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Approximate expansions in inverse powers of the dimensionality of space D are obtained for 
the ground-state energies of two-electron atoms. The method involves fitting polynomials in 
8 = 1/ D to accurate eigenvalues of the generalized D-dimensional Schr6dinger equation. To 
the maximum order obtainable from the data, about 87, the power series for nuclear charges 
Z = 2, 3, and 6 all diverge at D = 3. Asymptotic summation yields an energy for the Z = 2 
atom 1 % in excess of the true value at D = 3. However, expansions with a shifted origin, i.e., 
expansions in (8 - 80 ), show improved convergence. Of particular interest is the case 80 = 1, 
because the expansion coefficients can in principle be calculated by perturbation theory applied 
to the one-dimensional atom. Series in powers of (8 - 1) appear to converge rapidly. Also the 
series in (8 - 1) can be evaluated even for the hydride ion, with Z = 1. For helium, this series 
is quite comparable to the more familiar expansion in powers of A = 1/Z, with errors in the 
partial sums decreasing by roughly an order of magnitude per term. Thus, for Z = 2 the first 
four terms ofthe expansion in (8 - 1) yield an energy within 0.02% of the true value at 
D = 3. Similar results are found in an analogous treatment of accurate eigenvalues for the 
Hartree-Fock approximation. This provides a rapidly convergent dimensional expansion for 
the correlation energy. 

I. INTRODUCTION 

Perturbation theory in the inverse dimensionality of 
space 1/ D has recently received much attention. 1 This meth­
od (also known as the "large dimension expansion" or "1/ D 
expansion") offers prospects for treating many problems 
which have not yielded to more conventional approaches, 
such as the equations of quantum chromodynamics. 2 In con­
trast to usual perturbation methods, the 1/ D expansion does 
not rely on partitioning the potential into two parts, one 
solvable and the other relatively small. Instead, the full 
Hamiltonian corresponding to the D- 00 limit is solved by a 
procedure that can be performed for any Hamiltonian, and 
then corrections for the effects of finite D are calculated or­
der by order in 1/D. The case D- 00 is a kind of classical 
limit,1 since in suitable dimension-scaled coordinates a fac­
tor of 1/ (D - 1) appears in the kinetic energy where 
Planck's constant fz occurs for ordinary, un scaled coordi­
nates, and thus D- 00 resembles fz-O. Systems for which at 
least the leading terms of the large dimension expansion 
have been evaluated thus far include: the anharmonic oscil­
lator3 and other central force problems,4 quantum spin mod­
els,5 critical phenomena in A¢;4 theories,6 the hydrogen atom 
in a uniform magnetic field,7 and the helium atom. 8

-
15 At 

this stage, questions regarding the convergence properties 
and optimal form of the 1/ D expansion remain open, but 
some inferences may be drawn from the results for such pro­
totype systems. 

This paper takes an empirical approach to dimensional 
expansions for the ground-state energy of two-electron 
atoms. In previous work,13 we have calculated accurate en­
ergies for a wide range of D and several values of the nuclear 
charge Z by generalizing the Hylleraas-Pekeris treatment. 
Here we use these data to obtain various forms of expansions 

by regression and interpolation. Among other things, this 
yields approximate values for the coefficients of several more 
terms in the 1/ D expansion than are presently known by 
direct calculation. We have also performed parallel calcula­
tions using a generalized Hartree-Fock algorithm.14 The 
corresponding dimensional expansions are of interest be­
cause they reveal, term by term, the effect of omitting the 
correlation energy contributions. 

In Sec. II we survey the sources of data concerning the D 
dependence of energy eigenvalues and the several methods 
used to obtain dimensional expansions from these data. In 
Sec. III we present results at various Z for two versions of the 
1/ D power series. These series all appear to diverge for 
D = 3 due to singular behavior at or near the point of expan­
sion, and the accuracy attainable by asymptotic summation 
is limited. Thus, in Sec. IV we examine shifted expansions. 
Expansions in powers of 1/ D - 1/ Do for several values of Do 
are evaluated. The series with Do = 1 appears to be well­
behaved and offers greatly improved accuracy for D = 3. We 
consider also a hybrid expansion in which low order terms 
involve powers of (D - 1)/ D and high-order ones powers of 
1/ D. This likewise gives good accuracy and the expansion 
coefficients are more readily evaluated. In Sec. V we com­
pare dimensional expansions with the more familiar expan­
sion 16.17 in powers of 1/Z and also note some consequences 
and conjectures. 

II. NUMERICAL ANALYSIS 

Table I indicates the sources of data pertaining to the 
dimension dependence of ground-state energies for two-elec­
tron atoms. 12-21 We employed almost solely our numerical 
calculations, but also used the analytic results available for 
the D- 00 limit and the first-order perturbation in 1/ D as 
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TABLE I. Energy eigenvalues for D-dimensional two-electron atoms." 

Case 

D-+ 00 

D-+ 1 
D=3 
D=5 
VaryD 

Full atom 

Cl(.1) 
Ex2o (.1) 
Ex4oo (.1) 
EX21 (A) 
Nm(.1) 

Hartree-Fock 

Cl(.1) 
Cl(A) 
Ex5 (.1) 
Ex,(.1) 
Nm(.1) 

Refs. 

12;15 
18;19 
16;17 
20;21 
13;14 

"Entries indicate whether ground-state energy eigenvalue as a function of 
A = l/Zis known in the form of: (Cl) a closed expression; (Ex) a power­
series expansion in A; or (Nm) only as numerical values for particular A. 
Subscript indicates number of perturbation coefficients known in the A 
expansion. References listed to left-hand side of semicolon pertain to full 
(nonrelativistic) energy; those listed to right-hand side pertain to Har­
tree-Fock approximation. 

well as results for the D ..... 1 limit. The range of D and Z in our 
energy calculations was specified by X = 12/D, Y = 61Z, 
and covered X = 1-12, Y = 1-6 in integer steps; for certain 
cases such as Z = 2 up to 30 more values of D were treated. 
The energy eigenvalues obtained from the generalized Hyl­
leraas-Pekeris algorithm 13 are usually accurate to at least 10 
significant digits except for D close to unity, where the accu­
racy drops to about 7 digits. The corresponding Hartree­
Fock results14 have somewhat greater accuracy, at least 12 
significant digits, and this persists in the D ..... 1 region. 

Given energies at several different dimensionalities 
(typically 20 or more), our aim is to obtain an approxima­
tion to the 1/ D perturbation series (or one of its variants) by 
fitting polynomials in 0 = 1/ D or related variables to that 
data. Although straightforward in principle, this method re­
quires careful attention to numerical problems imposed by 
truncation, round-off, and errors in the input data. We dis­
cuss these in turn and then describe the procedures that we 
adopted. 

A. Sources of error In coefficients 

The first numerical problem arises from the limitations 
of polynomial approximations to infinite series, especially 
asymptotic ones. Because the monomials Oil are not orthogo­
nal over the data set, the coefficients of any finite polynomial 
approximation differ from those of the full Taylor series, 
particularly for the higher-order terms. To some extent, the 
error at a given order can be reduced simply by increasing 
the number of data points and the degree of the polynomial 
used. However, this is soon thwarted by a second problem, 
namely computer round-off error. Straightforward least­
squares polynomial regression leads to a set of simultaneous 
linear equations for the optimal Taylor coefficients which 
have a strong tendency to be ill conditioned.22 The standard 
way to overcome this difficulty is the method of Forsythe,23 
which avoids matrix inversion by using polynomials orthog­
onal with respect to the data set. We found that a double 
precision FORTRAN program based on the Forsythe algo­
rithm can generate polynomials of degree up to about 20 
from data in the range 0,0,1 before round-off becomes ex­
cessive. Another strategy for minimizing round-off error is 
to use an interpolating polynomial instead of regression. We 
found that, when applied to accurate test function data, stan-

dard techniques24 for fitting an (N - 1) st degree interpolat­
ing polynomial to N data points gave significantly more ac­
curate Taylor coefficients than those obtained with the 
Forsythe algorithm. In addition, the interpolating polyno­
mial could be taken to somewhat higher order. However, 
this interpolation technique has no capacity for smoothing 
of data containing errors, a prime virtue of the regression 
procedure. 

In practice, the limited accuracy of the data is the most 
serious problem in obtaining Taylor coefficients by either 
interpolation or regression. To illustrate how errors in the 
data become magnified in the higher-order coefficients, we 
note that the nth coefficient in the Taylor series 
~n C n (x - xo) n for a function I(x) expanded about point Xo 
might be approximated as 

C = J.../<It) (xo) =_1- ~ (_1)m 
n n! nth It m£;:o 

(1) 

for some small step size h between the data points. If we 
ignore errors of order h 2 introduced by the finite step size, 
and regard the uncertainties in the function values as uncor­
related and of uniform magnitude O"f ' then the uncertainty 
0" n in the coefficient is 

0" = _1 [~(n)2~ ]112 = _1 (2n) 1I2
0" 

It nIh" m£;:o m f n!hlt n f· 
(2) 

In our application, we seek a Taylor series in 0 = 1/ D from 
data in the range 0,0, I, so the minimum uncertainty in the 
coefficient is obtained by setting h = 1/n. With Stirling's 
formula, this yields 

(3) 

Thus, if typically O"f = 10-7
, then we can trust CIO at most to 

the nearest integer. For a well-behaved series, such an uncer­
tainty could be orders of magnitude greater than the value of 
the tenth Taylor coefficient. 

B. Computational procedures 

Because of the several ways in which errors can enter the 
calculations, three complementary procedures were used to 
obtain polynomial fits. The first two were mentioned above: 
Forsythe's orthogonal polynomials method for determining 
the least-squares polynomial,23 and Newton's divided-dif­
ference method for obtaining the interpolating polynomi­
al. 24 In addition to these standard procedures, we employed 
a third which gave series of comparable accuracy while also 
making explicit the effects of errors in the data. In this, the 
nth coefficient in the Taylor series for I(x) about Xo is com­
puted from25 

1 '" S<It) m (m) 
cn = -It L ~ L (- 1)k k f[xo + (n - m)h] . 

h m~n m. k~O 

(4) 

HereS ~It) is a Stirling number of the first kind. In contrast to 
Eq. (I), this formula for Cn is exact for any finite step size h, 
if the series converges. When Eq. (4) is used to compute the 
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Taylor coefficients, any random errors in the function values 
eventually force the infinite series to diverge. However, an 
approximate sum for the series may be found by treating it as 
ifit were asymptotic, i.e., by truncating the series just before 
the smallest term. Furthermore, the smallest term gives a 
rough estimate of the error in the sum introduced by errors 
in the data. All these properties were verified in trial calcula­
tions with synthetic data. We call the polynomial approxi­
mation computed in this way the asymptotic polynomial. 

By using a combination of least squares, interpolating, 
and asymptotic polynomials, we found that the effects of the 
various sources of error could be estimated and reduced. 
Comparing polynomials of different degrees and different 
kinds revealed the errors introduced by truncation of the 
Taylor series and by computer roundoff. These errors were 
also assessed by varying the data set and examining the er­
rors in fits to test data of known functional form. The uncer­
tainties in the Taylor coefficients resulting from errors in the 
data were surmised by use of the asymptotic method and by 
modeling with test data containing errors, and by direct 
computation of regression coefficient standard deviations. 

Since exact values of the coefficients for the first two 
terms of the liD expansion are known,B.12 we subtracted 
these terms from the data. This improved significantly the 
accuracy of the fitted polynomials. (It was checked before­
hand that the data reproduced those two terms to high accu­
racy.) In all cases the data were transformed so that the 
fitting procedure dealt with a standard Taylor series in 8, 
beginning with a nonzero constant term. All results given 
below are reported to one digit beyond the last one judged to 
be trustworthy. 

III. LARGE DIMENSION EXPANSIONS 

We consider two versions of the expansion for the 
ground-state energy in powers of 8 = liD. Except for the 
zero- and first-order terms of these perturbation expansions, 
which are known as exact functions of A = liZ, previous 
work8 had determined numerically only the second-order 
term and that only for Z = 2 and 8. We have obtained accu­
rate values of the second- and third-order terms and increas­
ingly approximate values for several higher-order terms, for 
Z = 2, 3, and 6. Although our data 13 also provide energy 
eigenvalues for Z = 1, 1.2, and 1.5, we did not attempt to fit 
optimal 11 D series in this low-Z range. For D --+ 00, a symme­
try-breaking transition l2 occurs at a critical nuclear charge, 
Zo = 1.228; this makes the liD expansion more difficult to 
evaluate and less useful for Z < ZOo As shown in Sec. IV, the 
low-Z region proves amenable to another form of dimen­
sional expansion. 

A. Customary 1/ D perturbation series 

Table II lists the coefficients En obtained for the usual 
form8 of the large-D perturbation expansion, 

00 

E(8) = 82 L E n 8n
• (5) 

n=O 

If electron repulsion is neglected (as in the Z --+ 00 limit), the 
energy is given by 

TABLE II. Coefficients for 1/ D expansion. a 

n Z=2 Z=3 Z=6 

Total energy, two-electron atom 
o - 10.95107656 - 28.128 450 67 - 127.6488585 
1 - 24.230 367 79 - 59.581 357 42 - 261.7664921 
2 - 35.448 73 - 89.433 4 - 394.008 3 
3 - 55.605 - 123.067 - 527.98 
4 - 21.4 - 142.8 - 656 
5 - 350 - 200 - 800 

Hartree-Fock approximation 
o - 10.843 14574 - 28.014 71850 - 127.5294372 
1 - 23.771000 32 - 59.149 96106 - 261.343 1236 
2 - 35.329 74 - 88.9474 - 393.369 8 
3 - 51.135 - 121.227 - 526.68 
4 - 44.4 - 143.1 - 654 
5 -190 -200 -800 

a Hartree units. Entries are En coefficients for ground-state energy expand­
ed as in Eq. (5). 

00 

E(8) = - [2Z I(D - 1)]2 = - (2Z8)2 L (n + 1)8n
, 

n=O 

(6) 

which is twice the exact energy for the corresponding hydro­
genic atom. The first three large-D perturbation coefficients 
(n = 0, 1, 2) for both the two-electron atom and its Hartree­
Fock approximation are seen to increase roughly in the ratio 
of successive integers and thus resemble the 1,2,3 ... progres­
sion for the hydrogenic atom. This led to the conjecture8 that 
these series might converge for D = 3 as does the series for 
the hydrogenic atom. However, as illustrated in Fig. 1, our 
values for the higher order coefficients (n = 3, 4, 5) deviate 
markedly from the hydro genic pattern. For Z = 2, the be­
havior is typical of an asymptotic expansion: the first few 
terms decrease smoothly, reach a minimum (at n = 4), and 
then diverge strongly. Also striking in Table II is how closely 
the Hartree-Fock series mimics the total energy expansion, 
but as Z decreases this resemblance begins rapidly to deterio­
rate. 

Figure 2 shows how the partial sums (PS) up to order n 
of the perturbation series compare with the exact energy. 
These sums, 

n 

PSn (Z,D) = 82 L E k 8k
, (7) 

k~O 

are also compared with the hydrogenic case. For the latter, 
the ratio of the partial sum to the exact energy (denoted by 
RPSn ) is readily obtained12 in analytic form, 

RPSn = 1- (n + 2)8n + 1+ (n + 1)8n + 2
, (8) 

and it is independent of Z. This hydrogenic RPSn converges 
rather slowly; the residual errors for n = 2, 4, and 7 are 
11.1 %, 1.8%, and 0.1 %, respectively. Up to fifth order, the 
partial sums for the two-electron atom or the Hartee-Fock 
approximation at D = 3 show only modest deviations from 
the hydrogenic case and the RPSn likewise vary only slightly 
with Z. Again, this behavior occurs because in Eq. (5), the 
customary form ofthe liD expansion, the perturbation coef­
ficients contain a large hydrogenic contribution representing 
the solution in the absence of electron repulsion. 
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Z=2 
TOTAL 

ENERGY 

1 2 

Customary 

3 4 

Rescaled 

, 
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, 
, 

Hydrogeni~ 

5 6 
Order of perturbation, n 

7 

FIG. I. Comparison of contributions at D = 3 from successive terms in var­
ious forms of dimensional expansions. Each series is normalized to make the 
first term (n = 0) unity. Solid curves pertain to a two-electron atom with 
Z = 2; terms are shown for the customary expansion of Eq. (5); rescaled 
expansion ofEq. (10); shifted expansion ofEq. (12) with 150 = I; and hy­
brid expansion ofEq. (15). Dashed curve shows the hydrogenic case ofEq. 
(6). Solid points indicate terms with same sign as the n = 0 term, open 
points terms with opposite sign. 
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Order of perturbation, n 

FIG. 2. Partial sums of customary and rescaled dimensional expansions, 
expressed as a percentage of the exact energy. Data points show the results 
for Z = 2 (0) and Z = 6 (0), with those for Z = 2 connected by solid 
curves. Dashed curves show results for the hydro genic limit Z - 00. 

B. Rescaled 1/0 series 

The hydro genic component of the energy can be fac­
tored out to obtain another expansion which contains only 
the contribution from electron repulsion. 12 Thus, we now 
use a reduced energy €(8) defined by 

E(8) = [2Z/(D-l)]2€(8), (9) 

with the rescaled expansion 
00 

E(8) = r En 8n
• 

n=O 

The coefficients are related to those in Eq. (5) by 

Eo = EoI(2Z)2, EI = (EI - 2Eo)/(2Z)2 

and 

En = (En - 2En -1 + En _ 2 )/(2Z)2 for n>2. 

( 10) 

( lIa) 

( lIb) 

Table III lists these coefficients. Except for the zero- and 
first-order terms, the En were determined by fitting energy 
eigenvalues and Eq. (11) was used to check the results and 
assess accuracy. With this rescaling, the hydrogenic part of 
the energy is always equal to - 1, for any Z or D. Reduced 
energies for bound states hence fall in the range - 1 <€ < 
- 1/2, while the first ionization continuum is - 1/2<E < O. 

In the 1/ D expansion, all the coefficients En with n> 1 arise 
from the electron repulsion and all vanish as Z -+ 00 • 

Figures 1 and 2 include curves for the rescaled expan­
sion. Removal of the hydro genic contribution greatly im­
proves the initial convergence of the perturbation series at 
D = 3. Just the zero-order term ofEq. (10) is about as good 
as the third-order partial sum ofEq. (5). Also, increasing Z 
brings a marked improvement in Eq. (10) but only a slight 
improvement in Eq. (5). In both the progression of terms 
and the partial sums, the asymptotic character of the res­
caled expansion is much more apparent than in the custom­
ary 1/ D series (where it is hidden by the large, convergent 
hydrogenic contribution). For D = 3 and Z = 2, the terms 
in the rescaled series reach a minimum (in absolute value) 
already at n = 2 and then diverge strongly; together with the 
alternation in sign, this produces growing oscillations in the 
higher-order partial sums. For Z = 6, the minimum term 
occurs at n = 3 but it is so small and the subsequent terms 
diverge so weakly that the partial sums remain nearly con­
stant; for n = 2 to 5 they deviate by less than ± 0.03% from 
the exact value. Asymptotic summation by truncating the 
series at the term preceding the minimum term gives 
100.97% of the true energy for Z = 2, 99.79% for Z = 3, 
and 99.98% for Z = 6. The Hartree-Fock results are quite 
similar. 

IV. SHIFTED AND HYBRID EXPANSIONS 

Our 1/ D expansions do not extend far enough to permit 
the analysis necessary to establish whether or not conver­
gence occurs for sufficiently large but finite values of D. As 
described elsewhere,13 the behavior of our numerical calcu­
lations at negative values of 8 gave indirect evidence that the 
radius of convergence for the 1/ D expansions is very small or 
zero. If this is indeed the case, an expansion about some 80 

sufficiently far removed from the origin would be preferable. 
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TABLE III. Coefficients for rescaled 1/ D expansion. a 

n Z=2 Z=3 Z=6 

Total energy, two-electron atom 
0 - 0.684 442 285 282 - 0.781345851974 - 0.886 450 405 740 
1 - 0.145513 416 527 - 0.092 346002401 - 0.044 922 050 747 
2 0.128808 1 0.0444677 0.013 026 6 
3 - 0.558 59 - 0.105 23 - 0.012 02 
4 3.394 0.402 0.038 
5 - 23.0 -1.5 -0.1 
6 150 5 
7 -1000 

Hartree-Fock approximation 
0 - 0.677 696 609 407 - 0.778186628493 - 0.885621092024 
1 - 0.130 294 305 049 - 0.086 681216617 - 0.043640618774 
2 0.0855694 0.0371604 0.0124093 
3 - 0.26530 - 0.068 90 - 0.00888 
4 1.399 0.284 0.035 
5 - 8.8 - 1.26 -0.11 
6 64 6.1 0.3 
7 -480 - 30 -1 
8 3300 150 
9 - 20000 

• Units are [2Z I (D - 1)]2 hartree. Entries are En coefficients for ground-state reduced energy expanded as in 
Eq. (10). 

It should offer improved accuracy by accelerating conver­
gence of at least the initial terms. We have examined several 
such series as well as two other variant expansions. 

A. Shift of origin 

Table IV gives for Z = 2 the expansion coefficients 
En (DO) of Taylor series with the origin shifted to 00 = liDo. 
The expansions pertain to the reduced energy, 

<to 

E(O) = L En (0 - OO)n . (12) 
n=O 

These series exhibit better convergence, at least to the order 
shown, as Do is moved away from the origin. Again, the 
known coefficients are insufficient to determine a radius of 
convergence. However, as with Eq. (to), we can infer from 
the alternation of signs that all of these series are dominated 
by one or more singularities to the left, and all are consistent 
with the hypothesis 13 that the nearest nonanalytic point is at 
or near the origin in the complex 15 plane. 

The convergence properties of several shifted series are 
illustrated in Figs. 3 and 4. As shown in Fig. 3, the contribu-

TABLE IV. Coefficients for shifted 1/ D expansion, Z = 2. a 

n Do= 1 2 3 6 

tions from higher-order terms fall rapidly as Do is moved 
away from the origin. This is due in part to the decreasing 
distance between 0 = 113 and the point of expansion 00 , but 
primarily to the rapidly decreasing magnitudes of the coeffi­
cients. The steep decline in the coefficients is apparently due 
to the increasing distance between 00 and the nearest singu­
larity. Figure 4 shows the accuracy attained by asymptotic 
summation of several shifted series for the full range of di­
mensionalities. As Do is increased the accuracy of the optimal 
asymptotic approximation improves, and the range of di­
mensions over which truly accurate (apparently converged) 
results can be attained widens. 

The most useful of the shifted expansions is that with 
00 = 1, particularly since the leading coefficients may be di­
rectly calculable from theD-. 1 "hyperquantum" limit. This 
expansion also behaves well for small Z, in contrast to the 
un shifted expansions. Table V gives coefficients for the 
00 = 1 series, at six values of Z. Because of the smaller nu­
merical values of the coefficients and the diminished accura­
cy of the data in the vicinity of the point of expansion, this 
series is the most difficult to determine by the methods used 

12 

0 - 0.78884820 - 0.74373889 - 0.72593109 - 0.706 449 40 - 0.695 891 91 
1 - 0.079113 - 0.1023234 - 0.111 5480 - 0.1228449 - 0.131072 3 
2 0.02019 0.026254 0.029542 0.041104 0.060868 
3 -0.0041 -0.00461 - 0.010 33 - 0.04702 - 0.127 3 
4 0.0028 0.0192 0.1270 0.434 
5 - 0.005 - 0.040 - 0.320 - 1.56 
6 0.06 0.76 6.5 
7 -2.1 -29 

• Units are [2Z I(D - 1)]2 hartree. Entries are En (80) coefficients in expansion of reduced energy, Eq. (12). 
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FIG. 3. Relative contributions at D = 3 from terms in shifted liD expan­
sions, Eq. (12), at several values of 00 , Each series is normalized by the 
value of its first term. Filled and open circles designate positive and negative 
normalized contributions, respectively. 

here, More extended series can be extracted from the Har­
tree-Fock data because of their greater accuracy. Figure 1 
illustrates the very rapid decrease in the expansion coeffi­
cients. This cannot continue indefinitely, of course; if the 
80 = 1 series has a radius of convergence of at most slightly 
greater than unity, as the other shifted series in Table IV 
seem to require, then eventually lan/an _ 1 I ~ 1. Even if the 
80 = 1 series were ultimately to diverge, however, it is capa­
ble of yielding very accurate energies. For D = 3 and Z = 2, 

TABLE V. Coefficients for (0 - 1) expansion. a 

n Z= 1 Z= 1.2 Z= 1.5 

J:: 
0 

~ 
S 
.~ Z=2 
0 TOTAL I-< 
0.. ENERGY 0.. ro 1 
u 

:;:j 
0 ...., 
0.. 15 =0.1 S 0 

>. 
{Il 

ro 
til 
.5 6 =1 

0 0 ...., 
0.. 
0 

.9 
I-< 
0 
~ 
~ 
Q) 

~ 

-10~~-O~2~~i~o~.4--~O·.6~--O~.~8--~1 
D=3 

6=1/D 
FIG. 4. Ability of shifted expansions in powers of 0 - 00 to model the di­
mension dependence of the ground state energy of a two-electron atom with 
Z = 2. Ordinate shows the errors in values obtained by asymptotic summa­
tion (truncating the series at the term preceding the minimum term) ofEq. 
(12). Curves are labeled with values of 00 = liDo. The occasional "kinks" 
come from changes in the order of the asymptotic sum. 

the series in Table V give both the total and Hartree-Fock 
energies to within 0.002% of their correct values. 

B. Shift in argument 

Another modified expansion, in whichD rather than 8 is 
shifted by a constant, has given good results for a sizable 
class of single-particle central force potentials.26 For 
ground-state Coulombic systems, this prescribes an expan­
sion in powers of 1/ (D - l), equivalent to 

Z=2 Z=3 Z=6 

Total energy, two-electron atom 
0 -0.6472102 - 0.687511 - 0.734 553 0 - 0.7888482 - 0.850 883 6 - 0.9211229 
1 - 0.158 527 - 0.13255 - 0.105975 - 0.079113 - 0.052 325 - 0.D25 893 
2 0.03291 0.0307 0.D2577 0.02019 0.013 97 0.00716 
3 0.0044 0.000 - 0.0037 -0.0041 - 0.0031 -0.0017 

Hartree-Fock approximation 
0 - 0.583 333 333 3 - 0.6412037037 - 0.703 703 703 7 - 0.770 8333333 - 0.842 592 592 6 - 0.918 9814815 
1 - 0.118 268 92 -0.10366 - 0.086 962 13 - 0.068 162 90 - 0.047 368 61 - 0.024 633 63 
2 0.031093 1 0.D283 0.0238514 0.0189527 0.013 3154 0.0069835 
3 - 0.007 496 -0.006 - 0.005844 - 0.004 640 - 0.003 233 - 0.001708 
4 0.001 14 0.001 12 0.000 84 0.000 63 0.000 21 

Correlation energy 
0 - 0.0638769 - 0.046 307 - 0.030 849 3 - 0.018 014 9 - 0.0082910 - 0.0021414 
1 - 0.040 2581 - 0.02889 - 0.019 013 - 0.010 950 - 0.004 956 - 0.001259 
2 0.00182 0.0024 0.00192 0.00124 0.000 65 0.000 18 
3 0.011 9 0.006 0.0021 0.0005 0.000 1 

• Units are [2Z I(D - 1)]2 hartree. Entries are En coefficients for ground-state reduced energy expanded in powers of (0 - 1), as in Eq. (12) with 00 = 1. 
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00 

E(8) = L e~8n(1 - 8) -n. (13) 
n~O 

The coefficients are related to those in Eq. (10) by 

(14a) 

and 

E~ = i (- 1) n + m( n - 1)E m , 
m~1 m-1 

for n>2. (14b) 

Since this 1/(D - 1) expansion had not previously been 
evaluated for a two-electron atom, we computed the E~ coef­
ficients from our values of the En given in Table III. The 
resulting series are much less good than the rescaled liD 
series, although better than the unsealed series. This poor 
performance occurs because the ( - 1)m factor in Eq. (14) 
offsets the alternation in sign of the Em coefficients. Trans­
formation to a lI(D - 1) series will improve convergence if 
the coefficients in the corresponding liD series have the 
same sign, as in the un scaled series of Table II as well as 
previously treated examples. In the present case, the rescaled 
1/ D series and particularly the shifted (8 - 1) series are 
much superior. 

C. Hybrid expansion 

An analysis of the singularities of E(8) for the two··elec­
tron atom II has shown that first- and second-order poles at 
D = 1 are the chief source of the poor convergence of the 
un scaled 1/ D expansion of Eq. (5) and Table II. The big 
improvement found on factoring out the hydrogenic contri­
bution, as in Eq. (10) and Table III, occurs because this 
removes a major part of the contribution from the second­
order pole. Likewise, the further marked improvement 
brought by shifting the origin to 80 = 1, as in Eq. (12) and 
Table V, occurs because in effect this takes out the remaining 
contributions from the first- and second-order poles. The 
(8 - 1) series has one drawback, however. The expansion 
coefficients are most readily determined from data near the 
D .... llimit, whereas in practice data neartheD .... CIJ limit are 
more easily obtained. This can be remedied by constructing a 
hybrid series27 in which the first two terms specify the D .... 1 
poles while higher terms represent derivatives of the energy 
at the D .... CIJ limit. One such hybrid form is 

00 

E(8)=ao +a l (8-1)+(8-1)2 L a"8n
-

2
• 

n=2 

The expansion coefficients are given by 

ao = E(1), a l = 0"(1) , 

a2 = Eo + a l - ao , 

an =En _ 2 +2an_ 1 -an_ 2 , n>2. 

(15) 

(16a) 

( 16b) 

(16c) 

Here E( 1) denotes the reduced energy eigenvalue and 
0"(1) = (aE/a8)/) ~ I its slope at D .... 1; the En are the coeffi­
cients of Eq. (10), with Eo = E(O) and EI = 0"(0) the eigen­
value and slope at D -+ CIJ. The leading coefficients ao and a I 
are the same as in Eq. (12) for 80 = 1. 

Table VI gives the coefficients for the hybrid expansion. 
In Fig. 1 the initial convergence for D = 3 is seen to be sub­
stantially better than for the rescaled 8 expansion of Eq. 
(10). Eventually the hybrid series exhibits divergence re-

TABLE VI. Coefficients for hybrid expansion.· 

n 

2 
3 
4 
5 
6 
7 

2 
3 
4 
5 
6 
7 

2 
3 
4 
5 

Z=3 

Total energy, two-electron atom 
0.Q25293 0.017213 0.008779 

- 0.015 815 - 0.005595 - 0.001470 
0.071 886 0.016064 0.001307 

- 0.399 00 - 0.067 51 - 0.007 94 
2.524 0.251 0.021 

17.6 - 0.9 - 0.1 

Hartree-Fock approximation 
0.02497382 0.01703736 

- 0.012 18376 - 0.00523790 
0.036228 1 0.0096473 

- 0.180 66 - 0.044 37 
1.001 0.186 

- 6.6 -0.84 

0.000 319 
- 0.003633 

0.035658 
- 0.218 34 

Correlation energy 
0.000 176 

- 0.000 357 
0.006417 

- 0.02314 

0.00872676 
- 0.001 55347 

0.000 5756 
- 0.00618 

0.022 
-0.06 

0.000052 
0.000 083 
0.000 731 

- 0.00176 

• Units are [2Z I(D - 1)]2 hartree. Entries area. coefficients for Eq. (15). 
The n = 0 and n = 1 coefficients are identical to those given in Table V. 

markably parallel to that for the rescaled expansion, but the 
result obtained from asymptotic summation is about an or­
der of magnitude more accurate because the divergence sets 
in later. The hybrid expansion is comparable to but some­
what less accurate than the shifted expansion with 80 = 1 in 
Eq. (12). However, in practice the choice between these ex­
pansions depends on the data available. To evaluate the 
shifted expansion through third order requires knowledge of 
the energy eigenvalue and its first three derivatives at D = 1. 
For the hybrid expansion, the third-order approximation is 
obtained by combining first-order calculations at D = 1 and 
at D = 00. Higher-order hybrid expansions can be con­
structed by extending the perturbation treatment at either or 
both of the limits. 

D. Correlation energy 

Tables V and VI include expansion coefficients for the 
correlation energy, obtained from E(8) - ~F(8). As illus­
trated in Fig. 5, neither the customary nor the rescaled form 
of the 1/ D expansion gives useful estimates of the correlation 
energy for D = 3. But both the shifted (8 - 1) expansion 
and the hybrid expansion provide good accuracy; indeed, for 
Z = 2, asymptotic summation retaining only the zero- and 
first-order terms gives the correlation energy within about 
2%. This is a very satisfactory result, comparable to the ac­
curacy attained in full-scale configuration interaction calcu­
lations. 10 

V. DISCUSSION 

This study demonstrates the utility of rescaled, shifted, 
and hybrid expansions. By these means, dimensional expan­
sions become practical for the calculation of accurate atomic 
energies. Rescaling takes out all but the interelectron repul-
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FIG. 5. Comparison of contributions to the correlation energy at D = 3 
from successive terms in four versions of dimensional expansions, for 
Z = 2. Format as in Fig. 1. 

sion, which proves to have a much weaker dependence on D 
than the attractive, hydrogenic terms. Shift of the origin to 
Do = 1 isolates in the zero- and first-order terms the major 
remaining contributions from the dimensional singularities 
characteristic of Coulombic interaction.27 The residual de­
pendence on D is so mild that the leading few terms of the 
expansion yield quite accurate results. These procedures 
work well even for the hydride ion (Z = 1), which is very 
difficult to treat by conventional methods. The shifted or 
hybrid expansions are particularly effective for the correla­
tion energy, which we find is accurately given by just the 
zero- and first-order terms. These results exemplify the vir­
tues of "small-D " expansions. 28 

Our expansions invite comparison with the familiar 
power series in A = 1/Z generated by applying perturbation 
theory to the interelectron repulsion. In the same reduced 
units, this is 

00 

€(8,A) = L €(k)A k. (17) 
k=O 

As indicated in Table I, the perturbation coefficients €(k) for 
D = 3 are now known to very high order (up to 400!) for the 
total energy16 and to fifth order for the Hartree-Fock ap­
proximation. 17 Figure 6 compares the convergence of the 
leading terms of the series in A with the series in (8 - 1) for 
the helium atom. The initial convergence is quite similar, 
and the resemblance seems likely to persist to higher orders. 
Thus, beyond fourth order the series in Eq. (17) steadily 
approaches a geometric progression 16.20 with a radius of con­
vergence near unity (about 1.1). As noted above, we expect 
that the (8 - 1) series ofEq. (12) will likewise have a radius 
of convergence equal to or close to unity. 

The prospects for applying dimensional expansions to 
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FIG. 6. Comparison of initial convergence properties of the perturbation 
expansion in powers of (8 - 1) with that in powers of A, for D = 3 and 
Z = 2. Ordinate shows percentage error in partial sums to various orders. 
Full and open symbols represent positive and negative errors, respectively. 
The final values plotted for the two (8 - 1) series constitute upper bounds, 
and the true values could be lower. 

multielectron atoms and molecules appear much better than 
for the A expansion. For an N-electron system, the Coulomb 
potential has N attractive terms (1/r;) for each nucleus but 
N(N - 1) /2 interelectron repulsion terms (1/r ij ), so treat­
ing the entire repulsion as a perturbation soon becomes un­
tenable. Dimensional expansions offer the great advantage 
that the complete Hamiltonian is solved for the limiting 
cases used to construct the expansion (here, D- 1 and 
D - 00 ). Thus, the ability of the expansion to represent the 
D = 3 solution does not depend on the magnitude of the 
interaction but only on its dimension dependence. Our re­
sults for two-electron atoms l

0-
15 and other model prob­

lems27 suggest that, aside from singUlarities calculable in the 
limiting cases, the dimension dependence is likely to remain 
gentle and smooth for multielectron systems. 
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