Wairegi and Grace48!.
The center portion of the drop, however, maintains a con
shape and its thickness at the symmetry axis stops dec
ing. Similar drop deformations are observed at even hig
Eo572, 96, and 144 as shown in~g!, ~h!, and ~i!, respec-
tively.

Based on these results, the evolution of drops w
rd /ro510 at a small Oh can be classified into four categ
ries in order of increasing Eo: steady deformation, format
of a backward-facing bag, transient breakup with a comp
shape, and stripping or shearing of a film from the edge
the drop. It is evident from Fig. 5 that drops breaking up
the backward-facing mode travel a much longer dista
than those breaking up in the shear breakup mode. Also
that for the same breakup mode, the rate of drop deforma
increases as Eo increases.

In Fig. 6, the evolution of a drop with a small densi
ratio, rd /ro51.15, is shown for different Eo. Again, value
of Ohnesorge numbers, Oho50.05 and Ohd50.0466 are
chosen so that viscous stresses are small compared to su
tension. The computations were done using a fixed coo
nate system. When Eo is small, the drop deforms into
oblate ellipsoid and moves with a steady state shape
shown in~a! for Eo512. When Eo is increased to 24~b!, the
drop deforms more and eventually forms a backward-fac
bag as observed forrd /ro510 in Fig. 5~c!. In ~c!, where Eo
o
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is 48, the drop moves with an essentially steady con
shape, showing no sign of bag formation. Compared to
high density ratio counterpart shown in Fig. 5~e!, the overall
deformation is reduced. When Eo is 96 in~d!, the indentation
at the back of the drop deepens continuously until it reac
the front of the drop, creating a forward-facing bag. Even
ally, however, the heavier edge falls faster than the thin b
This formation of a forward-facing bag is different from th
shear breakup mode observed in Figs. 5~f!–5~i!, where a
significant portion of the fluid remains near the symme
axis while a thin film is pulled away from the edge. In~e!, Eo
is further increased to 144. The overall evolution is similar
~d!, but the rate of deformation is slightly faster.

In Fig. 7, vorticity contours~left! and streamlines with
respect to a frame moving with the drop~right! are plotted at
a few selected times for the drop shown in Fig. 5~c!. Most of
the vorticity is created at the outer edge of the drop, as
pected, and the streamlines show the formation of a la
wake behind the drop. The pressure difference between
front stagnation point and the wake causes the formation
the backward-facing bag.

Figure 8 shows vorticity contours~left! and streamlines
~right! at a few selected times for the drop shown in Fig. 5~f!.
Although vorticity generated at the drop surface accumula
into a large wake as in Fig. 7, the more deformable drop
continuously deformed by the flow~as seen by streamline
crossing its boundary! and the edge is pulled back by th
flow. In the last frame, the large wake formed initially sep
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FIG. 6. Effect of Eo on the deformation of drop withrd /ro51.15. Oho50.05, Ohd50.0466. The simulations are done using a 25631280 grid in~b! and~c!
and a 2563768 grid in ~a!, ~d!, and ~e!. The fixed computational domain has a dimension of 5315 times the initial drop diameter in~b! and ~c! and 5
325 times the initial drop diameter in~a!, ~d!, and~e!. The dashed line in~a!, ~d!, and~e! represents the actual bottom boundary of the computational dom
The gap between two successive drops in each column represents the distance the drop travels at a fixed time interval and the last interface is plt* 5
~a! 44.72;~b! 79.06;~c! 89.44;~d! 37.94;~e! 38.73.
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rates from the drop, leaving the film to move toward the a
due to the flow around the smaller remaining drop.

In Fig. 9, vorticity contours~left! and streamlines~right!
are shown for the drop in Fig. 6~e!. Here, the vorticity gen-
erated at the interface moves with the drop, forming a dip
that continuously deforms the interface into a forward-fac
bag.

Figures 10 and 11 show the centroid velocity of the dr
Vc plotted versust* for the drops shown in Figs. 5 and 6
s

le
g

p

respectively. Since the velocity is nondimensionalized
AazD, the graphs for different values of Eo all have th
same initial slope. After the initial acceleration, the drop d
formation, which depends on Eo, determines the velocity
Fig. 10, drops with low Eo deform less and therefore mo
faster than drops with high Eo. The lowest Eo drop~Eo512!
asymptotically reaches a steady state velocity, but the o
drops all slow down as they start deforming. The Eo524
r
FIG. 7. Vorticity contours~left! and streamlines~right! for the drop in Fig. 5~c!. rd /ro510, Eo528.8, Oho5Ohd50.05. The results are shown for fou
selected times.
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FIG. 8. Vorticity contours~left! and streamlines~right! for the drop in Fig. 5~f!. rd /ro510, Eo560, Oho5Ohd50.05. The results are shown for five selecte
times.
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drop also reaches a steady velocity. The drops that und
bag breakup first behave like the Eo524 drop, but as the bag
forms, the drops slow down rapidly. At the very end, t
Eo536 drop speeds up again, as the rim of the drop st
falling independently of the bag. The rest of the drops
slow down rapidly as they are stretched perpendicular to
flow, and all speed up again as the thin film pulled from th
edges folds back toward the axis. The results for the sm
density difference in Fig. 11 show a similar trend, but with
few differences. The transient drop~Eo548! reaches a ve-
locity that is nearly the same as the velocity of the dr
moving with a steady deformed shape~Eo512! and the re-
duction in speed due to bag breakup is smaller than in
10.

In Figs. 12 and 13, the surface areaS ~normalized by the
initial value So) is plotted versust* for the drops shown in
Figs. 5 and 6, respectively. The graphs forrd /ro510 in Fig.
12, show that a rapid increase of the surface area takes p
go

ts
ll
e
r
ll

g.

ce

when breakup occurs, and that the backward-facing
breakup mode takes longer than the shear breakup m
The drops undergoing a shear breakup show a reductio
surface area when the film moves toward the symmetry a
The graphs forrd /ro51.15 in Fig. 13 also display a rapi
increase of the surface area when the drops break up. H
ever, the drops with the highest Eo show a rapid increas
surface area after the rim starts falling, and the surface a
of the drop undergoing bag breakup grows relatively slow
compared to the higher density ratio drops.

D. Effect of Oh

Figure 14 illustrates the effect of the Ohnesorge num
~the nondimensional viscosity! for drops with a finite density
ratio, rd /ro510. The drops are shown at several time
Here, Ohd is equal to Oho . The case where Ohd is different
from Oho will be discussed in the next section. In the top ro
r
FIG. 9. Vorticity contours~left! and streamlines~right! for the drop in Fig. 6~e!. rd /ro51.15, Eo5144, Oho50.05, Ohd50.0466. The results are shown fo
four selected times.
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@~a!–~c!#, Oh50.05, 0.125, and 0.25, from left to right, an
Eo528.8. The Oh50.05 case~a! has already been shown i
Fig. 5~c!, but is included here for comparison. The initi
deformation of all three drops is similar, but whereas
Oh50.05 drop~a! deforms into a backward-facing bag, th
other two drops reach a steady state shape. Of those, the
viscous drop~b! is flatter.

In the bottom row@~d!–~f!#, Eo is increased to 144 an
the evolution of the drops is presented for the same th
values of Oh as in the top row. In~d!, the drop already
shown in Fig. 5~i! is included for reference. This drop unde
goes a so-called shear~or boundary stripping! breakup. The
Oh50.125 drop~e! shows a similar evolution as the drop
~d!, although the rate of deformation is reduced slightly. T
center portion of the drop still contains a significant amo
of drop fluid and formation of a backward-facing bag, whi
requires the formation of a very thin film of fluid near th

FIG. 10. Centroid velocity versust* for the drops shown in Fig. 5. The
results are presented for Eo512, 24, 28.8, 36, 48, 60, 72, 96, and 14
rd /ro510, Oho5Ohd50.05.

FIG. 11. Centroid velocity versust* for the drops shown in Fig. 6. The
results are presented for Eo512, 24, 48, 96, and 144.rd /ro51.15, Oho
50.05, Ohd50.0466.
e

ess

e

e
t

symmetry axis, does not occur. In contrast, the center por
of the drop in~f! is drained completely, and the drop forms
backward-facing bag.

Based on the results shown in Fig. 14, it is clear th
increasing both Oho and Ohd simultaneously results in a
translation of the boundaries between the breakup mode
higher Eo.

Figure 15 illustrates the effect of viscosity on the initi
deformation of drops withrd /ro51.15. In addition to runs
with a finite viscosity, we show simulations with zero vi
cosity, obtained by an axisymmetric vortex method~see
Dahm, Frieler, and Tryggvason49!. In the top row, Eo524
and Oho is 0.05, 0.025, 0.01, and 0 from left to right. In a
cases,md /mo51. While the initial acceleration is dominan
all the drops evolve in the same way. As time progress
viscosity effects become important and the viscous dr
will eventually develop a backward-facing bag due to t

FIG. 12. Normalized surface area versust* for the drops shown in Fig. 5.
The results are presented for Eo512, 24, 28.8, 36, 48, 60, 72, 96, and 14
rd /ro510, Oho5Ohd50.05.

FIG. 13. Normalized surface area versust* for the drops shown in Fig. 6.
The results are presented for Eo512, 24, 48, 96, and 144.rd /ro51.15,
Oho50.05, Ohd50.0466.
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formation of a wake. See Fig. 6~b! for further deformation of
the drop in ~a!. The inviscid drop~d!, on the other hand
loses fluid to a film pulled off its edge. Since this drop do
not develop a vortical wake, it does not form a backwa
facing bag. Similar deformation is also seen for invisc
bubbles.50

In the bottom row, the limit of zero surface tension, i.

FIG. 14. Effect of Oh for drops withrd /ro510. The drop evolution is
shown for three Oho5Ohd50.05, 0.125, and 0.25. In the upper row~a!–
~c!, Eo is fixed at 28.8 and the time interval between successive interfa
Dtp* , is 2.121. In the lower row~d!–~f!, Eo is 144 andDtp* is 0.791.
s
-

,

Eo5` is investigated. Since Oho is defined with the surface
tension in the denominator, it cannot be used as a measu
viscosity in this case. Instead, another non-dimensional n
ber is defined:

m̂5
mo

AroDrD3az

5
1

AAr
, ~17!

where Ar is the Archimedes number. Results for three val
of m̂50.01021~e!, 0.00513~f!, and 0.00204~g! are com-
pared with results form̂50 ~h!. In all cases,md /mo51.
From the plots, it can be seen that since there is no sur
tension limiting the deformation, all the drops evolve in
similar way: first an indentation forms at the top, then t
drops deform into a forward-facing bag with a thick edg
The effect ofm̂ on the overall shape of the drop is relative
small, with the exception of the rollup of the edge whic
increases asm̂ is reduced.

E. Effect of the viscosity ratio

The results presented so far are all for drops moving
another fluid that has the same or almost the same visco
The effect of the viscosity ratio is shown in Fig. 16, whe
the drops are shown for several values of the governing
rameter. In~a! and ~b!, rd /ro510 and Oho50.05. Eo is 72
in ~a! and 144 in~b!. In each row, the drop shape is shown
a fixed t* for Ohd50.05, 0.125, 0.25, and 1.25, increasin
from left to right. The evolution of the drops in~a! is quali-
tatively similar for the three lower values of Ohd . They all
show a shear breakup mode in which a film of drop liquid
pulled away from the edge of the drop. The drop with t
highest Ohd in the rightmost column, however, has not pr
gressed as far, and will eventually form a forward-faci
bag. The comparison in~b!, for Eo5144, shows the trend
observed in~a!. Comparisons for drops withrd /ro51.15 are
presented in~c! and ~d!. In ~c!, Eo524 and Oho50.05. The
drops are shown for Ohd50.0093, 0.0466, 0.2331, an
1.1656~from left to right! at t* 563.2. The drops with the
three lower viscosity ratios form a backward-facing bag a
the drop deformation is most pronounced when the visco
ratio is smaller. In contrast, the most viscous drop develop
steady disk-like shape. In~d!, Eo5144 and Oho50.25 and
the drops are shown for four different values of the dr
Ohnesorge numbers, Ohd50.0093, 0.0466, 0.2331, an
1.1656~from left to right! at t* 527.1, 27.1, 46.5, and 62.0
respectively. The times are not the same because as the
cosity ratio increases, the drops deform much more slow
Here, the edge of the drop is pulled backward into a thin s
for the three lower viscosity ratios. The most viscous dr
Ohd51.1656, does, on the other hand, form a backwa
facing bag.

In Fig. 17, the evolution of the centroid velocity is plo
ted for the drops shown in Fig. 16. Initially, while the drop
are nearly spherical, acceleration is independent of the
cosity of the drop fluid. As the drops start deforming, th
slow down due to increased drag. For the drops withrd /ro

510 shown in~a! and~b!, the higher viscosity drops deform
more slowly and therefore move faster. At a later time, ho

s,
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FIG. 15. Effect of Oh on the initial deformation of drops withrd /ro51.15. In all cases,md /mo51 and the time intervals between successive interfac
Dtp* 51.581. In the upper row~a!–~d!, Eo524 and in the lower row~e!–~h!, Eo5` ~zero surface tension!. The viscous simulations~a!–~c! and~e!–~g! were
done using a 1283384 grid.~d! and ~h! were done using an inviscid vortex method.
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ever, the most viscous drop in~a! forms a backward-facing
bag and slows down continually. In~c!, where the density
ratio is lower, the most viscous drop reaches a steady s
shape and velocity. The other drops all form bags and
relatively unaffected by changes in the drop viscosity. In~d!,
the low viscosity drops speed up again, once a skirt has b
pulled off their edges, indicating that the skirt has no sign
cant effects on the motion at this stage. The most visc
drop, on the other hand, forms a backward-facing bag
continues to slow down.
te
re

en
-
s
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Increasing the drop viscosity reduces its rate of deform
tion and in some cases, this can result in different brea
modes, changing a shear breakup to a bag breakup, and
breakup to a steady-state shape.

F. Deformation and breakup regime maps

To summarize the results of the various simulations,
formation and breakup maps are presented in Figs. 18
19. In the maps, we mark the location of each simulation



e

s

3662 Phys. Fluids, Vol. 11, No. 12, December 1999 J. Han and G. Tryggvason
FIG. 16. Effect of the viscosity ratio.
In each row, the drops at a late tim
are shown for different values of the
drop viscosity while other parameter
are fixed. In ~a! and ~b!, Ohd50.05,
0.125, 0.25, and 1.25~from left to
right!. In ~c! and ~d!, Ohd50.0093,
0.0466, 0.2331, and 1.1656~from left
to right!.
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the Ohd2Eo plane, using a different symbol, depending
the deformation and breakup mode observed. Sim
breakup maps have been used to present experimental re
by numerous investigators. Figure 18 shows the resul
simulations withrd /ro510. Three maps are shown~a!–~c!,
corresponding to different ambient Ohnesorge numbers.

The map for a relatively small Oho50.05 ~a! shows that
increasing the magnitude of Eo at a fixed drop Ohneso
number (Ohd50.05) results in the following transitions be
tween the different breakup modes: oblate ellips
→backward-facing bag mode→ transient breakup→ shear
breakup mode. Changing Ohd for a fixed Eo, on the othe
hand, yields only minor differences in the breakup mo
Increasing Ohd from 0.05 to 1.25, when Eo is fixed at 28.
for example, does not change the breakup mode. For Eo572
and 144, a change from a shear breakup mode to a forw
facing bag mode is observed, as Ohd is increased from 0.25
to 1.25. The difference between these two breakup mode
r
ults
of

e

.

rd-

is,

however, not as significant as that between the backw
facing bag and the shear breakup modes.

When Oho is increased to 0.125, map~b!, the increased
viscosity of the surrounding fluid slows the drop down a
reduces the rate of deformation. At Ohd50.05, increasing Eo
yields the following transitions between breakup modes:
formed drop → backward-facing bag→ shear breakup.
When the boundaries between these breakup modes are
pared to the same Ohd in map ~a!, some differences are ob
served. The backward-facing bag, which was observed
Eo528.8 in ~a!, is now seen at Eo536. At Eo548, the tran-
sient breakup is no longer observed and instead we s
backward-facing bag.

The effect of changing Ohd at a fixed Eo is also exam
ined in ~b!. When Eo528.8, changing Ohd from 0.05 to 1.25
results in only minor differences. The Ohd50.05 drop dis-
plays a prolate shape after an initial oscillatory motion b
drops with higher Ohd deform into oblate ellipsoids with an
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FIG. 17. Centroid velocity versust* for the drops shown in Fig. 16.
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indentation~or a dimple! at the top. At Eo572, the effect of
changing Ohd is more significant. Only the Ohd50.05 drop
shows a shear breakup mode, while the higher Ohd drops all
form a backward-facing bag. At Eo5144, on the other hand
the breakup modes are generally similar to those observe
~a!, showing no significant change with Ohd .

When Oho is increased to 0.25 in map~c!, the effect of
the drop viscosity becomes more significant. At Eo528.8,
four simulations with Ohd ranging from 0.05 to 1.25 show
deformed drops, which are similar to those observed in~b! at
the same Eo. At Eo572, four simulations with Ohd in the
same range all show the formation of a backward-facing b
This is different from the result in~b! for the same Eo, where
the shear breakup mode changes to a backward-facing
mode as Ohd increases. At Eo5144, only the Ohd50.05
drop shows the shear breakup mode seen in~a! and~b!. The
Ohd50.125 drop deforms into a forward-facing bag and t
higher Ohd drops display a backward-facing bag mode.

In Fig. 19, deformation and breakup regime maps
presented for drops withrd /ro51.15. Three maps ar
shown in ~a!–~c!, for ambient fluids with Oho50.05, 0.25,
and 1.25. The map for Oho50.05~a!, displays the following
in

g.

ag

e

e

transitions between breakup modes as Eo is increased: o
ellipsoid → backward-facing bag→ oscillating indented
drop → forward-facing bag. It is clear that increasing Od
has no major effects. The only exception is when Ohd be-
comes large (.1) and Eo is relatively low. In this case, th
backward-facing bag breakup mode is replaced by a stea
moving indented drop.

When Oho is increased to 0.25~b!, a backward-facing
bag mode is no longer observed when Eo524. Instead, a
steadily moving indented drop is seen for the Ohd range
investigated. The breakup mode at Eo5144 also changes
from a forward-facing bag mode to a skirted drop when Od

is small (,1). A forward-facing bag mode is observed
Eo5288. As in~a!, no noticeable effects of changing Ohd , at
a fixed Eo, are observed as long as Ohd,1. When Ohd
.1, the drop develops a backward-facing bag when
5144.

In map ~c!, Oho51.25 and the high viscosity preven
nearly all deformation. When Eo524, the drop remains an
oblate ellipsoid but for Eo5144, the drops develop an inden
tation at the top. The indentation of the more viscous d
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FIG. 18. Deformation and breakup regime maps forrd /ro510. Three maps are shown for Oho50.05, 0.125, and 0.25. In each map, the horizontal a
vertical axes are Ohd and Eo, respectively.
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FIG. 19. Deformation and breakup regime maps forrd /ro51.15. Three maps are shown for Oho50.05, 0.25, and 1.25. In each map, the horizontal a
vertical axes are Ohd and Eo, respectively.
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(Ohd51.1656) deepens continuously until it reaches the b
tom surface of the drop, forming a vortex ring.

IV. CONCLUSIONS

The deformation and breakup of axisymmetric drops,
celerated by a constant body force, have been studied
numerical simulations. Results are presented for two den
ratios, rd /ro51.15 andrd /ro510. For the lower density
ratio, the Boussinesq approximation is valid and the res
therefore apply for other low density ratios by the simp
rescaling discussed in Sec. III. For low Ohnesorge numb
the Eötvös number and the density ratio are the main c
trolling parameters. At low density ratios the drop deform
but does not break up for Eo less than about 18. For
,Eo,36 ~approximately!, the drop breaks up by the forma
tion of a backward facing bag. Transient breakup is obser
for Eo around 48, and for Eo larger than about 60, the d
evolves into a forward-facing bag.

The formation of a forward-facing bag takes place ve
quickly ~the drop has moved only 3–4 times its initial diam
eter when the bag is formed! and is essentially an inviscid
phenomenon. The formation of a backward-facing bag,
the other hand, takes significantly longer~the drop has
moved 8–10 times its initial diameter!. A comparison with
results obtained by an inviscid vortex method shows that
backward-facing bag is a viscous phenomenon, due to
formation of a low pressure wake behind the drop. Furth
more, the surface area of the drop increases at a faster ra
the forward-facing bag mode.

As Oh is increased, the effect of the viscosity reduc
the rate of deformation. At low Eo, while the drop flatten
its center does not drain completely and a backward-fac
bag does not form. As Eo becomes larger, the edges of
drop are pulled outward and sheared off, leading to
‘‘skirted’’ drop.

When Oh becomes very large, the drop deforms into
oblate ellipsoid at low Eo. At high Eo, baroclinically gene
ated vorticity causes indentation at the top of an acceler
drop, but rapid diffusion of vorticity prevents the roll-up ob
served for lower Oh. As this indentation continues to gro
the drop finally breaks into a torus. Similar evolution h
been seen in simulations of initially oblate drops in Stok
flow ~Koh and Leal,31 Pozrikidis33!.

The effect of the viscosity ratio is small when Oho is
small. Although there are differences in the detailed shap
the drop, the overall evolution is generally similar when Od

is varied at fixed Eo and Oho unless Ohd is very large. For
larger Oho , the effect of the viscosity ratio becomes mo
significant and as Ohd increases, the boundaries between
different breakup modes are moved to higher Eo.

At higher density ratio (rd /ro510) the evolution is
similar to the low density ratio case and the effect of t
governing parameters is also similar. There are, howeve
few important differences. At large Eo, the forward-faci
bag seen for the low density case is replaced by a s
breakup mode where the edge of the drop is pulled in
downstream direction, forming a blob of drop fluid co
nected to the main drop by a thin film. The skirted drop
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the low density ratio case is similar in shape~except that no
blob was formed!. The skirt, however, appears only at a rel
tively higher Oh and grows slowly once it has formed.
contrast, the shear breakup mode in the higher density r
case occurs across the Oh range investigated here.
boundaries between the breakup modes at low Oh rem
essentially the same as for the low density ratio case.

In most practical combustion systems, the density diff
ence between the liquid fuel and the high pressure ga
considerably smaller than at atmospheric temperature
pressure. For diesel engines,rd /ro532253, for example,
~see Heywood51! and rd /ro of order unity is common in
rocket motors. Nearly all experimental studies of second
breakup of drops, however, have been done at atmosph
pressures. In the present study we approach the brea
problem from the small density ratio limits, thus compl
menting previous work. Covering the gap for density rat
between those studied here and the experiments is within
range of present computational capabilities, but requires c
siderably longer computational times.
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