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The quantum field Hamiltonian expressed in terms of density and current density variables has been 
employed together with the equal-time commutation relations among these variables to find the ground 
state energy and the density fluctuation excitation spectrum of a system of interacting bosons at T = 0 oK. 
The approximation involved consists in assuming that the density fluctuation in space is small compared 
with the average density. The results easily obtained in the lowest-order approximation agree with those 
of Bogoliubov. However, in our treatment no condensation of particles in zero-momentum state is 
assumed or apparent. A connection between the present treatment and the quantum hydrodynamic 
approach to the irrotational flow of a Bose liquid has been made. 

1. INTRODUCTION 

For liquid He II near the absolute zero of tempera­
ture, it is a well-known fact that there exist density 
fluctuations associated with the ordinary sound 
waves.L2 To deal with such collective motions, it 
seems natural to think of the density variable as a 
proper quantum mechanical coordinate. Previous 
workers in this connection have used a number of 
methods, but none of which involved the density 
variable in a microscopic theory in the way as is 
presented here.1- 8 Following the recent suggestions of 
Dashen and Sharp,9 we have employed the density 
and the current density as quantum field coordinates 
together with their equal-time commutation relations 
to find the ground state energy and the excitation 
spectrum of an interacting Bose system, a system 
related to liquid Hen. 

This method is different from the usual field­
theoretic method in that we use the equal-time commu­
tation relations among the density and the current 
density components, instead of those among the 
canonical fields 'tjJ and 'tjJ+. Although the present 
commutation relations look rather complicated, it 
turns ou~ to be quite simple to get an approximate 
energy spectrum for the system on hand by (i) employ­
ing a functional representation for the Fourier 
components of the density and the current density 
operators and the state vectors of the quantum field 
for the system and (ii) assuming that the density fluc­
tuation in space is small compared with the average 
density. The results obtained in the lowest order 
approximation, which are valid for long wave vectors 
(k < 27Tjro, where ro = the average interparticle 
distance), agree with those of Bogoliubov.3 However, 
here no condensation of particles in zero-momentum 
state is assumed or apparent, and the excitation 
spectrum refers to the density fluctuations rather than 
to Bogoliubov's quasiparticles. 

The functional representation of the equal-time 
commutation relations in a representation in which 
the Fourier components of the density PkicO are 
diagonal is presented in Sec. 2. Section 3 is concerned 
with finding the energy spectrum of the system in the 
lowest-order approximation. A connection of the 
present treatment with the quantum hydrodynamic 
approach10 •1l to the problem will be made in Sec. 4. 
Finally in Sec. 5 there will be some relevant discus­
sions about the validity of the approximations used 
and the results in the low-density limit. 

In this paper, we shall adopt units such that the 
mass of the boson particles m = 1 and Ii = I, unless 
otherwise stated. 

2. FUNCTIONAL REPRESENTATION OF THE 
COMMUTATION RELATIONS 

Consider a system of N spinless bosons interacting 
through a two-body repulsive central potential and 
enclosed in a box of volume n. The usual quantum 
field Hamiltonian is 

H = t f d3xV'tjJ+(x). V'tjJ(x) 

+ t II d3xd3y'tjJ+(x)'tjJ+(Y)v(lx - yl)'tjJ(Y)'tjJ(x), 

(1) 

where the field operators 'tjJ and 'tjJ+ obey the usual 
equal-time canonical relations and V(lx - yl) is the 
two-body interacting potential. This Hamiltonian can 
be expressed in terms of the density P and current 
density j by using the identities derived from their 
definitions, 

and 

2[V'tjJ+(x)]'tjJ(X) = V p(x) - 2ij(x), 

2'tjJ+(x)[V'tjJ(x)] = V p(x) + 2ij(x), 
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in the kinetic energy part and writing the potential 
energy in terms of p(x) and p(y). Thus one has 

H = tJd3X[V p(x) - 2ij(x)] • _1_ [V p(x) + 2ij(x)] 
p(x) 

+ t JJd3Xd3YP(x)V(IX - yl)p(y) - tNV(O), 

(2) 

where N = f d3x p(x) is the total number operator 
and V(O) is the interaction potential when x = y. (We 
have used N for an operator and for the total number 
of particles ofthe system.) The equal-time commutation 
relations among the densities and the current density 
components, which can be obtained by aid of the 
equal-time canonical commutations among 1p and 1p+, 

are given as 

[p(x), p(y)] = 0, (3) 

[p(x), j..(y)] = ip(y) (O~~ b(x - y») (4) 

and 

[j~(x), j p(y)] 

= -ij/X)(..E.... b(x - y») + ijiY)(..E... b(x - y»), 
OX~ oYP 

(5) 
with IX and fJ denoting Cartesian components. 

We are going to use the above commutation 
relations, instead of the usual canonical relations for 
1p and 1p+, together with the expression (2) for the 
Hamiltonian to find the energy spectrum of our 
system. One way to do this is to resort to a functional 
representation for the density and the current density 
operators and for the states of the system. It is found 
more convenient to deal with the Fourier components 
of the density and the current density. We present 
in this section only the functional representation12 of 
the' commutation relations (3)-(5), a representation 
in which the Fourier components of the density PkicO 

are diagonal, although they have complex eigenvalues. 
Let 

() 1 ~ ik.x 
P X = oif Pke , (6) 

1 fd3 () -ik.x Pk = Ol XP x e , (7) 

with the reality condition for p(x), P: = P-k' where 
the functions eik.

x obey periodic boundary conditions. 
In this Pk-representation, the functional representation 
for the PkicO operator is just the, c-number function 

Pk' Thus the commutation relation (3) is clearly satis­
fied. It is worthwhile to note that Po, the k = 0 
Fourier component, has a value by the definition 
Po = N/OJ and is related to the average density by 
Po = Ol(N/O) = OlPav. Similarly let 

. ( ) 1 ~. ik.x 
J~ x =! ""J",ke , o k 

. 1 Jd3 • ( ) -ik.x 
J~.k = Ol xJa. x e , 

and its Hermitian adjoint 

. t . 
Ja.,k = Ja.,-k' 

(8) 

(9) 

To find the proper expression for j~,k operator in 
Pk-representation, consider now the commutation 
relation (4). After putting in it the Fourier components 
for P and j~, and b(x) = (I/O) 2Q eiQ'X, one gets 

! l' [p eik'x j eil•Y] = J... l' q P eiQ.x+i(P-Q),Y (10) o k.l k 'a.l Of P'Q a. P • 

For fixed values of k and I, (10) yields, as q = k, 
p = k + I, 

(11) 

To be consistent with (11), it is easily seen that a 
proper functional representation for i.,l would be 

ja..l = - ;l ka.pk+1 ~ , (12) 
~~ bPk 

where b/bpk is a functional derivative with respect to 
the variable Pk>"O' Since the value ofk, although fixed, 
is still arbitrary, we get the following general functional 
representation for j~,l by summing over k on the right­
hand side of (12): 

. 1 ~ k b 
Ja.,l = - ! "" a.Pk+l - . o k bPk 

(13) 

As pointed out by Grodnik and Sharp,12 another term 
should be added to (13) in order to define an inner 
product on the functionals of Pk in such a way that 
p(x) and j(x) operators are Hermitian. Thus the 
proper general functional representation is 

J' - - J... ~ k P l.. - It P 
~,I - l "" ~ k+1 "2 ~ I' o k bPk 

(14) 

It is evident that the expression (14) for j~,l satisfies 
the commutation relation (10), The proof for the fact 
that it is also consistent with the commutation 
relation (5) is straightforward and hence omitted, 
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3. APPROXIMATE ENERGY SPECTRUM 

With the functional representations obtained above 
for Pk,,"O and Ja •l , we are in a position to solve a 
Schrodinger equation approximately, which contains 
wavefunctionals, acting just like ordinary wave­
functions for the states of the system. To get the 
approximate energy spectrum for the system, we shaH 
use an approximate Hamiltonian obtained from (2) 
and, likewise, an approximate functional representa­
tion for the current density componentJa •1 [Eq. (14)], 
which is consistent with the commutation algebra 
and with the approximate Hamiltonian to be used. 
The approximation consists in assuming that the 
density fluctuations in space are small compared with 
the average density Pav' i.e., 

jj(x) = p(x) - Pay « Pay (15) 
with 

f d3x jj(x) = 0 

as 

N = f d3
x p(x) = f d3

x Pav' (16) 

Using the Fourier series expansion for p(x) accord­
ing to (6), we have 

p(x) = ~(po + I Pkeik.
X

) 
11l[ k,oO 

+ 1 ~ ik.x 
= Pay 1 kPke , 

Qlrk,oO 

so that condition (15) is just 

_( ) J ~ ik.x // 
P X = t k Pke '" Pav' 11 k,oO 

By aid of a power series expansion, 

l/p(x) = (I/Pav){1 - jj(x)/Pav 

(17) 

(IS) 

+ [jj(x)f Pav]2 - ... } (19) 

and p(x) = Pay + jJ(x), one expands the Hamiltonian 
(2) in terms of jJ(x) , and retains terms up to the second 
order in jJ(x), V p(x) = V jJ(x), and j(x), thus obtaining 
an approximate Hamiltonian 

HI = _1_ fd 3X [V jJ(x) - 2ij(x)] • [V jJ(x) + 2ij(x)] 
Spay 

+ tffd3
X d3y p;vV(lx - yl) 

+ tffd3
X d3y jj(x)V(ix - yl)jJ(y) - tNV(O), 

(20) 

where the terms linear in jJ(x) in the potential energy 
have dropped out due to (16). Expressed in terms of 

Fourier components of the variables, HI in (20) 
becomes 

H~ = _1_ I (k2PkP_k + I (-2kaj2.kP-k 
8pav k,oO a 

+ 2kaP-da.k + 4ja.da.-k») 

+ ! I VkPkP-k + tJr~p!vQ - tNV(O), (21) 
k,oO 

when I/2Pavj~ is zero or can be neglected (this is so, in 
particular, for the low-lying states of the system, in 
which we are chiefly interested here), with Vo being 
the k = 0 Fourier component of the interaction 
potential V(lx - yl). In writing out (21), we have 
assumed that V(lxi) has a Fourier series expansion 

V(lxi) = .!. I Vkeik
•
X 

11 k 
(22) 

and 

Vk = f d3x V(lxl)e-ik.X
, (23) 

and neglected a kinetic energy term ct/ Pav)j~ of small 
magnitude, ,....., k2/N, for large N, io = (I/11!)J d3x x 
j(x), for those low-lying excited states with a finite 
nonzero total linear momentum or total current 
,.....,±k. 

An approximate functional representation for the 
current density component can be obtained by 
applying the condition for approximation (IS) to 
the commutation relation between p(x) and ja(Y) in 
(10). Keeping on the right-hand side only the terms 
associated with the large density Fourier component 
Po, one finds, instead of (11), 

(24) 

Since ja.-k,,"O is of the order of magnitude as UsP-k,,"O 
(us is the sound velocity), likalm would have a magni­
tude about Us IPkI 2

/ Pav' As in very long wavelength 
density oscillations, ka may be quite small, and 
accordingly IPkl would be very small compared with 
Pav' We note also that (24) is just one special case of 
the relation (11), when I = -kP From (24) one 
easily obtains an approximate functional representa­
tion for ja.-k, 

. k <5 
Ja.-k = - aPav fJPk' 

which is a special case of (12) and an approximation 
to the expression (13). Corresponding to (14), the 
proper approximate expression is 

(25) 
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To use expression (25), in the present approximation, 
implies that we treat the pairs of variables Pk""O and 
ja.I",,-k.O' and ja.k""O andjp.,,,,,o as commuting variables, 
as is seen to be true. This leads physically to the 
independence of each mode of density oscillations 
associated with a wave vector k.H To see whether (25) 
is consistent with the commutation relations among 
current density components, one can find an affirma­
tive answer approximately. This will be given in 
Appendix A. It is noted that (25) gives zero for ja.O, 
which is true for the ground state but not generally 
right for excited states. Thus we have to use the 
exact expression (14) for ja.O in general. If the expres­
sion (14) were used for allja.I' higher-order terms in 
/Pk""o/I Pay with smaller magnitudes would be produced 
in H{ (21). 

Now by aid of relations (24) and (25), or (25) alone, 
one can write the approximate Hamiltonian (21) in the 
following form: 

H~ = L [k
2
(tPk -!- - tpuv f- -!-) + tVkPkP-k] 

k#O UPk UP-k UPk 

+ tVop;yD - tNV(O). (26) 

In the Pk-representation used here, the state vectors 
of the quantum field for the system will be represented 
by wavefunctionals of Pk""O I and denoted by'Y{Pk}' 
Then one has a Schrodinger equation of the form 

(27) 

where E denotes an approximate energy eigenvalue 
of the system. By inspection of the terms in H{ (26), 
it is easy to see that one eigenfunctional is of the 
Gaussian form usually used for the ground state of a 
simple harmonic oscillator. Thus we employ as a trial 
wavefunctional for the ground state here the follow­
ing: 

(28) 

In (28) A is a normalization constant and Ak denotes 
an unknown function of the wave vector k, to be 
determined through Eq. (27). We find, for 'Yo to be an 
eigenfunctional, 

H~'YO{Pk} 

= L~}2[p"yAk - (2PayA~ + Ak - 2~2 Vk)PkP-k] 

+ ! Vop~\·D - i NV(O) )'YO{Pk} 

= Eo'Yo{Pk}' (29) 

with 

Eo = L k 2PavAk + t Vop!v D - !NV(O), (30) 

if the coefficient of PkP-k'YO vanishes, i.e., 

2A~Pav + Ak - ~ Vk = O. 
2k 

This equation (31) gives 

We choose 

Ak = -1 ± (l + 4Pay Vk/k2)! 

4p,,\. 

(31) 

(32) 

(33) 

in order for the wavefunctional 'YO{Pk} [(28)] to have 
the meaning of a probability amplitude for each Pk;"O 

variable. (1 + 4pa\· Vk /k 2 is assumed to be a positive 
real number for a central repulsive interaction poten­
tial here.) With this value for Ak, the corresponding 
energy is, by (30), 

Eo = t Vop!v D 

- t L [tk 2 + PMYk - k(!k 2 + PavVk)!], (34) 
k*O 

where we have written t· Lk# 0 Pay Vk for tNV(O) , 
thereby neglecting a term tPaY Vo , small by a factor 
liN compared with the first term. As will be seen later, 
the energy for any low-lying state of the approximate 
Hamiltonian H{ is greater than Eo in (34) and so is the 
approximate ground state energy for the system. This 
result agrees with Bogoliubov's. 

We would just like to mention in passing that if 
one tried to determine the above-mentioned Ak by 
minimizing Eo,15 one would find 

, I _ 1 -I( V. /k2)! 
II.k - '[PaY Pay k • 

This would lead to a higher value for Eo, since, 
assuming Vk > 0 for every k, we have 

-1 + (1 + 4PavVklk2)! 1 2 ! 

4 
< - (PayVk/k) . 

Pay 2Pay 

It is to be noted that, in obtaining Eo in (34), we 
have never assumed condensation of particles in the 
free-particle zero-momentum state, nor is it apparent 
in our treatment. 

To get the excitation spectrum formally, one simple 
way is to use the Heisenberg equation of motion for 
p(x, t). Here, for clarity's sake, we indicate explicitly 
the t parameter for operators. 

One has 
p(x, t) = i[H, p(x, t)] 

= -div j(x, t), 

(35) 

(36) 
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which is the equation of continuity, obtained through 
using the equal-time commutation relations (3) and 
(4). 

The H appearing above is the exact Hamiltonian of 
the system. Since we have been dealing with the 
approximate Hamiltonian H1 and thus wish to find 
an approximate excitation spectrum, we shall replace 
H by H1 [Eq. (20)]. Then (35) becomes an approximate 
relation 

(l(x, t) = i[H1' p(x, t)], (37) 

which yields the continuity equation 

(l(x, t) = -div j(x, t) (38) 

approximately, if one neglects smaller terms nonlinear 
in j and j5 = P - Pa\" the density fluctuation. [Note 
(l(x, t) = ji(x, t).] Fourier-analyzing (37) and (38) 
with respect to x and assuming that PktO and j"kcfo 
have a t dependence like eiwt

, one finds 

wpit) = [H{, Pk(t)], k ¥- 0, (39) 

WPk(t) = - L k,ja,k(t), (40) 
a 

where (I) denotes a frequency and H{ takes the form 
(21).16 Insertion into (39) of the approximate ground 
state wavefunctional 'f'O{Pk(t)} [Eq. (28)], with Ak given 
by (33), leads to 

(J)Pk'f'O{Pk} = (H{ - EO)Pk'f'o{Pk}, (41) 

that 

This Ek agrees with Bogoliubov's result3 for the 
excitation spectrum which he obtained, however, 
for his quasiparticles. We note also that the spectrum 
(44) and the set of eigenfunctionals If'O{Pk}' pk'f' ° , 
PkPI *k'f' 0, etc., for the low states of the system are 
essentially compatible with the results of Bohm and 
Salt,S using their collective coordinates (PkP~k'f' 0 for 
any k being not an eigenfunctional). 

4. CONNECTION WITH THE QUANTUM 
HYDRODYNAMIC APPROACH 

As is well known, the above density fluctuation 
excitation spectrum agrees also essentially (only for 
very small k) with results of the quantum hydrody­
namic approach to the irrotational motions of a Bose 
liquid, as used by Kronig and ThellunglO and Lon­
don.lo If we could take the quantum field Hamiltonian 
expressed in terms of P and j in (2) to describe the 
hydrodynamic system of the Bose liquid, as done by 
Yee,n and tried to find the energy spectrum for the 
irrotational flow within the same kind of approxima­
tion, using the commutation rules common to the 
hydrodynamic methods, i.e., 

when H{ assumes the approximate form (26). So 
Pk\Yo{pd is the approximate wavefunctional for an 
excited state of the system, with the corresponding and 
excitation energy denoted by 

[p(x), p(y)] = 0, 

[4>(x), 4>(y)] = 0, 

[p(x), 4>(y)] = -io(x - y), 

( 45) 

(42) where 4> is the velocity scalar potential, the resultsl7 

would be identical to ours. The main difference 
[it is easy to verify that this excited state has a total 
linear momentum = n~(jo) = -k, using (14).] This 
excitation energy is determined by aid of (40). Inserting 
\YO{Pk} also into (40) and using the approximate 
functional representation for ja,k/ 0 like (25), we get 

(J)Pklf'O{Pk} = - L k;(pu\. _0_ - ~Pk)'f'O{Pk} 
a OP~k 

= 2k2(Pu,Ak Pk + !Pk)'f'O{Pk}' (43) 

Hence the excitation energy is given by 

Ek = 2k\p,,\.Ak + t) = k(tk 2 + Pay Vk)~' (44) 

Of course, it is also easy to get this excitation spectrum 
here by noting that Pk'f'O{Pk} is an eigenfunctional of 
the SchrOdinger equation (27) with an energy Ek , so 

between our spectrum and those of Kronig and 
Thellung, and London, then comes from the fact that 
they started with a classical Lagrangian for the liquid 
while we used a quantum field Hamiltonian, which 
contains explicitly the two-bOdy interaction potential 
and some terms of quantum origin. This point has 
also been noted by Yee. To see more clearly why our 
present microscopic treatment is equivalent to the 
quantum hydrodynamic approach to the irrotational 
flow, we observe two points. The first point is obvious: 
that both treatments employ the same kind of approxi­
mation-that the amplitudes of density oscillations 
are small compared with the average density. Secondly, 
the commutation relations used here to derive the 
above results can be easily shown to be equivalent to 
those relations (45), provided we assume also the 



976 B. TSU-SHEN CHANG 

existence of a velocity potential rp(x), such that 

jix) = -Pay ~ rp(x). (46) 
ax" 

Let 

So in terms of Fourier components, (46) becomes 

ja,k = -ikaPaAk> k ~ 0, (47) 

which actually corresponds to the approximate 
functional expression for ja,k' i,e., 

ja,k = (kaPav -!- -lkapk), (48) 
P-k 

Using Fourier components, we change the relations 
(45) into 

and k::;l: 0 

[Pk' PI] = 0, 

[rpk' rptl = 0, (49) 

As is seen easily, the first relation in (49) holds in 
both treatments. This is also true for the second 
relation: As we mentioned before, the use of the 
approximate functional expression like (48) for ja,k 
implies the relation 

(50) 

which yields by virtue of (47) just the second relation 
in (49). As to the third relation, we have in our case 
the commutation relation (24), i.e., 

Due to (47), this leads to the third relation we want. 
In accordance with the commutation algebra (49), 
if we give rp-k a functional representation in our Pk­
representation, this will be, after adding a term 
corresponding to - lka{3k in ja,k , 

rp-k = {~~k - tP-k/Pav) , k ~ 0 (51) 

[although blbpk is not well defined (Ref, 12)], so that 
(47) goes to (48), as previously stated, This also 
indicates a formal connection between the two methods. 

It appears that the above connection cannot be 
made if general expressions like 

)' - - -.L ~ m P ~ - lk P a,k - ! k a m+k 2 a k 
Q m bpm 

are used, for then obviously the relation (50) is no 
longer valid. However, a formal connection still 
exists even in such a case if we use Yee's hydrodynamic 
approach and define the velocity V by 

j(x) = t[p(x)V(x) + V(x)p(X)],l1 

We shall prove the last statement in Appendix B, 
No matter whether there exists the above connection 

or not, these approximate or general functional 
expressions for ja,k together with the Pk,!,O functions 
for Pk"cO operators in the Pk-representation can be 
used to investigate some hydrodynamic motions of a 
quantum liquid, since they depend only on the basic 
commutation relations among the density and the 
current density (3)-(5), which are valid for both 
microscopic and macroscopic descriptions of the 
liquid. 

5. DISCUSSION 

Let us now examine the validity of the present 
treatment. The following considerations show that 
our results hold for the low density limit with a short­
range repulsive potential. Consider the main approxi­
mation involved in the condition (18), 

p(x) « Pay 

for the ground state, That is equivalent to 

«p(X»2) « P;v, (52) 

where the average ( ) is taken over the approximate 
ground state wavefunctional 'YO{Pk} [Eq. (28)], Equa­
tion (52) may be expressed as 

1 ~ ( i(k+O'x) 1 ~ ( ) // 2 
n £., PkPle = n k PkP-k "Pav 
U k,."O U k"O 

(53) 

since 

(PkPI) = b_k ,I(PkP_k).15 

Changing the summation into integration by 
~k ---+ [Qj(27T)3] f d3k, we have (E being an arbitrarily 
small vector) 

.-1 .. -i d3k( ) - _1 i k
2 

dk 2 (54) 
(2 )3 PkP-k - 2 2 41« Pay 

1T f-+O '1T E-O ILk 

with (33) for Ak , 

A = _1 [(k2 + P v.)! - ~J' 
k 2Pavk 4 av k 2 

We observe that physically there exists a minimum 
wavelength of the density oscillations with a magnitude 
about the average interparticle distance, '0 ('" p;;"l), so 
we shall take a cutoff kc for the upper integration 
limit. The actual value of kc will be estimated from 
the above inequality. We shall assume that,for those 
small wave vectors k :::;; kc of interest here, the Fourier 
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component of the interaction potential Vk may be 
replaced by Vo, the constant k = 0 Fourier com­
ponent. As usual, this Vo may be related to a scattering 
amplitude a by 

(55) 

where m is understood to be the mass of a Bose 
particle. With the factors in Ii and m inserted and (55) 
substituted into Ak , one finds 

1 [(k2 )! kJ A = -- - + 417ap - - . 
k 2 k 4 av 2 Pay 

Then (54) becomes 

_1_ fke k3 dk « 1. 
2Pav 172 Jo -k + 2(tk2 + 417aPav)! 

For our purpose here, it seems legitimate to 
consider, instead, a simplified integral 

_1_ P;; fk c 
k

3 
dk « 1, 

2172 Jo (k2 + 1617aPav)! - kc 
or just 

_1_ P;; fk c 
k

3 
dk « 1, 

2172 Jo (k2 + 1617aPav)! - 4(17aPav)! 

if 

k~ ,....., 1617apav or r = 1617aPav/k~""" 1, 

and, if r« 1, 

1 ( f4
(1rap av)l k3 dk 

2172 P;; Jo (k2 + 1617aPav)! - 4(17aPav)! 

(56) 

+ fk e 

t k
4
dk)« 1. (57) 

J4(1rapav) 817apav 

In the first case, r ......., 1, (56) can be written as 

where 

32 (3 )1[2 + 3 cos IPc 5J ! a Pay - - «1, 
17 6 COS3IPc 6 

(58) 

(58) is easily seen to hold if (a3Pav)! « 1, which is just 
a usual condition for the low density limit with a 
short-range interaction potential.4.l8 In the second 
case, r « 1, (57) becomes after integration 

32 3 ![2.)2 IJ k~ ~ ! (a Pay) - - - + [1 - r ] « 1. 
17 3 6 80173ap;v 

~59) 

Let us consider the second term first. It would be 
« 1, if 

or 

(aPav)~ « k~/104 « ap!v. (60) 

This latter inequality expression implies also the 
condition (a3Pav)! « 1, which makes the first term in 
(59) again small compared with unity. Thus with (60) 
fullfilled, our main approximation would be valid. 
[E.g., one could choose k~ = 102ap!v with (a3Pav)! « 
10-2.] 

Under the condition (a3Pav)!« 10-2 with the 
chosen cutoff value for kc' one can express the 
approximate ground state energy in (34) as a series in 
(a3Pav)t. However, in order to show which terms in 
the series do not depend on the chosen value of kc , 
we expand the terms as a power series in the parameter 
r, leaving kc as if not fixed. We have from (34) 

Eo/Q = (1i2/2m) 

{ 

2 1 ike 3 [k2 X 417apav - --3 d k - + 417aPav 
(217) 0 2 

_ (~2 + 417apavk2)tJ). (61) 

After simple integrations, the second and the third 
terms combine to give 

(- k~/2172)(1/10 + r/12). (62) 

The last term in (61) can also be easily integrated out 
to be 

1 ~[3-5COS2IPc 2J 
-9 X 512(17apav) 5 + -, (63) 
217- 15 cos IPc 15 

where cos IPc has been given in (58). If we expand (63) 
with respect to r and keep terms up to the tth power, 
we find as an approximation to (63) 

+k~/2172(1/1O + r/12 - r2/16 + r~/15 ... ). (64) 

Substituting (62) and (64) into (61) and replacing r by 
1617aPav/k~, one obtains 

Eo 2171i2 
2 

-= --apav n m 

[
2 128 3 t (a

2PaV)J X 1 - - akc + --! (a Pay) - 0 -- . 
17 1517 kc 

(65) 

We have noticed from the above that the cancella­
tions of the second and the third terms by part of the 
last integral in (61), as well as the first and the third 
terms in (65), do not depend on the chosen value of 
kc and thus that they are reliable. However, the 
second term and the remaining terms in the parenthe­
ses of (65), being of order (a3Pay)~ and at least 
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O[(a3Pav)l] respectively, do depend on the chosen kc 
value, so that the coefficients associated with them are 
inaccurate. Actually this second term is reminiscent 
of the divergent term when kc -- 00 as. discussed by 
Lee, Huang, and Yang,4 and has to be dropped out 
for a correct treatment of the interaction potential. 
As to the inaccuracy of the coefficients just mentioned, 
there is another source here, i.e., that we have not used 
the general functional expression forj,x._k' which would 
give some corrections. These corrections will be worked 
out and published elsewhere. In the present treatment, 
we can not get the logarithmic term of (a3Pav), as 
calculated by Hugenholtz and Pines 7 and by WU.19 

As far as the reliable terms in (65) are concerned, they 
are in agreement with those of Lee and Yang20 and 
Ref. 4. 

It is to be emphasized that our main approximation 
([p(x»)2) «P:v would break down for k» (102 X 

ap!v)t as previously estimated.21 If the kc value could 
serve as an order-of-magnitude mark where the 
collective oscillations end, as in the case with k~ ,...,.,. 
167Tapav, then, for k » kc, Pk refers essentially to the 
individual particle behaviors, and the present approxi­
mation is not suitable for studying those with k 5 » 
102 X ap!v. However such a meaning for kc is in­
applicable to the case where 167Tapav « k~; for those 
k values such that 167Tapav« k 2 ~ k~, the density 
excitation spectrum is already particlelike. It is not 
proper then to talk about collective oscillations. 

Finally, the present method of employing the 
functional representations of Pk#O and ja.k in the Pk­
representation is useful for both Bose and Fermi 
systems since the same set of commutation rules for 
density and current density components exist. So it 
can be applied to study interacting Fermi systems, if 
we extend it to take care of the spin and Fermi 
statistics of the particles, as done, e.g., by Grodnik 
and Sharp22 recently. This application will be made 
later on. 
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APPENDIX A 

We have wanted to see whether the approximate 
functionalrepresentation,ja._k#o = -ka(Pav(~/~Pk) -
!P-k) [Eq. (25)], is approximately consistent with the 
commutation relation among the current density 

components, i.e., Eq. (5), 

[ja(x), jP(y)] 

= -ijp(X)(~ b(x - y») + ijiY)(-.L b(x - Y») 
oXa oYp 

or its Fourier transform 

[ja.k,jp.l] = ~! (-lajp.k+1 + kpja.k+I)' (AI) 

Applying (25) to the left-hand side of (AI), one 
easily finds zero for any nonzero k and I values. But 
the direct use of (25) for the right-hand side will give 
nonzero generally if k ¥: ±l, i.e., 

~ (kakp - lalp) (Pav _b_ - ipk+I)' (A2) 
o bp_k_1 

So there seems to be an inconsistency with the commu­
tation relation (AI). However, those nonzero terms 
will contribute small magnitudes when operating on a 
state functional and may be neglected through the 
following considerations. Let us find out how (A2) 
comes about by employing the general functional 
expression (14) for the current density components 
in the commutator [ja.k ,jp . .l. We find, by separating 
the large terms from the small terms in ja.k and h.I' 
for k ¥: ±l, 

ja.d 13. 1 = [( kaPav b:_
k 

- ikaPk) 

I b ] -! L maPm+k-o m*-k bpm 

X [(lpPav b:_
1 

- i1pPI) 

- ~ L npPn+1 ~J (A3) o 0*-1 bpn 

- k I p2 -~- _b _ _ 1 kip P _b_ 
- a 13 av 2" a 13 av I 

bp_k (jP_1 ~P-k 
1 

-! kaPav L np o n*-I 

( 
b b b) 

X ~-k.n+1 -;- + PlI+1 -~- -;-
UPn UP_k UPn 

- ik.lpPavPk ~ + !kalpPkPI 
~P-I 

1 (j + --! kaPk 2 nppo+l-
20 n*-I bpn 
1 (j b 

- -1 IpPav L maPm+k - -
0 2 m*-k ~Pm ~P_I 

+ ~ L maPm+k(~m.l/p) + IpPI-~-) 
20 m*-k (jPm 

+ ~ L maPm+k ~ ( 2 npPn+I~)' o m*-k ~Pm 0*-1 ~Pn 
(A4) 
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It is noted here that the third and the eighth terms in 
(A4) give 

~(kikp + lfJ)Pav _15 - + !l~lppk+l)' (AS) 
o bp-k_l 

Similarly, 

. . _ k 2 _15 __ 15_ it k _15_ 
.1P.IJ~.k - tp ~Pay 15 15 - 2 fJ ~PaYPk 15 

P-l P-k P-l 

Again the third and the eighth terms in (A6) are of 
interest, and give 

We see then that it is the difference (AS) - (A 7) 
which leads to the nonzero terms in (A2). Since these 
terms (AS) and (A 7) are both small compared with the 
leading terms in the product 

as seen clear from (A3), and since we have implicitly 
neglected them when we apply the approximate 
expression (25) to [Ja.k ,jfJ.l], it is reasonable and also 
consistent to neglect (A2). One may view this neglec­
tion in the same sense of approximation as Bogoliubov 
took [ao, atl = 0 for bosons3 near T = 0 OK, where 
ao and at denote, respectively, destruction and creation 
operators for the free-particle zero-momentum state. 
Thus within this approximation the approximate 
expression (25) leads to [j~.k,jp.ll = 0, which is 
consistent with the commutation relation (AI). 

APPENDIX B 

As was shown by Vee, the commutation relation (4) 
may lead to 

[p(x), Va(y)l = i(~ b(x - y»). (Bl) 
aYa 

In terms of Fourier components, (Bl) becomes 

if one assumes 

V( ) 1 '" V' ik·Y 
~ Y = 0 1 f ~.ke , 

and the relation defining V yields 

j~.k = ~ L [PkHVa.-q + Va.-qPkHl. 
20 q 

For any k, we get, by aid of (B2), 

but we also have here 

(B2) 

(B3) 

(B4) 

j~.k = - ~ L m~Pm+k --.L - !kaPk' (BS) 
o m bpm 

To make these two expressions identical, one can 
give V~._q a formal functional expression in our 
Pk-representation as (assuming the zeroth Fourier 
component of the velocity, Vo = 0) 

V b 1 fd3 ( i() a (») iq·x ~._q = -q~ - - --! x P- x - P x e , 
bpq 2iO ax~ 

q ¥= 0, (B6) 

with p(x) expressed in terms of Pk' although it 
involves a not well-defined operator blbpq and a 
singular function 11 p(x). It can be easily verified that 
substitution of (B6) into (B4) will give (BS). It is also 
evident that V~._q given by (B6) is consistent with the 
relation (B2) and the commutation relation among the 
current density components, since the latter is satisfied 
by the general expression for j~.k' (B6) implies the 
existence of a formal velocity scalar potential operator 
cp, for 

(B7) 

To show the truth of (B7), clearly we need only to 
examine the second term of V,.._q in (B6). On inte­
grating by parts, this term can be changed to 

+ ~ fd 3x log p(x) ~ eiq
•
X 

2iO ax~ 

= ...!k fd 3X log p(x)eiq.X, (B8) 
201 
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as the other integral vanishes due to the periodic 
boundary conditions used. Thus terms like (B8) will 
satisfy (B7). One may then define ¢q formally by 

Va._q = jq~¢_Q' q::;t= 0, (B9) 
i.e., 

or 

= j (~ - _1_. Jd3X log p(x)eiQ
•
X
). 

bpq 20! 
(Bll) 

[When 1/ p(x) is approximated by 1/ Pav, (BIO) becomes 
¢_q = j(b/bpq - !P-q/Pa,.) as given by (51)in the text.] 

Substituting (B9) into (B2), one finds 

[Pk' ¢-k] = -i, k::;t= 0. 

(B 10) or (B 11) leads to 

(k, I ::;t= 0) [1>t, ¢tl = O. 

(B12) 

(B13) 

It is not difficult to check the consistency of (B13) 
with the commutation relation among ja.k and h.I' 
i.e., (AI). 

We see that (BI2) and (B13) are just two of the 
relations in (49) in the text, which need to be proved. 
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