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A relationship between semiclassical and centroid correlation functions

Qiang Shi and Eitan Geva
Department of Chemistry and The FOCUS Center, University of Michigan, Ann Arbor,
Michigan 48109-1055

(Received 3 December 2002; accepted 10 February)2003

A general relationship is established between semiclassical and centroid-based methods for
calculating real-time quantum-mechanical correlation functions. It is first shown that the linearized
semiclassical initial-value-representatiobhSC-IVR) approximation can be obtained via direct
linearization of the forward-backward action in teeactpath integral expression for the correlation
function. A Kubo-transformed two-time correlation function, with the position operator as one of the
two operators, is then cast in terms of a carefully crafted exact path integral expression.
Linearization of the corresponding forward—backward action, supplemented by the assumption that
the dynamics of the centroid is decoupled from that of the higher normal modes, is then shown to
lead to the centroid correlation function. @003 American Institute of Physics.
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I. INTRODUCTION relation function? The remainder of this paper is organized as
follows. Section Il provides an overview of the centroid and
Most of the measurable quantities in condensed-phas8C methodologies, with emphasis on results particularly rel-
systems can be expressed in terms of real-time correlatiogvant to the goal of this paper. A direct derivation of the
functions'~® In many cases, classical mechanics provide dinearized SC initial-value representatiqgh SC-IVR) ap-
reasonable approximation within which to calculate theseroximation from the exact real-time path integral expression
correlation functions. However, there are many situationsor a correlation function is presented in Sec. Ill. The rela-
where this is not the case. Important examples incl@dle: tionship between centroid and LSC-IVR correlation func-
Rates of chemical reactions that involve light particles, suchions is established in Sec. IV. The main results and conclu-
as protons and electrons, where tunneling and zero-point esions are summarized and discussed in Sec. V.
ergy effects play a major rol€¢2) Energy relaxation of high
frequency vibrations, where the dominant degrees of freel-l_ AN OVERVIEW OE THE CENTROID AND

dom (DOF) involved are not in the classical limif3) Opti- SEMICLASSICAL METHODOLOGIES
cal response functions, whose temporal behavior reflects the

time evolution of an electronic superposition state, which™ The centroid approach

lacks a well defined classical limit. . In its most recent formulatioff?° centroid dynamics
The exact calculation of real-time quantum-mechanicahas been shown to be based on the following phase-space
correlation functions for general many-body systems remaingperator(given here in 1D, for simplicity

far beyond the reach of currently available computer re-

sources, due to the exponential scaling of the computational (Q,(Xc,pc)z i fw dgfx d,r]eig(f(fxc)ﬂn(fnfpc)fﬂﬁ’
effort with the number of DOE.The challenge therefore 27 ) —

translates into the development of effective, yet computation- (1)

ally feasible and versatile, approximate methods for calculatyherex, and p, are the centroid position and momentum,
ing gquantum-mechanical real-time correlation functions.respectively, andd=1/kgT is the inverse temperature. A
Several such methods have been proposed throughout tentral role is reserved for the trace of this operator, which
years, including mixed quantum-classical approaén&ithe corresponds to theentroid density

analytical continuation methdd; ! Centroid Molecular Dy- N

namics(CMD),%?~*6and methods based on the semiclassical  Pc(Xc,Pe) = Tl d(Xc,pe) ]- (2

(SO approximation:*~**These methods have been applied, The centroid approach also associates a classicalktie

with relative success, to a rather extensive set of systemgoig symbo) A.(x.,pc), with each quantum dynamical ob-
However, the relationship, if any, between the various apservable A(%,p), which is defined by:

proximations underlying different methods is often not clear, R R
and comparisons based on specific applications may be mis- Ac(Xc,Pc) =TI d(Xc,Pc) Al pe(Xc,Pe)- 3
leading. The centroid densityp.(X.,p.), turns out to have a

In this paper, we develop a general relationship betweegagsical-like form, which is similar to that of the classical
the centroid and SC methodologies. The question that W& tzmann distribution:

address is as follows: What assumptions are required in order 5
to obtain the centroid correlation function from the SC cor-  p.(X.,pc)=e PP/?Me™ AVem(Xc), 4)
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TABLE I. The centroid formulation of quantum statistical mechanics.

Standard Centroid
zZ= Tr(e #) @Ce—ﬂ[pﬁzmwm(xa]
27t
Ay ~BAA el L P PARVRR)
(Ay= Tr(e AHA)/z gy € P YentlA(xe ,pe)/Z
Kubo N —BHRA A ; dx.dpe _ 2120+ Vg (X,
CE(t) = FTr(e BA(t+iN/h)) Tl Blpg B (X, ,pe) Ad Xc , Pe ]
0
Vem(Xe) in Eq. (4) is called thecentroid potential It is dis- The above definitions form the basis for an exact

tinctly different from the classical potential and can be writ- classical-like formulation of quantum statistical mechanics,
ten in terms of a constrained imaginary_time path integraj; which is summarized in Table I. The last line in Table | is of
particular importance since it relates the classical-like two-
time centroid correlation function with the exact Kubo-
(277,3;12)1/7 transformed quantum-mechanical correlation function. It
T
X(0)=x(pBh) )

e~ BVem(Xe) = pc(XC)

should be noted that Kubo-transformed correlation functions
can be converted to regular correlation functions via a well
known identity>® However, this relationship is subject to two
limitations: (1) It is exact only wherB is linear ink and/or

p; (2) The exact time dependence of the centroid symbol

m

X 8 xc—(ﬁﬁ)_lfﬁﬁdrx(r)
0

xXexp{—S[x(7) ]/} A Xc,pc;t] is given by:
277[3ﬁ2 1/2 mP P/2 A R
= Ilm ) 2) AC(X01pC;t):Tr[¢C(XClpC)eIHt/ﬁAeilHt/ﬁ]/pC(XC1pC)1
Pl M 2w Bh )
1 P
Xf Xm"‘f dxpg( Xo— = > Xk) and requires the same amount of effort to calculate as in
P=1 standard quantum mechanics.
_ The second difficulty can be circumvented by introduc-
Xexp = Slxy, ... Xpl/h}, ®) ing computationally feasible approximations for the dynam-
with ics of the centroid symbol. Several such approximations have
1 1 been proposetf. However, they all have one important fea-
—8[x(7)]= lim —=8[X1,... Xp] ture in common—the centroid is assumed to move on an
h Pl effective potential, obtained by averaging over the higher
normal modes of the imaginary-time path. Hence, the cen-
1 (s |1 L . .
= _f dr =m[x(7) ]2+ V[x(7)] (6)  troid is effectively decoupled from the higher normal modes.
o 2 For example, the CMD method, which is by far the most

and popular centroid-based method, involves the following
. approximatiorf®

1 mP )
7Sk XP1=B) 2, 52 (X Xi) Bl Xc.Pe:t1~Ba Xc(1), pe(D)], )

wherex.(t) and p.(t) are propagated as classical-like posi-
' @) tion and momentum variables on the centroid potential
) Vem(Xe) [cf. Egs.(4) and (5)]. An important feature of the
In Eq. (7), Xp+1=X; . It should be noted thaic(xc) is Pro-  cMD approximation is that it reduces to the exact result in
portional to the probability density of finding a classical cy- i following limits: (1) At short times(exact at = 0); (2) At
clic chain polymer consisting oP beads, which are con- ihe classical limit(3) For harmonic systems.
nected by harmonic springs and subject to the potential  gina|ly. it is important to note that quantum corrections

V(x)/P, with their center of masgthe centroidl at X=X..  are introduced into centroid methods in two distinctively dif-
The centroid also corresponds to the zero-frequency norm%rent ways:

mode of the chain polymer. The imaginary-time path integral

in Eq. (5) can be computed using classical molecular dynam- « Via the nonclassical sampling of the initial centroid
ics or Monte Carlo simulation$PIMD and PIMC, respec- positions fromp.(X.), rather than from the classical
tively) for relatively complex many-body systerffs®’ Boltzmann distribution.

1P
+ P > V(X
=]
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e The possibly nonclassical dynamics of the centroidTr(Aeiﬁt/ﬁée—iﬁmﬁ)
symbols, which depends on the approximation em-

ployed (e.g., classical-like propagation on the centroid B
potential in the case of CMD ~(2mh) 1f dxof dpoAw(Xo,Po) Bw(x{" ,p{M),
(12
B. The semiclassical approach where

SC methods*’~® are generally based on performing a
stationary-phasésaddle-point approximation on the quan-

tum time-evolution operatoe"Ht/" 88-76 The resulting SC

o . . ol the Wigner transform of A%® and {x{°"
propagator is given in terms of an integral, over cIaSS|ca:X(c|)(X .0 =pC(x,.po)} are propagated classi-
trajectories, ofe’S'", whereS is the classical action. Most t(Xo.Po), Pt = =Pt 1X0.Po propag

recent work in this area has been based on the initial—value(zaIIy with the initial conditiorx, andpo. Thus, the problem-

representatiorflVR) of the semiclassical propagator, which qt|c pre-exponenUa! factor is eliminated in th|§ approxima-
S ) o " tion, and the oscillatory character of the integrand is
puts it in terms of an integral over initial positions and

momentz0-536477-84 Different IVRs can be introduced. hidden” in the W|gner_tra_nsform. The major adv_ar_1_tage of
. : 9 LSC-IVR has to do with its computational feasibilitgal-
based on the choice of basis 3kt® For example, the SC- . : )
L . . though the computation of the Wigner transform in systems
IVR approximation of the propagator in terms of the position

einenstates. given here for a 1D svstem. for simlicity. is: "ith many DOF is not trividl’). Its main disadvantage has to
g ' 9 y ' PUCILY. 1S- 4o with the fact that it can only capture dynamical coherent

AW(x,p)=f dAe PAR(x+ A2|A|lx— A/l2) (13

A o IX%(Xo,Po)| 2 effects that arise from short-time interferences between the
€ ~(2mith) deOJ dpoa—po various trajectories(the longer time dynamics is purely
. classical.®
X eSX0Pol %[5 (g (10 Another approach is based on the forward—backward

A straightforward application of the SC-IVR methodol- (FB) procedure.’%:00-626490.99-1%he pasic idea is to com-
ogy to the calculation of a two-time correlation function Pine the forward and backward propagations involved in

yields: eH"Be~1HU% into a single time propagation, and apply the
SC-IVR approximation to it. The resulting expression for the
Tr(AeiI—]t/hée—i}:It/h)~(z,n.iﬁ)—lf dng dp&f dxy correlation function involves a single phase-space average
over a far less oscillatory integran@ue to partial self-
ax;| M4 ox; |12 cancellations in the FB actipnand a smaller pre-exponential
Xf dpy E E factor. The implementation of the FB-IVR approach is

straightforward when the operatércan be written in terms
><<xg|A|xg><x;|B|x;>e‘<53—5f>/ﬁ, of a complex exponenti_al. The applipation of the FB ap-
proach to non-exponential operators is based on expressing
(1D them in terms of exponential operators. Unfortunately, this
where x;" =x(Xg ,Pg), X =X(Xg .Pg), S =Si(Xg.pg)  Procedure is not unique, and different representations can
and S, =S(x, ,py) are calculated along classical trajecto- lead to different results?*0%2
ries. The main problem involved in the evaluation of this ~ The different SC-IVR methods mentioned above were
integral has to do with the highly oscillatory nature of the successfully applied in recent years to a wide array of impor-
integrand(different initial conditions lead to different values tant problems, including tunneling and interference effects in
of the action. Early attempts to deal with this difficulty were chemical reaction§’°8:8283,92,103 nonadiabatic
based on filtering or stationary-phase Monte Carlodynamics;>**1%*1%photodissociation?**%~*%the calcula-
method<5-8 However, these techniques are difficult to ex-tion of the vibrational-rotational energy levéf$threshold
tend to problems involving many DG®®although the per- photodetachment spectfd absorption, emission, and reso-
formance may be improved in some cases by using a genepant Raman spectra df, in rare gas matricé$>>% and
alized Filinov transformatiof* Another problem has to do clusters}* anharmonic vibrational dynamics and more.
with the pre-exponential factors which tend to grow very These successful applications strongly suggest that SC-IVR
rapidly in chaotic systems. can effectively account for most important quantum aspects
Several approaches have been suggested over the 1a8tMD simulations.
few years in order to overcome the above mentioned diffi-
culties. One idea is based on the assumption that the mo(s:t
important contributions to the integral come from forward =
and backward trajectories which are infinitesimally close to  The centroid approach is based on the rational that real-
each other. If so, one can expand the forward—backward at¢ime information can be obtained from computationally fea-
tion, S/ —S; , to first order with respect to the difference sible imaginary-time calculations, while the SC approach is
between the forward and backward positions andbased on the rational that the real-time calculation can be
momentd’48:56.92-9he resulting linearized SC-IVR.SC-  simplified to the point where it becomes computationally
IVR) approximation then assumes the following form: feasible. Thus, at first sight, CMD and SC-IVR seem to be

Contact points between CMD and LSC-IVR
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rather different. However, a closer inspection reveals several 0 4
intriguing similarities, particularly between LSC-IVR and
CMD. In actual applications, one is usually interested in cal-
culating a canonical correlation function of the form
Tr(e AHAeHU"Be~HUA)  The LSC-IVR approximation
would then amount to performing the initial sampling based
on the Wigner transform o #"A, followed by fully clas- —ihA

sical dynamics of the Wigner symbol &. CMD also in- o . .

| | ical samolina. which is based on the CentroiFIG. 1. A schematic view of the real-time contour underlying the path
V(_) vgs n_onc assical sampling, ' > LSRR ’ ftiltegral of Eq.(16). The imaginary time axis is included for reference only.
distribution, rather than the Wigner distribution, and is fol-

lowed by classical-like dynamics of the centroid symboBof
on the centroid potential. Furthermore, it was recently shown i
by Jang and Voff that the Wigner transform of the Boltz- AS IS Well known,Cg(t) can be expressed in terms of the
mann operatore‘f”'q is given by the trace of the following foIIovylng rea!-t|me path integrgwritten 'be'low " ter'ms of
phase space operaéor' the discrete time{0,¢,2¢, ... ,Ne=t} (the limit N— o will be

’ deferred to a later stagle

\ 4

T

|

>
o>

. ﬁ o o0 o R ~
' - i1§(x=x)+in(p—p)g—pH

¢up)2me%ﬁ;Me e M,

from!) the centroid phase-space operafdx,p) in Eq. (1),
m " dxg dxy [ dxg
P [ o [ e

the same limitgclassical limit, harmonic systems, andtat
lems. We are only aware of one example in the literature

g Cot0=] 06 [ [ o [ axoiANG)
which is elusively similar to(and yet distinctly different ><<x5|eiH“ﬁ|xm<x§||§|x,§><x,j|e*iH“ﬁ|xg>
whose trace gives the centroid distribution. It should also be

noted that both LSC-IVR and CMD yield the exact result at

=0). Finally, it is also of interest to compare the perfor- XJ — A Y xC [ Blx el (S~ S/ 1
mance of CMD and LSC-IVR in specific benchmark prob- Aty (Xo [ Ao )xn[Blxy)e'™ - (19
where LSC-IVR and CMD have been applied to the same' € forward and backward actions are given by
multi-dimensional benchmark problem. This example corre-

N-1 + +
sponds to t_he calculation of k_)_arrier crossing rate constants_ in St= 2 c Em Xj_+1_xi_)2_v(x;) ' 17)
a symmetrical double-well bilinearly coupled to a harmonic =0 |2 J
bath#>4"11n this case, both CMD and LSC-IVR performed
rather well, and y|e|ded Comparab|e results. where e=t/N. The forward-backward “time contour” un-
The above mentioned “contact points” between CMD derlying the path integral in Eq15) is shown in Fig. 1.
and LSC-IVR provided the motivation for the work reported ~ In the next step, we change the integration variables

below. Our basic objective in the following sections would from Xg ,...X% ,Xg ... Xy INtO Yo,...Yn,Z0,-.. 2y, SUCh
be to establish a rigorous relationship between LSC-IVR andhat
CMD, that will clarify the nature of the relationship between T .

=5(X{ +X), Zi=X; =X . (18
these two methods. yi=z(xj +X =X X

The linearization approximation is introduced by expanding
IIl. A DIRECT DERIVATION OF THE LINEARIZED the forward—backward actior§y,— Sy, to first order in

SEMICLASSICAL INITIAL-VALUE-REPRESENTATION Zo....zy . This yields:
(LSC-IVR) APPROXIMATION

m

In this section we present a direct derivation of the LSC- ,
?(Yj+1_yj)(zj+1_2j)_v (¥))z

N—1
+_ ~

IVR approximation, which is based on the linearization of SuT Sy 62‘0
the exactreal-time path integral expression for the correla- N1
tion function. More specifically, we show that it is possible to 2 ,
—€ _
_ i

i<

derive LSC-IVR without explicitly invoking the SC approxi-
mation (although one can argue that linearization represents

m
?(Zyj_yjl_ijrl)_V’(yj)}

a stronger approximation which implicitly implies the SC 4 ez _E( —yo) =V (Vo)
approximatiof. Another goal of this section is to demon- %ol — 21 Yo Yo

strate the basic strategy that will be employed in the follow-

ing sectiqn in order to relate LSC-IVR and centroid correla- + GZNQ(YN—YNﬂ)- (19
tion functions. €

Consider the following general two-time correlation ) ) o )
function: Following the linearization, one can perform the inte-

o gration overz,,...,zy_1 explicitly, by using the following
Cap(t) =Tr(AeM e =1HU/A) (15 identity:
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f dze ilh e[ml€2(yj 41— 2y +yj—1)+V' (¥

2@h |m ,
= 5?(yj+l_2yj+yj—l)+v (yj|- (20)
It should also be noted that in the limit—o (e—0),
m !
€Zy _?(h—)’o)_v (Yo) |— —2ZoPo,
m (21)
GZN?(yN_nyl)_}ZNpNa

where po/m=Ilim__o(y1—Yo)/e and py/m=Ilim___o(yn

—Yn-1)/€. Changing the integration variables,...,yn_1
into f,...,fy_1, such that
m !
fj:?()’j+1_2yj+yl‘—1)+v (¥j)» (22

and explicitly integrating ovef,,...,fy_1, then leads to the

following approximation:

dPo

1
o | dvo| av. [ az [ 4z 22

Cag(t)~

Yy

X (Yo+20/2|Alyo—20/2)

X (yy— /2| By, + z/2)e PoroltgiPiz/h (23

It should be noted that in arriving to EQR3), we have ex-
plicitly incorporated the limitN—o (e—0), such thaty,
Y, andzN—>zt, and made use of the following identity

i 1 Hay| 119po
m € 62 af| ﬂyt

N— o

(Joy/of| is the determinant of theN—1)Xx (N—1) matrix
whose (,j)th element isdy;/df;). It should also be noted
thaty,=y(Yo,Po) in Eq. (23) follows a classical trajectory
[cf. Eq. (20)]:

(24

m
f,:?(y]'H_ZYj+y171)+V'(y]'):0

N— o0 2

— MgeY(O=—VIy®]. (29

Finally, changing the integration variablg into pg,
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IV. A RELATIONSHIP BETWEEN THE LSC-IVR AND
CENTROID CORRELATION FUNCTIONS

In this section we will focus our attention on the follow-
ing Kubo-transformed correlation function:

Kubo(t)_lgf d\ Tr(e™ (8- )\)HAe—)\H |Ht/hxe |I:|t/ﬁ)
(27

[we refrained from including the factor Z/in the definition

of CKY(t) since it does not play an active role in the fol-
lowing analysig. It should be noted that this type of corre-
lation function can be directly related to the corresponding
centroid correlation function. In fact, it has been shown that
the latter is identical ta€CXa °(t) = CK”bO( t), provided that
the dynamics of the centroix. is exactz. A straightforward
application of the linearization approximation of Sec. Il to

cRuPot) will yield the following approximation:

)~ = J dkfdef dpo

X (e~ MHA™M y(xg,pg)x(™ . (28)
Our goal would be to establish a relationship between Eqg.
(28) and the corresponding centroid correlation function.

We start by rewriting the exa@‘.A“b"(t) of Eq.(27) in a
more convenient form:

\H |Ht/h'~ —iHt/h

xe e (B=MH),

cRuborty == f d\ Tr(Ae™
B
(29)
The integral oven is then discretizedthe limit P— oo will
be reinforced at a later stage
CKUbO(t)
P

1
:BE T

r(Ae—k,B/PHeth/ﬁ)A(e—lHt/fi —(P=K) B/PH)

(30
Each term in this sum can be related to a mixed real
and imaginary time contour that corresponds to the fol-
lowing sequence(see Fig. 2 (1) Imaginary time propa-
gation from 0 to—iA(B—\)— —ih(P—k)B/P(e” (F~MH

which amounts to a transformation to the IVR, and noting =1 k=2 k=13 k=4 k=5
the definition of the Wigner transforfref. Eq. (13)], yields
the LSC-IVR approximatioficf. Eq. (12)]: o L . PR
Y R . S
CAB(I)*(ZWﬁ)flf dYOf dpoAw(Yo,Po)Bw(Y:,Po), L R et EEEEEEEE =S S |
3 4 ~
(26) N LT T R | e | I
wherey,=V(Yo,Po) and p;=p«(Yo,po) follow a classical ﬁ; _________ Y y y y
trajectory. Thus, we obtained LSC-IVR by direct lineariza- ° |4 A A A A
tion of the exact path integral expression, Etf), and with- ! v v v v

out explicitly invoking the SC approximation. Although we
did not explicitly invoke the SC approximation, we will con-
tinue to refer to the approximation embodied in E26) as
the LSC-IVR approximation.

FIG. 2. A schematic view of the mixed imaginary and real time contours
underlying Eq.(30). The picture corresponds ®=5, and each of the con-
tours represents one contribution to the Kubo integral. The real and imagi-
nary time axes are similar to these in Fig. 1.
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k=2 k=3 original and resulting states. The dominant contributions will
obviously come from basis elements with nonvanishing
overlaps.

In order to expose the relationship between LSC-IVR
and centroid correlation functions, we found it useful to use
a somewhat different time contour, which is nevertheless
completely equivalent to the one described above. The new
time contour involves a forward and backward real-time
propagation at every point along the imaginary time &&fs
Fig. 3. More specifically, we replace each of tee #/PH

FIG. 3. Aschematic view of the time contour underlying the path integral offactors, except for the one precedirnj;'t/hf(e_iﬁt/ﬁ', by
Eg. (31). The picture corresponds ®=5, and each of the contours repre- _— g/pH . iHt/k o—iA /A L . .
sents one contribution to the Kubo integral. The real- and imaginary—timee € e (this is obviously allowed since

axes are similar to these in Fig. 1. eitg=iHUA 1) Thys, Eq.(30) can now be put in the fol-
lowing form:
12 Lo
: . . . Kuboy¢y _ = A (o BIPHLIAYA o=t k-1
—e (P7KAHP) (2) Forward real-time propagation from time Cax (D= Pgl TA(e” Frette
0 to timet (e 'MY%); (3) Operating with the operatd; (4) o .
Backward real-time propagation from time to time 0 X (e~ AIPHgiHUAgeHUR)

(e"¥"); (5) Imaginary time propagation from-ifi(8—N\)
——ih(P—K)BIP to —ifiB(e " —e kBH'P). (6) Operat-
ing with A In order to perform the trace in E(QSO)' one Performing the trace in Eq31) in the position representa-
has to perform this series of operations on each element dfon and inserting 8—1 position closure relations between
the basis of choice, and evaluate the overlap between thle variouse™ #/PH, eH" ande M factors, then yields:

(e~ ﬁ/Pﬁeth/ﬁe—iﬁt/h)P—k]_ (31)

P
_ _ (1 R R
C/Tibo(t)zj Xm,t---J dxpytJ de,o---J dxgyoj Xm,O"'J’ dxpyo(ﬁgl Xk,t><XI0|Ae PIPH X o o) (Xp o€ Xp )

X(xpyt|e"H“ﬁ|x;10)<x;0| e B/PH|X|;7 1,0{Xp— 1,0‘ eth/ﬁ|XP71,t><XPfl,t| eithm|X;7 10" '<Xzo| e 'BIPH|XI,0>

X(X1q eiﬁtm|xl,t><xl,t|eiimm|xio>- (32

The identity S{_Xp 1+ 1.= g 1%k has been utilized in where,

order to obtain Eq(32). Also, the notation adopted is based

on using|x, o) for the initial state of the forward real-time

propagation in the k-th branchg, o) as the final state of the

backward real-time propagation in the k-th branch, pqd) N—1

for the final (initial) state of the forwardbackward real- x . m W xEN2 (xS 34

time propagation in the k-th branch. S jgo 22 X1 X)) (Xicj) (34
We next express the product of all the real-time propa-

gators in Eq(32) in terms of the corresponding path integral

expressions?-114

P

11 <Xk—o|eil:|t/h|xk t><xkt|e—il:|t/h|xg—o> (with the understanding that, =X, y=Xcn). The path

k=1 ’ ' ’

integrals in Eq.(33) were written in discrete form, such

m \NP P that x, ;— X, n (the limit N—o will be reinforced at a
= IT [ dx f dxo later stage It should also be noted that
2mhe] k=1 ot N «rP ~ dx o fdxt
Mg—fdX - JdX yo oS dXg - fdX 1" stands for the
PP P forward—backward real-time integrations involved in Eq.
XJ dx J dx, N_1exp{ - > (Sin S:N)J, (32 ghe product TI{_,” should not be applied to the inte-
grangd.

(33 Substituting Eq(33) into Eg. (32) then yields:
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|

NP P

1

CKUbo(t) - ( 2mhe

P
X(xpole” FPIxp_y 9 --P(X; Je” B’P“IXL&exn{ flz_k; (S;N—s;N)].

We next change the integration variables from

(X 00 XN 1 XN XN 10 Xl K=1,... P} into

{yk,O!"'YYK,N!Zk,Ol"'!Zk,N—1|k:1!"'YP}! such that
Yk,jZ%(X;j‘*‘X;j), Zk,jz(xl:r,j_x;,j) (36)

(we note thaty, y=X,n and z, y=0). We then linearize

each of the forward—backward actions with respect to

240, kN1

N—-1

S:,N_Sk_,NN'EZ
]=0

[?(Yk,j+1—Yk,j)(2k,j+1—2k,j)

=V (Yij)Zj |- (37
Until this point, we followed a procedure similar to that

in Sec. lll. Furthermore, substituting E7) into Eq. (35),

is bound to yield Eq(28), due to the complete equivalence

of the two time contours in Figs. 2 and 3. However, in the

following steps, we divert from the procedure of Sec. lll,
with the goal of establishing the sought after relationshi

end, we first rewrite the sum of linearized forward-backwar
actions in terms of normal-mode coordinates:

kzl (SZF,N_Sk_,N)

= (V1= Yko) + Mol Zko

_62[

Az‘k,jJ ’

\ mpP _ _ _
+ J_Zl ?(Yk,ju—zyk,j+Yk,j—1)+)\k,j

(39)

27h
Pe

m
2mhe

)(N 1)p P

lE

CEUbO(t) ~ PN P(

P

between LSC-IVR and centroid correlation functions. To this
d'uons FoIIowmg linearization, it is straightforward to express

Ftoe-
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12 .
dxl:o"'f dxl:N—lf ka,Nf ka_,N—l'”f dxk_,o(5k21 Xk,N><XI,O|Ae_ AIPH Xp o)
(39
[
Ui=1, Ugp=—(-1)
(39
Uk'2n,2=\/i COQZ’TF(k_ 1)(n_ l)/P],
Uyan_1=—Vv2 sin 27 (k—1)(n—1)/P],
uu'=utu=p,
and
P
Mej= 2 UniV' (Y- (40)

It should be noted that the time contour of Fig. 3 was
actually introduced in anticipation of the transformation to
normal mode coordinates. More specifically, based on this
new time contour, each of the contributions to the Kubo
integral is epr|C|tIy associated with the same action factor,

explilh =p_ 1(Sin—Sc)} [cf. Eq. (35)]. A direct application
of the original time contour would associate a different ac-
tion factor, expi/i (S(N Sv 1, with each of these contribu-

exp{i/h =f_ (SN S(N)} in terms of normal modes, which is
not the case foE|_ 1exfli/f (S{N—Scw)]- Thus, although the
two time contours are equivalent, the one emplogefdFig.
3) explicitly brings out the above mentioned symmetry of the
integrand with respect to the the normal mode transforma-
tion.

We now change the integration variables from
Yiase Yk Zkor- - ZkN—1 IO Vi1, YN Zk0s - 2k N-1
(note that the integration variablé¢gy o k=1,...,P} remain
in the primitive representation! The integration over
Zx n—1 Can be performed explicitly:

J d7, e ilh E(mP/EZ(Y’k,j+1—2'Y/k,j+7k,j—1)+)\k,j)7k,j

2mh
eP

m B . A i
2 ?(yk,j+1_2yk,j+yk,j—1)+? (41)

This leads to the following expression f@Xu*%(t):

fd‘zkof dykof dVi 1 f@kNY1N<y10+Zld2|Ae ﬁ/PH|YPo Zp o/2)

X(Ypotzpof2le” PPlyp_1 6= 2p_102) (Yoot Z2d2e” PPHy, o2, 02)

N-1 P

1114

xexpl’ — [Z1, P10t +Zp oPp o]]

xk’J

5, 42

= (Yij+1= 2V Vkj-1) +
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uwhere the following identities were used: It should be noted that the matrix elements in the integrand
1P 1P m of Eq. (42) are given in terms of the primitive representation.
71,N:52 yk,NEEE Xens Pro=—Tk1—Vko)» ~ We~ next. change the integration variables from
k=1 k=1 € yk,l!"'lyk,N*l Into fk,l!"'lfk,N*l! where
P P m _ _ )\k,j
I1 dz g -dzgn_1=(PPONI] dzo--dzn-1, fi=zVkjra= 2V V-0 + 5 (44)
k=1 k=1
p P (43 and explicitly integrate over these new integration variables.
dve - dve n=(PP2NTT dvy --dV . Imposing the limitN— < (e—0), such thay, y— Y, and
I:<I;[l Vi AYn=( ) k[ll Yir using the identity in Eq(24), then yields:

1 \PrF R -
Cﬁibo(t)kpp(m) k];[l fdykof d?k,tf U2 Y 1(Y1.0t 2102 Ae™ PPy =25 o/2)

X(ypotzpd2le” PPHlyp_1 0= 2p_102) (Yoot Zag2le” #PMy; 6= 2102)

iP Pl
~ ~ = k.0
xXexp — 5 (Z + 47 —|, 45
p|’ 7 (Z1,0P1,0 P,OpP,O)]kl_[l Nrx (45
where the trajectory,(t) satisfies the following classical-like equation of motion:
d2‘yva )\k,‘r
mw =— ? (46)

Equation(45) can then be put in the following form, upon transformation to IVR:

1 \PF . -
Cﬁibo(t)gpp(ﬁ) kﬂl fdyk,of d~pk,of dyzk,oyl,t<Y1,0+21,d2|Aei BIPH|YP,O_ZP,0/2><yP,0+ZP,O/2|

i i ip
xe PPHlyp 1 o=zp_1¢2)P(Yo0t Zd2le” PPHy, - 21,0/2>9XP{ % (Zy,Prot T ZpPpo) (- (47)

Equation (46) dynamically couples the normal modes, in which case the dynamics is purely classical. It should also
VYisy---¥p,-. In particular, the dynamics of the centroid, be noted that Eqg49) and(50) become exact for harmonic
which corresponds to the first normal mod§;, systems, where the centroid is always decoupled from the
=ZE:1Y|<,T/P, is governed by the following equation: higher normal modes. These observations serve to explain

why CMD is exact for harmonic systems and at the classical
dZY/l,T N1, 1P , limit. However, they also suggest that recovering the cen-

MGz -~ Ekzl V' (Yk,7) (48)  troid correlation function from Eqi47), which is equivalent
to the LSC-IVR approximation in Eq28), would require the
additional assumption th&ie dynamics of y, is decoupled
from that of the higher normal modes is important to note
that the actual form of the decoupled centroid dynamics is

which obviously couple§; , with the higher normal modes,
V2....¥p.,. However, CMD, as well as other methods for
approximating the centroid dynamitsare based on the im- . e
plicit assumption that the centroid Becoupledfrom the relévant for the remainder of the derivation.

higher normal modes. For example, the dynamic¥ of in Assuming thafy, . is dynamically decoupled from the

CMD is governed by the following classical-like equation of Otheér normal modegj, ;... yp -, immediately implies that
we can explicitly integrate over the momeffigy, ...,pp o in

motion:
Eq. (47):
dzle H
m——-=—-V. (V1,). (49) ~ ~ P -
dr el Y1, f dpz,o‘"f dpp,oexﬁ’{ - 7(22,0p2,0+“‘+zp,opp,o)
Another example can be obtained if the following approxi- 2mh\P1
mation is employed: = T) 3(Z30)++0(Zp o). (52)
P P

1 1 The resultings functions then make it possible to explicitly

—= A ~V'| = =V'(V1,), 50 . ~ . .

P I(Zl k) P I(Zl yk’t) (1,) 50 integrate ove¥,y,...,Zp o, and set their values to zero in the
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result. As a consequencg,o can be replaced 5%, o [cf. Eq. (y10+ 21 J2|Ae” ﬁ/PH|yP —7102)
(39)], thereby leading to the following approximation: ' ' ' ’

P ~ ~ ~
P _ - :f dyp: (Y10t 2102 AlYp+1,0t71,02)
e =5 I1 [ ayof dbyo] a7

X(Ypr10tZrd2le” PPHyp =21 d2). (53

iP N :
Xexpr - ?71’0514 (Y10tZ1d2|Ae” #PHyp o We then use the following relatiofwhich becomes an iden-
tity at the limit P—o0):11°

~21d2)(YpotZid2e #Pyp 10 (x1]e” B/P':'|X2>
—3 .. ~ - BIPH|y,. 12
21,02) (Y20t Z1d2e Y10~ Z1,02)- _ ( mP o BLMPI2ER2 (63 + YZPV(x) + VO
(52) 2mwh?p '
In the next step, we rewrite the factofy; (54
+%, 92| Ae” PPHlyp o—% ¢2) in the following form: in order to show that

(Ypr10tZrg2le” PPHlYp =21 02)- (Y20t Z1d2e” PPHy1 =21 o2)

mpP P2 mP
2 2
m) EXP[ - W[Pﬁ,ﬁ' 221 dYp+1,0-Y1.0 T (Yp+10~YPo) .-+ (Y20~ Y10l

1 1
+ P EV(yP+ 1072102+ E[V(yP,O+7l,(]/2) +V(Ypo—Z102)]

1 1
+.ot E[V(YZ,0+71,0/2) +V(Y20=21,02) ]+ EV(Y1,0—~21,0’2)H . (59

We then note that at the limi?—c, the Gaussian factor ekp (mPZIZBﬁZ)“zLO] becomes very narrow, such thety, o
+% ¢2) in Eq. (55 and(y; o+Z o2 Alyp:10tZ142) in Eq. (53) can be replaced by(y, o) and(y;dAlyp 10, respec-
tively. It should be noted that this argument does not apply to the facto{s—eéwﬂﬁhz)’zlyo(ypﬂyo— Y10} in Eq. (55), and

exp{— (iP/h)YZ, P1of In EQ. (52), since the corresponding exponents are proportiond?2p,. Thus, one is left with the
evaluation of the following Gaussian integral:

mP>_, i _ mP B
f dz; pexp — Wzl,o_ % PP1oZ10— W(YN 1,0~ Y1,021,0

27h2B\ 2 B_, i B m )
=\ "mpP ex _ﬁplﬁ'g(YPJrl,o_yl,o)pl,o"' W(yPJrl,O_yl,O) . (56)

Incorporating the results from the previous paragraph into(&2). transforms it into:

1 277}12:8 1/2 mP P/2 B B ~ ﬁ’r)Z
C,'it‘(b"(t)%zwﬁ( m ) (27-rﬁ2) fdpl,of dyl,O"'fdyP+1,0y1,t<y1,0|A|YP+1,O>eX - 2ni|'0
m ) i _ mP 5 )
xexp W(YPH,O_VLO) exp %(ypu,o_h,o)pl,o exp _W[(yPJrl,O_yP,O) +o (Y207 Y1,0°]
Bl 1
Xexp P EV(Y1,0)+V(V2,0)+---+V(YP,0)+ EV(yPJrl,O) . (57)

Equation(57) is our final result. It can be shown to coincide [the proof for the equivalence of Eq&7) and (58) is pre-
with the following centroid correlation function: sented in the Appendix It should be noted that the time
evolution ofx.(t) in Eq. (58) remains undefined, except for
the assumption that it is decoupled from that of the higher
normal modes. Several approximations for propagatit)

1
27h dxcf dPepe(XesPe)AcXe sPe)Xe(L), (58) have been proposed in the past, including classical mechan-
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ics, CMD, and other types of approximated centroid
dynamics?® The relationship between LSC-IVR and centroid
correlation functions developed herein is not limited to any
one of these approximations, since they are all based on the Exact centroid
implicit assumption that the centroid dynamics is decoupled dynamics

from that of the higher normal modes.

‘ Exact quantum dynamics

Ref. 28

Ref. 29

v
Decoupled centroid

V. CONCLUSION

The main contributions of this paper can be summarized dynarnics
as follows: (CMD,CHD,LQD,...)

. . FIG. 4. Links between semiclassical, centroid and exact quantum methods.
* We have shown that the LSC-IVR approximation for Arrows represent approximatior(she arrow points toward the more ap-

the tWO'time quamum'meChar_‘ica| Pere|ati0n functionproximated method Double arrows represent equivalence. The solid lines
can be directly obtained by linearizing the forward— represent previously derived links, while the dashed lines represent new
backward action in the corresponding exact path-inks derived in the present paper.
integral expression.

* We established a relationship between the LSC-IVR and

centroid correlation functions, and showed that the lat- ., . . . .
ter can be obtained from the former if the dynamics Oftr|but|on. Thus, in cases where there is a choice between the

the centroid is assumed to be decoupled from that of th&wo methods, the .centroid approach is th? more -cos.t-
higher normal modes. effective route, provided that decoupled centroid dynamics is

a valid assumption. Barrier crossing rate constants, where

A schematic chart that maps the significance of these neWs~_ VR and CMD were found to give similar and accurate
results and their relationship to results obtained by other

N predictions when tested against the same benchfratk!!
workers is given in Fig. 4.

o . . . appears to be such a case. However, we have recently found
The second contribution deserves special attention, sin . L . . . .
. ) . . ; . . at the opposite situation arises in the case of vibrational
it provides a bridge between an imaginary-tirf@ntroid

L energy relaxation rate constants, where LSC-IVR seems to
approach and a real-tim&0) approach. I Sh.OU|d be notedl be significantly more accurate than CM#.It is hoped that
that although the exact real-time dynamics of centroid

symbols can be formulat@¥[cf. Eq. (8)], practical imple- the better understanding of the relationship between SC and

) . centroid methods established in the present paper, would
mentations, such as CMD, have been based on the nOtI%elp guide future attempts to improve their efficiency and

that this real-time information can be obtained from accuracy, as well as give rise to a better understanding of the

imaginary-time simulation§’ The present analysis does not different roles played by quantum mechanics in a variety of
imply that this strategy is inferior to the SC approach.Condensed phase systems
{ .

Rather, it points to another implicit assumption, namely tha
the centroid dynamics is decoupled from that of the other
normal modes. Our main observation is that this seems to be
the only assumption that distinguishes the centroid approacMCKNOWLEDGMENTS
from the LSC-IVR approach. It also seems to indicate that N _
explicitly accounting for the coupling between the centroid | "€ Work reported in this paper was partially supported
and the other normal modes may improve the accuracy of thY the National Science Foundation FOCUS Center, Grant
centroid approach. No. 0114336.

The picture that emerges from this analysis is that de-
spite the common SC flavor of LSC-IVR and centroid meth-
ods, they differ in the way they treat the centroid dynamics APPENDIX: THE CENTROID CORRELATION
Practical implementations of the centroid-based approachtFUNCTION
such as CMD, are based on the implicit assumption that the ) )
centroid dynamics is decoupled from that of the higher nor- 1N this Appendix, we prove that Eqé57) and (58) are
mal modes. LSC-IVR does not require us to make this as|_<_jent|cal. To this end, consider the centroid correlation func-
sumption, and is therefore less approximate in this respect. fon of Eq. (58):
should be noted however, that the actual dynamics in LSC-
IVR is classical, whereas methods like CMD can partly ac- ng(t)=f dxcf dpcpe(Xe,P)Ac(Xe,P)Xc(t),  (AL)
count for quantum dynamical effects via “quantum-
corrected” centroid force fields. This may imply that where the dynamics ofc(t) can remain unspecified for the
centroid-based methods can actually capture quantunipurpose of the following derivation. Substituting Eg) for
mechanical coherent effects for a longer period of timeAc(Xc,Pc), we obtain:
Moreover, the fact that LSC-IVR is less approximate has its
price, since sampling the Wigner distribution of a general Cﬁx(t)zf dxcj dp. T de(Xe , P AlXc(L). (A2)
anharmonic many-body system is usually more computation-
ally demanding than sampling the classical-like centroid disUsing Egs.(13) and(14) of Ref. 29, one can show that
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P
~ ~ 1
Trl ¢e(Xe,p)Al= f dxlf dXP+l<XP+l|d’c(xcapc)|xl><X1|A|XP+l>5( X~ Ek21 Xk)
272\ mP \P” ~ 2 2 2,
-7 L f dx,- f e 1(Xy| AlXp.s )& BPAZMEMPI2BZ(xp 11502l (Xp 1 -XD)Pe
xe~ mPIZBhZ[(Xp_,_lep)ZJr‘--+(X27x1)2]e7 BIP[1/2V/(x) +V(xp) +..V(Xp) + L2V(Xp s 1)] (A3)

Substituting Eq(A3) back into Eq.(A2) yields:
1 (27h2B\Y? mP

C —
Caxt= 27Tﬁ< m ) 2mh?

xe~ mP/Zth[(xp+1—xp)2+~~-+(x2—x1)2]e— BIP[L/2V/(x) +V(x) + ...+ V(Xp) + L12V(Xp 1 1)]

Equation(A4) is identical to Eq(57) [it should be noted that

the variablesxy,... Xp; 1,pc andx.(t) in Eq. (A4) are de-

noted byy;o,....¥Yp+10/P1,0, @andyy, in Eq. (57), respec-
tively].
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