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A volume source sheet plus a uniform flow is used to represent the flow field of a two-dimensional
Bunsen flame when the density ratio of the unburned to burned gases is 5.5. The unknown flame
shape is determined by the requirement that the velocity normal and relative to it, i.e., the local
flame speed is constant. The flow field is computed by the method of squares and compares favorably

with that obtained experimentally.

INTRODUCTION

HIS paper is concerned with a solution for the

flow field of a two-dimensional Bunsen flame.
We look for a solution under the assumptions: (1)
The thin zone of combustion is replaced by a sur-
face of discontinuity across which the density drops
from p;, to p.. (2) The velocity component of the
unburned gases normal and relative to the flame, i.e.,
the local flame speed is constant. The density of
the burned gases p, is constant since p, is assumed
constant. (3) The viscosity is neglected everywhere,
We must determine the potential flow of the un-
burned gases, the rotational flow of burned gases,
and the unknown shapes of the flame and free
streamlines, see Fig. 1. It has been shown' that

GEOMETRY OF FLOW FIELD

Fig. 1. Geometry of flow field.

* Present address: Thompson Ramo Wooldridge Systems,
Inc., Redondo Beach, California.

the proproblem has been oversimplified and no solu-
tion exists under the above assumption. It is neces-
sary to take the variation of the flame speed into
account especially at the tip of the flame. This
makes the analysis very complicated.

We consider a simpler flow which exhibits the
important features of the actual flow and which
can be derived from a set of self consistant assump-
tions. The flame is replaced by a source sheet of
uniform strength (rate of volumn flow) across which
the normal velocity jumps from one constant value
to another. The tangential velocity is continuous
across the sheet or the ‘flame.” A uniform flow
Y-« 18 superimposed on the flow of the source sheet.
The strength and shape of the source sheet and the
intensity #.. of the uniform flow are so adjusted
that the velocity normal to source sheet or the
“flame” speed is constant. The density is uniform
and flow potential everywhere.

In an actual flame the density ratio ¢ = p,/p, =
Upa/U1,. The model will correspond to the actual
flow field when the value of the ratio w.,/u.. is the
same as p,/p, for the actual flow. We have earlier
shown that a model based on the above assump-
tions exhibits the important features of the flow
fields of flames propagating in channels.?

TECHNIQUE OF SOLUTION—BOUNDARY
CONDITIONS
We assume a flame shape along which the normal
velocity w,, or the flame speed is constant. The
potential flow of the unburned gases is bounded by
' M. 8. Uberoi, A. M. Kuethe, and H. R. Menkes, Phys.

Fluids 1, 150 (1958).
2 M. S. Uberoi, Phys. Fluid 6, 1104 (1963).
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the flame and the channel walls, and we have the
necessary boundary conditions to caleulate it. The
potential flow corresponding to the burned gases
can be determined from the assumed flame shape
and the given normal velocity u,, = ous,. At the
flame the tangential velocity of the flow field thus
computed must be the same as for the flow on the
unburned side, if not, then the flame shape is ad-
justed and the process repeated. In the solution
of potential flows, we prescribe one condition on a
fixed boundary. Here we are imposing two conditions
on the undetermined boundary or the flame. The
problem is not amenable to an analytical solution;
hence, Laplace’s equation is replaced by a set of
finite difference formulas and these are solved nu-
merically. The technique used is called the method
of squares or the interpolation method.® The nature
and number of boundary conditions present com-
plications which are indicated below. It is convenient
here to solve for the Cartesian coordinates, x and
y, in the plane of the velocity potential, ¢, and the
stream function, . It is not difficult to show* that
z and y satisfy Laplace’s equation in the ¢, ¢ plane
if V(z,y) = Vi, y) = 0.

The flow is postulated to be uniform far upstream
and far downstream. Then the streamlines are equally
spaced (dz/d¢ = const) on boundaries I, and I
(Fig. 2). On both boundaries, ¥ is a chosen constant.
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Fia. 2. Plane of ¢ and ¢.

The width d/e (Fig. 1) is determined from the
continuity equation. If S, is the half-flame length,
then

Us /B = UzSi/0 = TU_o. (1)

The velocity is constant along the free streamline,
then on this streamline

u+oo = (’M/:n + u;l)*

3 A. Thom and C. J. Apelt, Field Compulations in Engi-
neering and Physics (D. Van Nostrand, Inc., London, 1961).
¢ Reference 3, p. 156.
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where 8 is the angle indicated in Fig. 1. u,. is of
course independent of ¥. Then from (1) and (2)

d_  thee _ % [1 + (mn—fﬂ_*. ®
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On the boundaries II,, 11, and IV,, z is known
and y must satisfy the condition dy/d¢ = 0. From
the fact that the velocity along the free streamline
(boundary IV,) is constant, the condition

d¢ _ 9 O
an 9z on

90 9y

dy o = const

must be satisfied, where n is distance along the
free streamline. The z and y fields are thus coupled,
and the z coordinates on the boundary IV, must
be obtained by an iteration process, each new guess
being obtained by a numerical integration across
the y field from the line of symmetry. This is merely
a restatement of the fact that the position of the
free streamline is unknown at the outset.

On the remaining boundaries (III, and III,, i.e.,
the flame surface), we have postulated that the
normal velocity is constant. Then on boundaries II1,

9y _ 9y 9z
ds Oz 0s

Iy _
3y s = const.

The coupling here makes it necessary to obtain the
y .coordinates on boundaries II and IV (both up-
stream and downstream) by an iteration process,
each new guess being obtained by integrations up
and down the respective upstream and downstream
z fields from I, and I,. In this case the location
of the boundary (the flame surface) is known in
the x, y plane but not in the ¢, ¢ plane. This bound-
ary condition may be satisfied by the upstream and
downstream fields individually, but the problem is
overdetermined when we require that the solutions
match at the flame front. Thus, for a given o =
p1/p2, we must seek a flame shape for which the up-
stream and downstream solutions match, and there
is no guarantee that any solution exists.

SOLUTION AND COMPARISON WITH
EXPERIMENT

One solution has been computed. The solution
is for a flame length of 2a and corresponds to a
density ratio of the unburned to burned gases of
5.5. This solution is shown in Fig. 3 superimposed
on a photograph taken in the laboratory. (It should
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Fia. 3. Computed streamlines (solid) superimposed on
photograph of streamlines of an actual flame.

be noted that the flame surface of the model is
tangent to the plane of symmetry. The central
streamline will remain underflected if the flame sur-
face is either tangent or normal to the plane of
symmetry, and the latter is not possible® without a
substantial increase in the flame speed at the tip.)
The experimental apparatus used to obtain the
observed flow field is described in the earlier paper
referred to above.® Very briefly, a two-dimensional
lean propane air flame was stabilized on two elec-
trically heated 1-mm o.d. ceramic tubes placed along
the long edge of a % by 1 in. rectangular port. The
flame was confined between quartz plates, and the
flame shape did not vary along the depth. A number
of fine screens were used to make the flow uniform
upstream.

The accuracy of the velocity mateh on the flame
front is indicated in Fig. 4. The match is reasonably
close for —0.8 < ¢ < —0.2. Due to the coarseness
of the mesh used (Ay = 0.2 between mesh points),
one cannot say very much about the match out-
mUberoi, A. M. Kuethe, and H. R. Menkes, Phys.

Fluids 1, 150 (1958).
¢ Reference 5, p. 156.
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side this range. Assuming the existence of a solu-
tion, the errors in the match could be made as
small as desired by making the mesh sufficiently
fine and carrying out a sufficient number of itera-
tions on the flame shape.

Insofar as the main features of the flow are con-
cerned, the agreement between the computed field
and the experimentally observed flow field is quite
good, thus indicating that a source sheet of uniform
strength superimposed on a uniform flow is a reason-
able model for a two-dimensional Bunsen flame.
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Fi1a. 4. Velocities on the flame surface from computed
solution. The circles refer to the upstream flow and the
triangles to the downstream flow.



