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Effect of contact statistics on electrical contact resistance
Yong Hoon Janga)
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The flow of electrical current through a microscopic actual contact spot between two conductors is
influenced by the flow through adjacent contact spots. A smoothed version of this interaction effect
is developed and used to predict the contact resistance when the statistical size and spatial
distribution of contact spots is known. To illustrate the use of the method, an idealized fractal rough
surface is defined using the random midpoint displacement algorithm, and the size distribution of
contact spots is assumed to be given by the intersection of this surface with a constant height plane.
With these assumptions, it is shown that including finer scale detail in the fractal surface, equivalent
to reducing the sampling length in the measurement of the surface, causes the predicted resistance
to approach the perfect contact limit. ©2003 American Institute of Physics.
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I. INTRODUCTION

When two large conductors make perfect electrical c
tact over a small circular area of radiusa, there will be a
constriction resistanceto electrical flow between them o
r/2a, wherer is the electrical resistivity. This equation
widely used in the design and study of electrical conta
However, if the contacting bodies have rough surfaces, c
tact will rarely be restricted to a single area. Instead, th
will be contact at a multitude of microscopic ‘‘actual’’ con
tacts clustered within a macroscopic ‘‘nominal’’ or ‘‘appa
ent’’ contact area. Greenwood1 has analyzed such cluster
treating a number of distributions of size and spacings,
has confirmed an earlier suggestion by Holm2 that the com-
bined effect of the local constriction and the clustering is
generate a resistance

R5rS 1

2Na
1

1

2a D , ~1!

whereN is the number of circular contact spots anda is the
radius of the cluster.

Many authors have attempted to generalize Greenwo
results to define the electrical and thermal conductance in
presence of clusters of microcontacts. Boyeret al.3 devel-
oped a model based on the assumptions that the numb
contact spots is small and that the total area of actual con
is close to the nominal contact area. Malucci4 simulated deg-
radation of the electrical conductance of aging contacts
introducing an interfacial film whose thickness is a statisti
function of asperity deformation. In a later study,5 he ex-
tended this approach by including the effects of cont
force, microhardness, and geometry as constraints in ca
lating the density of contact spots. Bryant6 investigated a
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hypothetical corrosive fretting failure mechanism in elect
cal contacts, incorporating asperity deformation, surface
pography, and other factors. Contact resistance has b
computed numerically by Nakamura7 for a system of two
cubic electrodes contacting through a set of square con
spots, while Boyer8 has extended the Greenwood formula
include the presence of interfacial films by considering
rectangular juxtaposition of square spots of equal size
square ring-shaped spots.

Equation~1! provides a good approximation to the ele
trical contact resistance for a deterministic distribution
contact spots of known size and location, but informati
about the distribution of asperities is most likely to be sta
tical in nature, since surface roughness is essentially a
dom process. Furthermore, surface roughness descrip
are typically multiscale in nature, and on a sufficiently fi
scale the number of discrete contact spots is likely to be
large to permit an efficient deterministic calculation. In t
present paper, we shall develop a statistical version of Gre
wood’s equation, in which the summation is replaced by
integral over the nominal contact area with a kernel that
pends on the statistical properties of the distribution.
shall then test the predictions of the theory by comparis
with a discrete deterministic realization developed using
random midpoint displacement algorithm. In particular, w
shall investigate the effect on the predicted contact resista
of the sampling length on the model surface, using rec
results due to Jang9 for relations between two- and three
dimensional properties of random surfaces.

II. STATISTICAL IMPLEMENTATION
OF GREENWOOD’S EQUATION

Greenwood’s result is based on the approximation of
potential field due to current flow through a microscopic co
tact spot by that due to a point current source in all locatio

il:
5 © 2003 American Institute of Physics
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other than the immediate vicinity of the contact spot. Th
the potentialf j at thej th contact spot in a set ofN randomly
disposed contact spots as shown in Fig. 1 is

f j5
rI j

4aj
1

r

2p (
iÞ j

I i

si j
, ~2!

whereI i is the current through thei th contact spot,ai is its
radius,si j is the distance between the centers of thei th and
j th contact spots, and the summation is performed over
the N contact spotsexcept i5 j .

A. The base potential

We will define thebase potentialf̄ j through the relation
~2!:

f̄ j[f j2
rI j

4aj
5

r

2p (
iÞ j

I i

si j
. ~3!

With this notation, we have

I j5
4aj

r
~f j2f̄ j ! ~4!

and, using this result to substitute forI i in Eq. ~3!, we obtain

f̄ j5
2

p (
iÞ j

ai~f i2f̄ i !

si j
. ~5!

B. Integral form of the equation

Suppose that in some nominal areaA there exists a
single circular contact spot and that the probability of
radius being betweena and a1da and of its center being
located in the rectangle defined by the linesx, x1dx, y, y
1dy is h(x,y,a)dxdyda, whereh(x,y,a) is a probability
distribution function that satisfies the equation

E E
A
F E

0

`

h~x,y,a!daGdxdy51. ~6!

A similar definition can be used for the case where there
n contact spots per unit nominal area, in which case
probability of a contact spot of radiusa, a1da having its
center within the infinitesimal rectangle will b
nAh(x,y,a)dadxdy. This definition implicitly assumes tha
the distribution is uncorrelated—i.e., that the probability o

FIG. 1. Configuration of contact.
,

ll
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e

contact spot at~x,y! is unaffected by the actual occurrence
a contact spot at a nearby point. The consequences of
assumption will be discussed in Sec. VII.

The base potential at the pointx,y due to the distribution
h(x,y,a) can now be written

f̄~x,y!

5E E
A
E

0

`2nAh~j,h,a!@f~j,h!2f̄~j,h!#adadjdh

pA~x2j!21~y2h!2
,

~7!

where the domain of integration is the nominal contact a
and the range of contact spot radii.

If the integral with respect toa can be performed, defin
ing the function

h̄~j,h![E
0

`

nAh~j,h,a!ada, ~8!

then

f̄~x,y!5E E
A

2h̄~j,h!@f~j,h!2f̄~j,h!#djdh

pA~x2j!21~y2h!2
. ~9!

III. THE BOUNDARY VALUE PROBLEM

If two half spaces make electrical contact at a numbe
areas on their common plane surface, the potential probl
in the two bodies will be geometrically similar and the actu
contact areas will form an equipotential surface. In partic
lar, the potential difference between this surface and the
tremity of bodyi ( i 51,2) will be

f5
Ur i

r11r2
, ~10!

wherer i denotes the resistivity of the material of bodyi and
U is the potential difference between the extremities of
two bodies. In more general problems,f may not be con-
stant. For example, if one of the bodies conducts a curren
a direction tangential to the common interface,f will be a
linear function ofj, h.

Thus,f~j,h! is a known function, as ish(j,h,a), and
hence we can determine the function

f ~x,y![E E
A

2h̄~j,h!f~j,h!djdh

pA~x2j!21~y2h!2
. ~11!

It follows that the base potentialf̄ is the solution of

E E
A

2h̄~j,h!f̄~j,h!djdh

pA~x2j!21~y2h!2
1f̄~x,y!5 f ~x,y!, ~12!

which is a singular integral equation of the second kind,
which various solution methods are available.

Once f̄(x,y) has been determined from this equatio
the current through each individual contact spot is defined
the discrete formulation of Eq.~4! so that the current through
all contact spots can be summed as
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I[(
j 51

N

I j5(
j 51

N
4aj

r
~f j2f̄ j !. ~13!

The integral form of this equation can be written as

I 5
4

r E E
A
E

0

`

nAh~j,h,a!@f~j,h!

2f̄~j,h!#adadjdh ~14!

5
4

r E E
A
h̄~j,h!@f~j,h!2f̄~j,h!#djdh. ~15!

We can also define the local mean current density as

i ~x,y!5
4

r
h̄~x,y!@f~x,y!2f̄~x,y!#. ~16!

Notice thati (x,y) is averaged over the local discontinuitie
associated with the actual contact areas, but it will vary o
the nominal contact area. Statistically, it can also be regar
as the expected value of current density at the point~x,y!.

IV. INTERPRETATION OF THE FUNCTION h̄ „j,h…

Suppose that the spatial distribution of contact spots
the size distribution are uncorrelated, so thath(j,h,a) can
be written in the normalized separated variable form

h~j,h,a!5h1~j,h!h2~a!, ~17!

where

E E
A
h1~j,h!dj dh51, E

0

`

h2~a!da51. ~18!

We then have

h̄~j,h!5nAh1~j,h!E
0

`

h2~a!ada5nAh1~j,h!ā ~19!

from Eq. ~12!, whereā is the mean value ofa. If the distri-
bution functionh1(j,h) is uniform in A, we have

h1~j,h!5
1

A
~20!

from Eq. ~18! and hence

h̄~j,h!5nā. ~21!

More generally, the functionh̄(j,h) is equal to the prod-
uct of the number of contact spots per unit area and the m
radius, both of which may be functions of position.

V. MICROCONTACT SPOT DISTRIBUTION

Equations~10!, ~12!, and~15! permit us to determine the
electrical contact resistance

Re5
U

I
~22!

for any rough surface contact problem, provided we can
termine the corresponding statistical distribution functio
h1(j,h) andh2(a). Various methods exist for this purpos
For example, we might use an asperity model theory suc
r
ed

d

an

e-
s

as

those due to Greenwood and Williamson10 for flat surfaces or
Greenwood and Tripp11 for nonconforming surfaces. In th
present paper, we shall illustrate the method by making
assumption that the distribution of contact spots is defined
the set of ‘‘islands’’ generated by cutting through the rou
surface at constant height. This assumption was used by
jumdar and Bhushan12 in their fractal theory of contact and i
related to the concept of ‘‘bearing area,’’ which is arguab
appropriate when the contact deformations are predo
nantly plastic.

For this purpose, we generated a randomly rough surf
using therandom midpoint displacement algorithm~RMD!
~Voss13!. Suppose the values of the process are defined a
nodal points of a square grid. The grid is now subdivided
introducing new nodal points at the midpoints. The value
the process at each midpoint is determined as the sum o
average of the two adjacent end points and a zero m
random process with a Gaussian distribution. This proced
of subdivision is applied recursively, and the standard dev
tion of the random process at each scale is chosen so a
ensure that the algorithm generates a self-affine fractal
face.

Starting with a square of dimensionL3L, m applica-
tions of the algorithm will generate a square grid of (2m

11)3(2m11), corresponding to a fractal surface measu
with a sampling length ofL/2m.

Figure 2~a! shows a typical rough surface generated
this algorithm in the unit square and Fig. 2~b! shows the
corresponding bearing area ratioB(z). The bearing area ratio
is defined as the proportion of the surface above the heigz.
The z axis in these figures is normalized with respect to
standard deviations ~i.e., the rms roughness! of the resulting
surface.

Figure 2~c! shows the contact spots defined by cutti
through the surface at the level where the bearing area r
is 5% @i.e., B(z)50.05], with a grid size~sampling length!
of 1/27. A total of 27 contact spots are identified, but they a
clearly not circular, as required by the analysis of Sec. II
distribution function for ‘‘equivalent’’ contact radii might be
obtained by defining a set of circles whose areas are equ
those of the islands in Fig. 2~c!. However, we note that in
most cases the complete topographical description implie
Fig. 2~a! is not available. Instead, we typically have profil
meter output, which is equivalent to a sampling of the s
face along one or more lines. This permits the bearing a
ratio @Fig. 2~b!# to be determined, but information about th
distribution of islandsh2(a) must be deduced from the co
responding distribution of line segmentsf ( l ) above a given
height in the profile. Jang9 has shown that a distribution
h2(a) of circular contact spots will lead to a distributionf ( l )
of line segments above the specified height, where

h2~a!52
2ā

p

d

da Ea

` f ~ l !

Al 22a2
dl, ~23!

and the mean radius of the circles is
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ā5p/F2E
0

` f ~ l !

l
dlG . ~24!

The number of contact spotsn per unit area is

n5
2nc

ā
, ~25!

FIG. 2. Rough surface generated by the RMD algorithm.~a! Three-
dimensional view;~b! the corresponding bearing area ratioB(z); ~c! the set
of islands generated by cutting through the surface atB(z)50.05.
wherenc is the number of line segments per unit length.9

To utilize the above equations, we first sample the mo
surface along a set of lines to measure the number of
segments per unit lengthnc above a given heightz and the
length distribution of these line segmentsf ( l ). Equation~24!
then allows us to evaluate the mean radiusā of the contact
spots in the corresponding three-dimensional section,
Eq. ~25! determines the number of contact spots per u
area,n. Finally, Eq. ~23! determines the probability densit
of the distribution for the contact radius.

This method gives good results for the distribution
contact spot sizes as long as the bearing area ratio is less
10%. For larger values of bearing area ratio, more comp
contact spot geometries are obtained,9 some involving mul-
tiply connected areas—i.e., one or more regions of sep
tion completely surrounded by contact. However, these c
ditions occur only under extremely high loads and are no
much practical interest.

VI. RESULTS

As an example problem, we consider the contact
tween two half spaces over a square nominal contact are
size 131 mm2 at various values of the bearing area ra
B(z). The resistivity of both half spaces was taken to
r15r252531029 V m.

Figure 3 shows the variation of~a! the functionh̄5nā
from Eq. ~21! and ~b! the electrical resistanceRe with the

FIG. 3. Variation of ~a! the function h̄5nā from Eq. ~21! and ~b! the
electrical contact resistanceRe with bearing area ratioB(z). The dashed line
in ~b! was obtained from Eq.~27!.



t
. F
ce
e

tir

ar

-

ig
he

n
tio
ca
nc
e’
c
ac
re
w
he
a

er
e
nc

ter
ace
a-
m-
ical
able
not
the
ic-
rip-
us
at

by
re

-
l of

of

lues
fect

o

7219J. Appl. Phys., Vol. 94, No. 11, 1 December 2003 Y. H. Jang and J. R. Barber
bearing area ratioB(z). As we would expect, the contac
resistance decreases with increasing bearing area ratio
comparison, Nakamura7 showed that the electrical resistan
for conduction through a single square contact spot of sidL
is

Re
SN5

0.868r

L
. ~26!

Thus, if there were perfect electrical contact over the en
nominal contact area, the resistance would be 21.7mV.

A. Comparison with Greenwood’s equation

Equation~1! applies specifically to the case of a circul
nominal contact area of radiusa, containing a distribution of
N contact areas, each of radiusa. However, it is readily gen-
eralized to the present case by~i! replacing the cluster resis
tance termr/2a by Re

SN of Eq. ~26! and ~ii ! replacing the
productNa by L2nā, giving

RG5
r

L S 1

2Lnā
10.868D . ~27!

This simple expression is shown by the dashed line in F
3~b! and it clearly gives a very good approximation to t
present numerical predictions. In fact, Eq.~27! is always
slightly lower than the corresponding numerical calculatio
the percentage difference being shown in Fig. 4 as a func
of nā. The reason for this difference is that the numeri
treatment allows for the effect of the microscopic resista
in modifying the mean current density in the ‘‘cluster-scal
problem, whereas Eq.~27! assumes that the cluster resistan
is always that which would be obtained in the perfect cont
problem. This is most significant when the microscopic
sistance is large, in which case the mean current density
be approximately uniform in the nominal contact area, rat
than having the square-root singular behavior implied by N
kamura’s solution7 and Eq.~26!. However, in this limit, the
resistance is dominated by the microscopic resistance t
and hence Eq.~27! still gives a good approximation to th
numerical results. The maximum percentage differe
therefore occurs at intermediate values ofLnā, being 3.86%
at Lnā51.35.

FIG. 4. Percentage difference between the predictions of the Greenw
equation~27! and the solution of Sec. III as a function ofLnā.
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B. Effect of sampling length

Experimental measurements with the stylus profilome
show that, when using a large sampling interval, the surf
exhibits only a few asperities with a large radius of curv
ture, whereas with a smaller sampling interval, larger nu
bers of asperities of smaller radius are revealed. Class
asperity-based models of contact appear to give reason
predictions of electrical and thermal resistance, but it is
clear what sampling interval should be used in defining
resulting asperities. Ideally, we would hope that the pred
tions obtained using progressively refined surface desc
tions would tend to a limit at small sampling length, th
providing some justification for truncating the description
a finite length scale.

This effect can be simulated in the present example
increasing the grid refinement of the RMD model. Figu
5~a! shows the functionh̄5nā from Eq.~21! as a function of
grid refinementm for a bearing area ratio of 5%. This corre
sponds to the sampling of the rough surface at an interva
1/2m mm. The results show a considerable increase inh̄ with
increasingm and this translates to a comparable reduction
contact resistanceRe , as shown in Fig. 5~b!. The dashed line
in Fig. 5~b! corresponds to the Greenwood equation~27!.
These numerical calculations were extended to larger va
of nā and confirm that the resistance tends to the per
contact limit of Eq.~26! asnā→`.

od

FIG. 5. Variation of ~a! the function h̄5nā from Eq. ~21! and ~b! the
electrical contact resistanceRe with sampling length 1/2m for a bearing area
ratio of 5%. The dashed line in~b! was obtained from Eq.~27!.
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VII. DISCUSSION

The multiscale model predicts a lower electrical cont
resistance when a finer scale is used, since the finer s
reveals larger numbers of additional microscopic cont
spots. In particular, the mean radiusā decreases, but there
a larger increase in the number of contact spots per unit
n, leading to a net increase inh̄. Similar behavior has bee
reported in other recent studies of the contact of quasifra
surfaces.14,15

The ‘‘bearing area’’ hypothesis used in the example
Sec. V predicts a distribution that contains some relativ
large contact spots along with increasingly large number
smaller spots as the sampling length is reduced. Similar c
acteristics are implied in the fractal contact model of Maju
dar and Bhushan.12 This theory is most appropriate when th
microscopic problem is dominated by plastic deformatio
since in this case each local asperity contact is analogou
a hardness indentation. By contrast, the elastic contact t
ries of Borri-Brunettoet al.14 and of Ciaverellaet al.15 pre-
dict that the size ofall contact spots decreases with decre
ing sampling length, so that in the theoretical fractal limit w
have an infinite number of contact spots of zero size.

Elastic fractal contact theories also show that the prod
h̄5nā would be unbounded in the limitm→`, while the
total area of actual contact

Ac5(
i 51

N

pai
2 ~28!

tends paradoxically to zero.14,15 If we define a new function
c~j,h! such that

c~j,h![nā@f~j,h!2f̄~j,h!#, ~29!

and use this expression and Eq.~19! to substitute forf̄(j,h)
and h̄(j,h) respectively in Eq.~9!, we obtain

E E
A

2Ah1~j,h!c~j,h!djdh

pA~x2j!21~y2h!2
1

c~x,y!

nā
5f~x,y!.

~30!

If nā increases without limit, the second term in Eq.~30!
tends to zero, giving

E E
A

2Ah1~j,h!c~j,h!djdh

pA~x2j!21~y2h!2
5f~x,y!. ~31!

This equation has a bounded solution forc~j,h! except along
the boundary of the nominal contact area and hence in
fractal limit f5f̄ from Eq. ~29!. In other words, the bas
potential becomes equal to the potential at the contact in
face and Eqs.~16! and ~12! give

r

2p E E
A

i ~j,h!djdh

A~x2j!21~y2h!2
5f~x,y!, ~32!

which is the equation defining perfect electrical cont
throughout the nominal contact areaA. Thus, any contac
theory that predicts a distribution functionh̄5nā that in-
creases without limit with decreasing sampling length w
t
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imply an electrical resistance equal to that based on
simple assumption of perfect electrical contact in the no
nal contact area.

A. Correlated distributions

All of these results are predicted on the assumption
Sec. II that the distribution of contact spots is statistica
uncorrelated—i.e., that the probability of a contact spot
~x,y! is unaffected by the actual occurrence of a contact s
at a nearby point. Most theories of electrical and therm
contact resistance are based on this same assumption,
they draw on data about the height distributions of surfa
points, asperity summits, etc., but not on data about the r
tive spatial location of these features. However, it is in t
nature of a multiscale surface that the distributions are c
related, since the larger scale waviness will tend to clus
the next scale of asperity contacts into groups, as show
Fig. 6. Further evidence of the importance of correlation
provided by a recent result due to Barber,16 which places
load-dependent bounds on the electrical contact resistan
an elastic contact problem, with the lower bound being g
erally tighter than the perfect contact limit.

Some allowance for the effect of clustering on the coa
est scale could be made by subdividing the nominal con
area and sampling the surface separately in each sub
generated. The results could then be used to defineh(x,y,a)
as a piecewise constant function ofx,y. The limitation of this
technique is that the accuracy of the sampling technique
Sec. V depends upon the contact areas being substan
smaller than the subareas sampled.

A more promising approach to the inclusion of corre
tion effects might be to generalize the analysis of Sec. II
allow the functionh(x,y,a) to be correlated and to devise
way to estimate the correlation functions for the distributi
from measurements of the correlation of the line segm
distribution f ( l ) of Eq. ~23!. These questions are the subje
of ongoing research.

VIII. CONCLUSIONS

We have presented a model for the electrical contac
rough surfaces, extending Greenwood’s equation for cond
tion through a cluster of circular contacts to a system
which the probability of a contact spot at a given location
defined in statistical terms. The model was illustrated usin

FIG. 6. Contact spot clusters due to large scale waviness of the surface
tends to make the probability of a contact spot higher in the vicinity of ot
spots and lower in remote regions.
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mathematically generated surface with fractal characteris
and the bearing area hypothesis, properties of the sur
being determined using a relation between three-dimensi
properties and profile properties due to Jang.9 We show that
in the fractal limit the theory would predict effectively pe
fect electrical contact throughout the nominal contact ar
suggesting that the correlation between the location of a
cent contact spots needs to be taken into account.
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