THE UNIVERSITY OF MICHIGAN

Technical Report 4

PROGRAM BEHAVIOR AND CONTROL IN VIRTUAL
STORAGE COMPUTER SYSTEMS

Tad Brian Pinkerton

CONCOMP: Research in Conversational Use of Computers
F.H, Westervelt, Project Director
ORA Project 07449

supported by:
ADVANCED RESEARCH PROJECTS AGENCY

DEPARTMENT OF DEFENSE
WASHINGTON, D.C.

CONTRACT NO. DA-~49-083 0SA=~3050
ARPA ORDER NO. 716

administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

April 1968

PROGRAM BEHAVIOR AND CONTROL IN

VIRTUAL STORAGE COMPUTER SYSTEMNS

by
Tad Brian Pinkerton

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in
The University of Michigan
1968

Doctoral Committee:

Professor Bernard A. Galler, Chairman
Associate Professor Bruce W. Arden
Professor Robert C. F. Bartels
Associate Professor Bruce M. Hill
Associate Professor Keki B. Irani

iii

@ Tad_Brian Pinkerton __ 1968
All Rights Reserved

iv

PREFACE

This research was carried out with the cooperation and
assistance or many people. In particular, the author wishes
to thank Professors B. W. Arden and F. H. Westervelt of the
Computing Center, Professor K. B. Irani of the Systens
Engineering Laboratory, and Professor B. M. Hill of the
Mathematics Department, for many enlightening discussions.
Michael Alexander of the Computing Center provided consider-
able help in <the creation of the MNTS data coilection
facility and in interpreting the data obtained with it.

The author is grateful for financial assistance provided
during the period of this research by an IBM Information
Science Fellowship administered by the Cowputing Center.
Use of the computer for aeveloping data reduction progranmns
and analyzing the MIS data was supported in part by the
Computing Center and in part by the ‘Rome Air Development
Center, Air Force Systems Command, under contract number AY
30 (602)-3%53 with the Systems Engineering Laboratory of the
Department or Electrical Engineering.

This dissertation was prepared on the computing systen
studied herein [using text-processing and display editing
programs and a special print train] as part of a research
project in the use of conversatioral and graprical computing
techniques. This project was supported by the Advanced
Research Projects Agency of the Department of Defense
(contract number DA-49-083 0SA-3050, ARPA ord=r number 716)
administered bv the Office of Research Administration.

Finally, the author is especially indebted to Professor
B. A. Galler for ais patient encouragement, dgentle criti-
cism, and continuing professional guidance; and grateful to
Professor R. C. F. Bartels, under whose devoted guidance the
Computing Center is a dynamic and inspiring environment for
research.

Introductiond .« o« o« « =

I. General Discussion . « « «
II. The Problem AT€a « o« « o o
III. The ProbleMm w o o « o »w « =
IV. Experimental Work . « « « «

Vo SUNMATLY ¢ « = « o « o o o @

Chapter 1. Static Allocation . . .
I. The Problem « « « « o« « o « @
IT. MOdelS o « o o « o = o o o =
III. Notation . « &« ¢ ¢ « o o &
IV. Formulation of the Optimizat
Vo Stakility o« o« « o ¢ o« ¢ o o &
VI. Solution Procedures
VII. SUDMELY « = o o o = o v o =
VIII. Application to Multiprogra

Chapter 2. Dynamic Allocation for a

I. Terminology « « « o « o o « @
II. Fage-turning Algorithms . .
III. Storage Use Cost Functions
IV. 1The Expected Total Cost . .

Vo Evaluation . . &« ¢ o + o o
VI. A Specific Example . . « . .
VII. Numerical Results «
Chapter 3. Lynamic Allocation for
I. Motivation .« o« ¢ 2 « ¢ o o« @
II. Model Description . « « « «
III. Analysis « o« o o o « o « =
IV. Applicationl . « o s o o o &
V. Numerical Results

Chapter 4. Simulation of Storage Al
I. The Model . ¢« ¢ v ¢ o ¢ « « «
II. LimitatioDS .« « o« o o o « o
III. Experiments . o« ¢ o o o« o« o
IV. T[Ciscussion of Simulation Res

Chapter 5. Conclusions . « « « « «

Bibliography . « o« © « <« o ¢ o o

vi

Table of

contents

ion Problem . .

MUing o « o o @

Single Progran

location « « «

B1ltS o o o o o @

L]
[] L]] . L]
L

Figure
Figure
Figure
Figure
Figure
Figure
Fiqure
Figqure
Figure
Figure
Figure
Fiqure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

e

3

&

]
®

i
s

!
s

[

i
¢

H

¢

)

'
<

|
3

[4

¢

AR ODOOO OO0 0000 mmmm e wwl iR RN
|

ONOUETWNN=O0ONOUEWNaUEWN S EWRN = o 8 WK -8 WK s
.

F-9.
F-10.
F-11.

List of Illustrations

Examples of the Lxpected Cost Function
Effect cf Drum Congestion on Cost . . .
Erfect of Reference Probability on Cost
Effect of Number of Pages on Cost . . .
rifect of Page Request Rate on Cost . .
The Queueing Model . . ¢ & ¢ ¢ ¢« ¢ ¢ &
Etfect of CPU Service Time on Idle Time
Effect of No. of Tasks on Idle Time . .
CPU Rate vs. NOo. Of Tasks « « ¢ « o o &
The U4MES Jot Scheduler Queues.
The Functions H(D,t) o« « o ¢ o ¢ o« « »
The Negative Exponential Fit

Characteristics of tne Distribution H(n

Tne Erlangian Fit E(g,t) <« « o « o o &
Stanaard System Data Items . « « « .« &
A Sample Distribution of Data Items . .
CPU Time for Lata Collection
A Sample of Annctated Data . «
A Sample of Analyzed Data . . «
The Selected DAata o o o o o« o o o o o o
MTS CPU Intervals .« ¢« « ¢ o o« o« o o o =
Requested CPU Intervals . . . « « . . .
Page Wait Delays .« « v v o o o o « o« =
Overall I/0 Wait Distribution
MIS Reaay Intervals . o« « o o o « o « &
Disk I/0 D€laysS « « o o o o o o o o o =
Disk Pack yueueing Delays « « o« « o o «
Terminal I/0 WaitS « o« o o « o o o o
Basic Simulation Data o « « « o « o « &
Basic Simulation Data « « o « o o « «
Advanced Simulation Data .« &« « « ¢ <« &
Advanced Simulation Data .« « o « « o o
Modified Simulation Data =« « o o « « «
Modified Simulation Data . « o « « o o«
Modified Simulation Data . « ¢ « « « «
Modified Simulation Data .« « o « o o &
Modified Simulation Data =« « « o« o« « =
Modified Simulation Data o « o « o o« &
Modified Simuiation Data « « « « o« o« &

vii

. us
. U7
. us8
. 49
. 50
. 52
. 62
. 63
. 64
. 80
. 91
. 92
. 93
. 94

.103
104
. 109
- 110
<113
119
120
121
122
123
<124
<125
.126
143
<44
<145
. 146
47
. 148
.49
. 150
. 151
.152
. 153

Appendix A: UMMPS and MTS
I. UMMES @ o « ¢ o «a o o o o »
ITo MIS o ¢« o o o o o o @

Appendix E: The Drum I/O Channel
I. Equipment and Data Format
II. Lata Access Organization
III. Analysis <« « o« « o« « &
IV. Multiple Drums
V. Practical Considerations

Appendix C: The Data Collection
L. Data collection « « « . «
II. Effects of Data Ccllectio
III. Pata Analysis « « « « «

Appendix D: The MTS Data . . .
I. General Description . . .
II. Specific Characteristics

Appendix E: The GPSS/360 Simulatio
I. GPSS/360 v ¢ ¢ « o o o o &«
II. Organization of the Model .

L
-
-
L
R d
-
-
-*
-
aci
-
-

llﬁ.hg....!

8 S s ¢ s

III. Model Data: the workload descripti

IV. Hardware Descriptions . .
V. Operating System Algorithms
VI. System Parameters
VII. Statistics Gathering . .
VIII. The Progralm .« « « « o »
Appendix F: The Simulation Results

viii

" o ’—.I. .
P
r*.
l~<

- e e
« @ o
o
[° .
-

List of Appendices

6 & o § o & & 3 o

on

] . [} . [) L] L] L] 4 [.] []

L] [] L * L]

L]]] .] . [} .]

78
78
82
84
84
85
. 85
. 95
. 96

102
. 107
111

111

.113
. 127
. 127
127
. 128
129
. 129
130
.130
. 131
<141

SY#BOLOGY

The following notation is used throughout this paper with
the indicated interpretation.

O []1 § sets of parentheses

0(1,3) subscription of Q with i and j
A/3 guotient of A and B

q
C exponentiation of C by g
p ==> 1 implication of g by p

.S

> summation operator
i=1
~n_

i multiplication operator
j=0

m 00

I

| definite integral from x to infinity
|

Liy

end of proof of lemma or theoren

[14] bibliographic reference

ix

INTRODUCTION

“"One man's constant is another man's variable."

A. J. Perlis

"If a man will begin with certainties he will
end with doubts, kut if he will be content to
begin with doubts he shall end in certainties."

Francis Bacon

I. GENERAL DISCUSSION

The subject matter of this study is the allocation of
storage to daigital computer programs. The basic point of
departure 1s that of operating system efficiency. We are
primarily concerned with the productivity of the systen
rather than its response; the effectiveness with which it
performs rather than the effectiveness with which it ser-
vices an individual customer.

Most large-scale computing systems in use early in this
decade operated in "single-thread batch" nmode: a single
program used the central processing unit (CPU) and main
storage until it was completely finished, whereupon the next
program was introduced and allowed to run to completion,
etc. During the processing of input-output (I/0) commands
for a program, including progranm loading, the CPU and most
of the rest of the system stood idle. As conputing
facilities grew larger and faster, the disparity between
internal processing rates and slow I/0 rates caused these
more expensive systems to remain idle for an increasing
share of the time.

Multiprogramming, or sharing system resources among many
programs at once, was introduced to improve the performance
of a systen. With a large enough main storage, a systenm
could deal with a number of programs in the execution phase
concurrently, dispatching a new one to the CPU whenever the
previous task paused for I/O activity. Since both processor

Introduction 3

rates and program sizes continued to increase, however, a
large-scale system could still not store enough complete
tasks in main memory to keep the CPU busy. This was true
despite the fact that more processor time and additional
circuit complexity was necessary to allow the system to
operate with many programs at once.

In an attempt to ready more tasks for the CPU, systems
have begun to store only parts of a program in main memory
at any given time with sections removed and added as
computation progresses. Programming techniques have been
devised to keep track of the various parts of a task in main
and auxiliary storage and to provide for their flow back and
forth on a demand or scheduled basis [21,24,53]. However,
because of the allocation problems introduced by having
segments of various sizes moving in and out of a fixed-size
main storage device with arriving segments required to be
linked to the parts already there, conventional multipro-
gramming systems still leave a great deal to be desired in
their ability to maximize CPU utilization. In fact, due to
the overhead introduced by their necessary complexity, these
systems may be outperformed in some situations by their
simpler predecessors.

The most exciting, but controversial, development in
~recent storage allocation techniques is the yvirtual storage

concept [4,5,19]. This organization provides each task in
the system with an addressable storage space in excess of
its total maximum demand. Each task, in effect, can be

organized as if it were to run alone on a very large
(non-existent) machine. The virtual memory concept 1is
implemented on existing machines by partitioning main and
auxiliary real memory and each task's virtual address space
into one or more fixed-size units, called pages. Special
relocation hardware and programming techniques are then used
to translate the virtual address into a real storage address
whenever a memory reference occurs during the execution of a
task. If the actual address 1lies 1in a page stored in
auxiliary memory, then execution of the +task must be
interrupted until the page can be moved to main storage; and
we say that a "page fault" has occurred. In principle, it
would be better to use variable-size ©pages, so that the
allocation of storage could be made to correspond more
directly to program structure. However, -the relocation
hardware required for fixed-size pages is already compli-
cated, and the additional generality needed for variable-
size pages seenmns difficult to obtain with current
techniques.

4 Introduction

Development of virtual memory systems has come to be
associated with time-sharing, a departure from the tradi-
tional "batch run" mode of using 1large-scale computing
systems. Because a number of human beings are simultaneous-
ly communicating directly with the system, an additional
constraint—that of rapid response to each request for
service—is added to the operating system discipline. A
machine for time-sharing requires more multiplexing and
communications-oriented equipment for handling I/O requests,
and more sophisticated treatment of interrupts. To take
advantage of economies of scale, such computing systems are
usually large enough to require multiprogramming. Hawever,
time-sharing itseif requires no essentially new storage
allocation method: the constraint of fast response simply
requires that allocation be efficient, and that control be
switched more often among tasks. It also follows that the
virtual storage concept is not restricted to time-sharing
systems, since it provides a good solution to the storage
allocation problem inherent in multiprogramming organiza-
tions for conventional systems.

II. THE PROBLEM AREA

We first note that despite rather radical changes in
storage allocation techniques in going from a small single-
thread batch system to a large, time-shared virtual storage
system, the type of storage allocation problem remains much
the same. The data and instructions of a task in the batch
system were moved into core prior to starting the Jjob and
may have been overlaid by other segments as the execution
progressed. The CPU waits during I/O were of concern
because the CPU had to remain idle. 1In the virtual storage
system, tasks tend to be larger but the amount of main
storage devoted to any one of them at a given time may be
smaller than that occupied by the batch system task. Thus
the flow of information into and out of main storage
proceeds at a faster rate, and a greater percentage of tasks
are subject to such page-swapping. Task I/O waits do not
necessarily idle the CPU, but they may still do o if the
system cannot keep enough tasks in main storage so that at
least one is usually ready to use the CPU.

We <can view the process of executing a task in both the
small batch and large virtual storage systems as a sequence
of time intervals, in each of which a portion of the systen
resources are used by the task. During each interval in
which a task actually uses the CPU, it uses the most

Introduction 5

expensive system component and progresses toward completion.
Intervening periods occur in which the task is not ready to
use the CPU and still uses part of main storage, and perhaps
I/0 and other devices. Since this time does not contribute
toward that task's completion, it is here in particular that
extra cost to the system occurs. The storage allocation
problem is, simply stated, that of minimizing the costs
associated with these interruptions in service.

In the single-thread batch system the cost to the systen
is easily computed——it - is worth as much as an equivalent
amount of straight execution. But when the system can make
part of the wait time productive by allocating the CPU to
another task, the cost becomes a function of the way in
which each of the tasks currently in contention for the CPU
af fects the ready status of the others. Thus the cost
depends on the way in which these tasks call for I/0 and use
main storage, and on the way in which storage is allocated
by the system, and hence on the number of tasks which can
use main storage at one time. The time-sharing requirement
for rapid response simply accelerates the rate at which
storage allocation events occur, and thus increases the
likelihood that all tasks may be waiting for more space or
I/0 events at any given moment.

ITI. THE PROBLEMNM

This thesis addresses the problem of increasing producti-
vity in a computing system by improving storage allocation.
The problem is attacked with stochastic models of system and
task behavior. Where possible, storage allocation delays
and holding times are characterized by a cost function. The
models are used to minimize the total expected value of the
cost.

The study begins with a particular problem in a small,
single-thread batch systen. A large task may require a
storage space greater than main memory, and as a result nust
be divided into segments which are exchanged between main
and auxiliary storage as the computation proceeds. A new
segment is required whenever an instruction or item of data
in a new segment is referenced from the one currently
executing. The problem is to divide the program into (not
necessarily disjoint) segments in such a way as to minimize
the total <cost of swapping during execution, using a
stochastic model of the program references to its various
parts. This situation is not uncommon with programs requir-

6 Introduction

ing large matrices or other data structures, e.g. [54].
Since the system cost in this case depends on only one task,
it can ke -expressed as the objective function of a well-
defined discrete optimization problen.

The use of a Markov <chain for a model of program
references was first considered by Karp [39] as an extension
of nis work with directed graph models. Grapn models of
computations are also considered by Ramamoorthy [56] and
others [48,55,€60,64]. The transitive graph probability
model of Estrin, Turn and Martin [22,23] is a more compre-
hensive technique which requires a great deal of numerical
evaluation, but includes a model of parallel computations.
A nice . solution to a special case of the sequential
transitive model (using magnetic tape as auxiliary storage)
was given by Wonderly {72]. A different way of computing
parameters from Markov models has been suggested by Rama-
moorthy [57]. Chapter I of this thesis extends the formula-
tions of Karp and Ramamoorthy by providing a simple and
general cost function for the optimization problemn. Like
the transitive model, the only fast solutions to this
problem are suboptimal, for the effort required to obtain
the full solution is probably not justifiable in practice.
The formulation is nevertheless useful in that the cost
function provides a way c¢f comparing any proposed set of
alternative solutions.

In the graph and stochastic models of programs, a section
of data and/or instructions is taken to correspond to a node
or state. Parameters obtained from the model then show how
these states, and hence the parts of the program, should be
grouped together. 1In certain partitioned multiprogrammed
Ssystems where each task is restricted to a fixed-size share
of main memory, these models remain relevant; for optimal
system performance is attained when each task performs well
in its own partition, independent of the other tasks.

Bringing the Markov model to bear on virtual storage
systems, we encounter a multilevel problenm:

+« first, the a priori packaging of data and
instructions into one-page units so as to decrease
the number of references to other pages, given a

nodel of these references,
¢ second, the best dynamic allocation of pages of

main storage to a single task, given a model of its
inter-page references, and

Introduction 7

finally, the control of storage allocation events
by scheduling tasks so that CPU usage is maximized.

The first problem is judged to be poorly served by these
models, for it 1is the single~thread problem above 1in
microcosm, with a more complicated cost function determined
by a solution of the other problem levels. Indications are
that heuristic techniques such as that reported by Comeau
[13], and simple procedures huilt into compilers and other
system components will be competitive at this level. A
discussion of the possibilities 1is given at the end of
Chapter TI.

For the second problem, the feasibility of using Markov
chain models of inter-page refercnces 1is a controversial
issue. Shemer and Shippey [¢%] use them to estimate the
optimal size of the associative store in virtual addressing
hardware. Denning [17,18] feels that the accuracy of Markov
chain models is questionable and that reliable data for them
is too hard to obtain. The current debate stems in part
from the following considerations:

e Sinulation studies!, early experimental results?,
ard actual experience with virtual storage systems
show that they are not operating as well as had heen
hoped,

*» thus the original concept that the new addressing
structure and hardware assist could overate effi-
ciently without altering the structure of tasks
seems to be optimistic, and

¢+ a Markov nodel of programs provides a tempting
representation because the data is obtainable by
prior e¢xamination [15,11] or dynamically during
execution [57]. It provides an adjustable level of
detail and is capable of analytic solution.

Chapter II discusses the application of Markov models to
the second problem level, Sterting with a demand paging
formulation of Lauer [45], a cost function 1is considered
which illuminates the difficulties and possible advantages
of using a priori information tc improve paging for an

1For example, see Nielsen [52].

2Very little data has been published, hut see Fine, et
al. (28], Ceffran and Varian [11], and Comeav [13].

8 Introductioun

individual program. However, it is an enlightening investi-
gation rather than a solution to the problenm.

Chapters IIT and IV consider the third aspect of the
allocation problem in a virtual storage environment: sche-
duling tasks to achieve overall system balance and a busy
CPU. Most studies of this subject in the literature focus
on the queueing structures used in scheduling and the
response that these techniques provide for individual tasks
(8,16,41,42,46,65]. Coffman [10] developed a Markov process
as a mnodel for the way in which storage fills and empties
with virtual memory pages. Scherr [62] used a similar
continuous-time process to represent the number of tasks
ready for execution in the simpler CTSS system [59]. Fife
[27] and Smith [67] considered Markov decision processes
with rewards [33], and investigated optimal control (i.e.
scheduling) policies. The technique of Chapter III, which
in spirit most <closely resembles that of Gaver [30],
exploits the form of a particular paging delay distribution
(see Appendix B). Assuming a fixed number of tasks, the CPU
busy period is obtained with a cyclic queue model, where CPU
service is assumed to have a negative exponential distribu-
tion. In comparison, Gaver assumed a negative exponential
I/0 (or CPU not-ready) delay and considered more deneral
distributions of CPU service time, using a recursive method
to derive the CPU busy period, again with a fixed number of
tasks. The result of Chapter III by no means provides the
definitive solution to this complicated problem; but it
provides a way of studying the system which allows the
delays due to paging to be represented rather accurately for
a drum system. It may be used 1in combination with other
models to obtain a better total system model.

IV. EXPERIMENTAL WORK

Chapter IV reports the results of a digital simulation
study of task scheduling and storage allocation algorithms
for a virtual storage machine. In simulation and theoretic-
al models, there is a pressing need for accurate information
about the way tasks behave with respect to CPU and storage
requiremnents in the new ‘systems. This data is required 1in
order to decide what types of models are appropriate, how
they will differ from reality, and what parameter values to
use for numerical calculations. To the author's knowledge
no published material has appeared to date from an actual
system operating on a paged, virtual storage computer.
Information is only available in the 1literature from a

Introduction 9

number of systenrs in which paging is simulated with hardware
techniques [63)] or the interpretation of instructions [11,
28]. The author has also found that when conceptually
simple scheduling and allocation techniques are actually
coded for a specific system, their operation can be signifi-
cartly different from that which was expacted (see, for
exanple, BEppendix B, Section V).

In order to give the simulation and mathematical models
in this study a colid foundation, a data collection facility
was put into the MTS time-sharing system on the IBNM
System/36C Model 67 at the University of Michigan Computing
Center. This operating system, which is described briefly
in Apperdoix A and rore completely in [51], was developed at
the University as an interim system pending satisfactory
performance of the IBM Time-Sharing System [31,35,477. MTS,
which provides a simpler virtual storage implementation than
that of which the 360/67 is capable, is a highly successful
system. The data collection facility (described in Appendix
C) has proved to be a very useful tool for the FTIS systen
programmers, as well as providing the data given in Appendix
D. In addition to its help in locating system errors, it 1is
beirg used to

s measure operating system overhead
» sample the CPU i1idle time distribution
e nmonitor its own interference with other tasks

e collect ‘'"repeatable" data for experiments with
billing algorithms

e find a specific hardware problem (ir the high-
resolution timer) and verify that a software modifi-
cation corrected it

e provide an alternative to manufacturer's esti-
mates of hardware performance data

e help identify inefficient sections in the coding
of a large compiler

e test a new data structuring ‘scheme for the
GPSS/360 simulator

» discover the extent to which sharing routines in
MTS would be useful, by determining the number of
times that copies of a system routine are being used
concurrently

10 Introduction

simulate the system with different loads by
running it with artificially constructed programs

Programs written by the author to analyze the MTS data
required a detailed study of the structure of the supervi-
SOL. This resulted in considerable insight into the dif-
ferences between the actual system and various models which
had been proposed. In the sense that the results fill a
serious gap in the published data about virtual memory
systems, and are being directly used to improve the system
concerned, the data collection facility may prove +to be a
very significant <contribution of this research. 1In any
case, it is shown to be an important tool in the study of
these systens.

Digital simulation models are being used with increasing
frequency in studying computing system behavior [2,29,52,61,
62]. When arrival rates for tasks to parts of the systenm
are a function of the service rates in others, when service
rates have atypical distribution functions, and when multi-
level preemptive priority scheduling schemes are employed,
these systems defy mathematical analysis. Even when a
theoretical model of part of the system has been con-
structed, it is desirable to have another model at a greater
‘level of detail or using more realistic distributions, as a
check on the assumptions made to derive the simpler one.

The simulation studies in the literature which relate
nost closely to the present work are Scherr's simulation of
CTSS [62] and Nielsen's model of the IBM TSS [52]. 1In
spirit, the present model is like that of Scherr: data from
a real system is used in a model which is much less <complex
than the real system, and it is used to explore alternatives
for improving the systen. However, the CTSS system is
fundamentally different and simpler than the current virtual
storage systems, and consequently the present model actually
bears little resemblance to Scherr's. Nielsen [52] has
produced a very detailed model of a specific combination of
machine and software systems. The machine used there is the
IBM 360,67, from which the MTS data was taken. However, his
model was constructed at least in part to evaluate the
specific IBM TSS operating system in its then unreleased,
unrefined, and hurriedly constructed state of development.
In contrast, the model in this paper is an order of
magnitude simpler (the chief difference being that no record
is kept of the identity of individual pages) and is used to
investigate and compare supervisor techniques that are
currently thought to be extremely effective, rather than
those which were actually coded at an early date. Finally,
the data describing tasks for the model is taken from MTS

Introduction 11

with the data collection facility, reduced to the level of
detail of the model, processed to remove some of the effects
of the MTS system itself, and then inserted directly into
the simulation model.

V. SUMMARY

This study covers a number of techniques for attacking a
single, tasic problem. Chapter I provides a way of using
stationary program reference probabilities to select the
best of several proposals for segmenting a program. Chapter
IT extends the discussion of Markov models to paging
systems, and shows how one can decide, in advance, whether
the Markov model for that program results in improved
storage allocation. It is shown how decisions can be made
during execution to choose dynamically between several
standard allocation procedures and a predictive one.
Reference probabilities can be obtained by wusing a data
collection facility such as the one constructed for the MTS
system. Chapter III gives a model of the set of tasks
concurrently sharing the <CPU and a paging mechanism which
yields parameters for a dynamic supervisor control policy of
scheduling and storage allocation. Chapter IV reports the
results of a simulation project to compare a number of
simpler controls for storage allocation. Detailed descrip-
tions are given in the appendices of the actual system used
for experimentation, the facility wused to monitor its
activity, the data obtained with that facility, and the
simulation model.

12 Introduction

CHAPTER 1. STATIC ALLOCATION

"It is not at all clear that a Markov model 1is
useful for modelling program behavior, for too
many correlatioas are involved, arising princip-
ally from loop hehavior of programs."

P. J. Denning

"Each venture
Is a new beginning, a raid on the inarticulate
With shabby equipment always deteriorating."”

. S. Eliot

This chagpter considers the use of a Markov chain model to
aid in the selection of program segments. The implications
of the Markov assumption are discussed, and the model is
used to formulate an optimization problem for segment
selection.

I. THE PROBLEN

Overlay segmentation is used on single-thread and multi-
programmed computing systems, both large and small, as a
means of increasing the effective size of main memory
without the use of special relocation hardware. Parts of a
program are loaded from secondary storage as the execution
proceeds, and others are discarded or returned to secondary
storage.

In this chapter we will think of programs as being
divided into a number of small blocks of data and/or
instructions which <could be chosen in a variety of ways.
These blocks are to be grouped into sets we call segments.
The problem is to group the blocks (divide the program) into
segments so that system overhead is minimized. Once seg-
ments have been specified, the actual overlay process uses
well-known techniques summarized, for example, by Pankhurst
[53]. Facilities exist in programming languages [e.g. the

Static Allocation 13

FORTRAN INCLUDE statement and COBOL segments] to allow the
programmer to explicitly form or partially control the
formation of segments. If the choice is left entirely to
the system, segments are usually chosen +to match some
physical characteristic of secondary storage.

IXI. MODELS

The essential information required for segmenting is the
set of program references: those points in a program where
a branch occurs to an instruction at another point or data
stored elsewhere is needed. A useful model which abstracts
this information 1is a directed graph, each node of which
represents a small block of data or instructions. The arcs
of the graph represent the references between blocks: an
arc may be used to denote a branch from one instruction to
another, and a reference to data may be denoted by a two-way
arc, to indicate that the information in the referenced
block 1is required; yet the <control remains with the
referencing block. It is also useful to label each node
with an estimate of the size of the corresponding block
(amount of storage it requires).

The graphic model provides a convenient way of working
with program references: algebraic operations with the
connection matrix vyield a number of useful descriptors of
program behavior. The models of Marimont [487], Prossner
[55], Krider ([u44], Karp [39,40], Schurmann [64], Salwicki
[60], and Ramamoorthy [56,57] use these calculations to look
for programming errors, rearrange the parts in storage, and
count the number of 1loops in which a given node 1is
contained. As an example of the use of this technique, one
can identify the n maximal strongly connected components
of the graph. If the corresponding parts of the program
could be chosen as segments, then whenever the program was
executed, at most n-1 overlays would have to be performed.
The property of strong connectedness has little to do with
program size, however, and a single instruction or an entire
program may happen to be such a component. Segments must be
small enough to meet <constraints, vyet 1large enough to
eliminate the overhead in dealing with them. Thus we need a
model which contains more information.

To obtain a more realistic model, we observe that both

data references and branches in a program are conditional.
For example, if the command

14 Static Allocation

IF A=50KRB>6, GOTOC

is mapped into machine instructions from left to richt, a
reference to the datum B 1is necessary only if A # 5, and
a branch to C occurs only if at least one of the relations
is true. By associatirg with each reference a probability
that it will be required, we obtain a stochastic model of
the program. If, in the previous example, the distributions
of values of A and B are independent, and

Pr[(A = 5] = .3, Prf{B > 6] = .2
then
Pr[B is referencedl = 1 - .3 .= .7
and
Pr{C is referenced] = .3 + .2 - .06 = .44,

In particular, if we assume that the probability of making a
reference 1is always independent of the number of blocks of
instructions so far executed, we have a (stationary) Markov
process, or Markov chain. A state of the Markov chair
corresponds to a node of the graph model, and the arcs (or
rather entries 1in the connection matrix) are replaced by
transition probabilities.

It is evident that computer programs rneed not have the
Markov property: the likelihood of a reference 1is not
independent in general of the history of execution. Howev-
er, we may still find a Markov model useful for several
reasons. First, we are interested in the expected behavior
of the program over its total execution rather than at any
given instant. - Second, a number of individual references
for which probability estimates have been obtained may be
combined into a single block, or state of the model, ternding

to smooth the time-dependence errors. In general, the
detail of this kind of model is adjustable to a level only
as fine as necessary Zfor the goal of +the study. And

finally, the results will he used to make qualitative rather
quantitative decisions, so that a consistent bias may have
less effect. ‘

There are many ways to determine probability estinates
for references in a conputer program. Perhaps the most
general way is to begin with probability distrihutions for
appropriate ranges of values of input data, observe how the
data is modified by the execution of the program, and obtain
derived distributions for data which determine conditional

Static Allcocation 15

references. Much simpler methods may be adequate and will
have to suffice in practice, however. The data collection
facility for MTS, described in Appendix C, has been used to
obtain suchk estimates for a large progran. The simulator
described by Coffman and Varian {11] constructs a transition
matrix as part of its output.

A typical computer program has one or more entry and exit
points. We will assume that the entry point is chosen at
random from a probability distribution, and that an exit to
some "higher level"™ routine always occurs eventually. Thus
each exit corresponds to an absorbing state of +the Markov
chain, and each block of instructions or data gives rise to
a transient state (is used at most a finite number of
times).

III. NOTATION

Let the set of transient states of the Markov chain be
denoted by {1,2,«..,0n}. The analog of the <connection
matrix of the graph 1is the n xn transition matrix

Q = [(Q(i,3)], where Q(i,j) 1is the probability that a
transition occurs from state i to state j. If we let
V= {v(1),v(2),...,v(n)} bé the probability distribution
for the choice of an initial state, then the 1i,j entry of
the k-th power of Q is the probability that 7 is the
k-th state to Dbe reached in the process, given that it
started in state 1. Since (Q contains only the transition
probabilities for the transient states, the powers of 0

tend to the zero matrix, and so

k -1
Q = (I-0) =N,
0

nivig

k
where

0
Q=1

is the n x n identity matrix. If the process started in
state 1, then the 1i-th row of the fundamental matrix N

is the vector of expected frequencies of the states:
N(i,3) is the mean number of times a reference to j

occurs in the process.

16 Static Allocatiorn

The matrix N provides a way of measuring the relative
frequency with which blocks (and references between then)
occur in the process. It also gives the expected length of
the process in terms of number of references. If the entry
point to the program is known, only one row of N is
needed.

Karp [39], ard Ramamcorthy [56] considered an alternative
form of the model which yields some of the same information:
if one thinks of restarting the program at every exit by
simply repeating the entry point experimernt, then the exit
states are included in the model, the process never ter-
minates, and we have a reqular Markov chain. The analog of
the fundamental matrix for regular chains is a limiting
state probability distribution independent of the starting
state, which can be computed by solving the matrix equation

M= MQ,
where M is the unknown vector and Q' is the m x m

transiticn natrix of the regular chain. Here we have

M(i) = 1.
1

itivis

i

The absorbing chain model is related to the regular chain
model in the following way: each absorbing state of the
former (which was not represented in the matrix Q) appears
in the latter as a state whose transition probabilities
repeat the experiment for the choice of an intial state.
These additional states appear in Q', and the ©probability
of starting in one of them is zero. Tet the new states be
given indices n+1, n+2,...,m. Thenr the first n entries
in the solution vector M are related to the last m-n and
and the fundamental matrix N of the absorbing chain in the
following way:

M(i) = D
k

N(k,3) 1,
1

Hivis
HIRAVE |=]

{v(k)N(k,1)/
1 y

I
where D = 1 - > M(1).
n+1

The regqular chain stationary distribution can be computed

by recursive technicgues [58&] which are especially designed
for this type of equaticn. The generating function approach

Static Allocation 17

can also he uscd [5¢]. Thus even though the regular chain
model has more states than the absorbing model, the calcula-
tion of the solution is competitive with it. If the
starting state is krown, that fact can be wused in the
soluticn of the absorbing model: then it is only necessary
to solve a matrix equation instead of obtaining an entire
inverse matrix. ¥e also note that the absorbing model
contains more ugeful information about the program, for the
N(i,7) are actual expected frequencies rather than rela-
tive weights. Thus we can deterrine an estimate for the
mean lengtk of the process. This would be useful, for
example, to compare the speed with which two different
algorithms are able to solve the sane problem. In what
follows we will work with the absorbing model and the state
frequency vector M givern by

vz

M(i) =
k

v(k) N(k,1i).
1

The <size of each hlock of the program (storage required)
is of corcern here, hence we let s(j) denote the size of
block j, giving a size vector S for the program. Though
this fact will not be used in the sequel, we note that if

t(j) 1is tkLe average execution time for block Jj, then

1V(i) N(i,3) t(3)

nivis

i

is the total expected amount of execution time used by the
j-th block during execution ot the program. This is in
fact a semi-Markov mocel of tle program execution.

Segmentirg a program correspornds to identifying a cover,
or collection of subsets of the states of the model, the
union of which is the entire set. If no state can appear in
more than one subset, the cover 1is a partition. Let
U0 =[u(l),e..,u(h)] denote the sets of the cover U. The
following zero-one matrices are useful for <characterizing

U:

P where P(i,j) = 1 1if and only if state 1 1is a
memnber of set u(j).

L where L(i,3) = 1 if and only if for some index
k, i and 1 are memhers of u(k).
P represents the sets u (7) directly. If U is a

partition, then P can have at most n non-zero colunns.

18 Static Allocation

Hence it is convenient to allow empty sets and fix P as an
'n x n matrix, If U is a partition, then every row of
P is a urit vector. The matrix L is a hetter represen-
tation of U from which to discover if a pair of states lie
in the same set. L 1is symmetric with a unit diagonal. If
U is a partition, L <can also be given by

L(i,3) = P(i,k) P(j,k).

k

ivis
Py

We say that a cover U 1is admissible only if the subset
of program tlocks corresponding to every set in] satis-
fies a seqgment size liritation (the sum of the sizes of the
blocks is not greater than a constant), expressed by

> s(i) € c(k),
{u (k)}

where B = [r(1),...,0(R)], so that r(k) constrains the
'size of segnment k. #®e ccrclude our definitions with the

assumption that there is a cozt C(i,3j,0) associated with
the transition <£from bhlock 31 to block j whenever these
two blocks are not in the same segment. C(i,j,0) repre-

sents the time thke CPU 1is 1idle during the exchange of
segments.

IV. FORMULATION OF THE OPTIMIZATION PROBLEM

The Markov model yields the expected frequency M(i) for
block i during the execution of the entire program. After
each execution of 1 there occurs a transition to with
probability 0 (i, 7) and cost C(i,j,U), where i and i
are 1indices arna U is presert to indicate that the
transition cost may depend on the sets of the partition.Thus
the expected cost of this transition for the entire execu-
tion is

M(i) Q(i,3) C(i,3.0).

Let u(k) be a set of U in which state 1 resides., Then
the total expected cost of an exit from u(k)——or of all
overlays which originate from the corresponding segment—is

e
1P(i,k) 'Z1M(i) Q(1,3) €(i,3,0) (=-P(3,Kk)),
]"_'

Iivis

i

Static Allocation 19

where the nmultiplier P(i,k) fcounts" just the states in
the set u(k), and the factor (1-P(j,k)) eliminates the
terms for which tnere is a copy of state 3j in u(X) as
well. The total cost of all intersegment transiticns (the
cost of this segrertation of the prograr) is the above
expression summed over all the cets of U. It is the latter
which must be minimized over all admissikle covers, that is,
over all Boolean matrices P satisfying the relation

s P < E,

where S 1is the size vactor for the progranrm tlocks, and R

is the size constraint vector for the segments. Generally,
all segments arz constrained to the same fixed size, and
thus R can b2 written as a cons*tant times the vector of
all ones.

At this point, we note¢ that tne use of a segmentation
with multiple copies of certain bHlocks (a cover which is not
a partition) is rot a good model if the original probabili-
ties Q(1i,73) wer= obtained when only a single copy of the
block was used. The appropriate model reguires that the
transition probahilities Q(i,j) ©be replaced by sets Q(i,
j(M), Q(1,3(2)),.-. giving probabilities of transfer to
each distinct copy of the state Jj. This in turn reguires
more information about the original program, and in essence
dictates that the original transition matrix b2 constructed
with each copy represented as a separate state. Hence it 1is
sufficient to analyze tte case for a partition, although in
practice 1t 1is harder to obtain the appropriate partition
when blocks o1t the rprogram are to be shared between
segments. Another simplification can pbe made by observing
that in general the real cost of a transition from one
segment to anotner, which requires time for the access and
transmission of data fror auxiliary storage, depends more on
access time than on transmission tiwme. Thus 1f the auxi-
liary storage medium is direct access in nature, the cost of
a transition 1is relatively independent of the identity of
the segment involved. At this level of detail, at any rate,
the costs can reasonably be taken equal:

With the above assumptions, the objective function for
the entire segmenting cost reduces to a difference of two

sums, the left-hand one of which is constant with respect to
the matrix P and the latter of which is

20 Static Allocation

P(i, k) P(J,k).

vaE,
-
——
H.
S
niviIs
——
o
—
'—l-
~
[N
S
Hivis

If we now apply the definition of the matrix L, we obtain
n n
F =2 M(1) 2 0(1,]) L(i,3).

The problem has thus been reduced to the form

max F subject to S P <EBR,
L and P stochastic

where P 1is a Boolean square matrix of order n in which
each row 1is a unit vector, and L 1is easily obtained from
P. The constraint that P be =zero-one 1is a non-linear
one, and the unknowns are the na entries in I (or
equivalently, P).

V. STABILITY

It is of interest to consider the stability of the cost
function with respect to small changes in the transition
matrix Q: 1if the chosen Q differs somewhat from the
"best" Markov model of the program, how does the obtained
value of the cost differ from that of the "best" model?

First, we note that Q may be any one of a large class
of matrices. An exact method of determining the transition
probabilities Q(i,j) has not been specified, but with
almost any reasonable schenme,

given any square, non-negative, sub-
stochastic matrix Q with rational entries,
there is a program with Q as 1its Markov
transition matrix.

Using the definition of the weighting vector M = V N

and the fact that 1 1is symmetric, we can write the cost
function as the sum of the entries in the vector

v (I-9-* 9 L,

where the initial state ©probability vector VvV forms a
convex combination of entries in each column of the funda-

Static Allocation 21

mental matrix N (I-Q)—%, and the matrix L selects
subsets of the entries in the convex combination. Neither
v nor L is affected by changes in the matrix Q, and
hence the stability of the cost function rests on the
product

(I-9)-1 Q.

More precisely, if we replace Q by a matrix Q+E, how do
the entries in the foregoing product compare with those of

(I-Q-E)—1 (Q+E)

if we assume that Q+E is also non-negative and sub-
stochastic. We will =see that the stability of the cost
function depends not so much on E as on Q itself.

The eigenvalues of (I-Q)-1! are of course the recipro-
cals of the eigenvalues of I-Q. If h 1is an eigenvalue of
0, then because Q 1is non-negative, 1-h 1is a nonzero

eigenvalue of 1I-Q. Hence 1/(1-h) is an eigenvalue of
(I-Q)—1. Since the inverse of 1I-Q exists, the eigenva-
lues of @ are all 1less than one. From the Perron-

Frobenius theory [71] we get the following useful results:

e there 1is an eigenvalue of Q equal to the
spectral radius sr{Q},

e if E is non-negative and not zero, then
sr{Q+E} 2 sr{Q},

e if Q 1is irreducible, then sr{Q+E} 1is strictly
greater than sr{Q}.

Thus increasing the entries in 0 tends to increase the
spectral radius, and the more so as Q 1is closer to being
an irreducible matrix. These matrix properties can be
related to program models in the following way: increasing
the entries in Q (making Q closer to a stochastic
matrix) corresponds to modelling a program which runs for a
longer time. Hence at 1least some of the entries in

(I-Q) 1%, which counts the mean number of times in each
state, are larger. As Q becones more irreducible, a
modelled program tends to have more loops and transfers
which make it possible to reach more parts of the progranm
from others. The effect on (I-Q)-! 1is to make the entries
more comparable in magnitude (homogeneous). (In practice,
however, a perturbation of Q would probably not change the
location or number of the zero elements.)

22 Static Allocation

In summary, the most important factor affecting the
stability of (I-Q) -1, and hence the stability of the
product in the cost function, is the spectral radius of Q.
For st {(I-Q)—1} = (1-sr{Q})—t, and the latter increases
rapidly as sr{Q} approaches unity. Generally speaking,
the closer sr{Q} 4is to one, the more mathematical instabi-
lity (sensitivity of the inverse to perturbations) and
computational instability (errors in computing the inverse)
are present. Two observations can thus be made:

(a) The cost function is not stable or unstable per
se, tut rather instability depends on the choice of
Q, and hence the program model. It is only a
problem if the spectral radius of Q 1is close to
one.

(b) If sr {Q} is near wunity, the entries in

(I-Q)-1? tend to be rather 1large, and hence a
perturbation of Q has less effect on the relative
error than it has on the absolute error.

VI. SOLUTION PROCEDURES

The optimization problem stated in Section VI is of a
particularly difficult general type to solve. It is non-
linear (discrete), has many variables, and the property that
other information about the corresponding actual situation
does not readily contribute to a special iterative procedure
for finding a global optimum. There seems to be no a priori
way in which the optimal value of the objective function can
be determined or reasonably bounded. Although suboptimal
algorithms «can be invented, such as directed search techni-
ques based on the properties of the <corresponding graph
model, +their utility is doubtful because there is no way to

judge the values so obtained.

After a number of other unsuccessful attempts, the author
has concluded that the most satisfactory way to find the
optimum is probably a general technique for Boolean
variables, such as that given by Ivanescu and Rudeanu
[36,37]. This general methcd makes no use of the special
kind of problem we have, but the fact that the variables are
all Boolean allows some economy of method: the objective
function can always be written as a polynomial with integer
coefficients, and the fact that the constraints are non-
negative 1in this «case means that they can be incorporated
into the objective function, leaving an unconstrained pro-

Static Allocation 23

blen. From that point on the "pseudo-Boolean" procedure
referenced above is an essentially enumerative one, although
additional shortcuts might be taken 1if this particular
application were assumed.

The solution procedure Jjust considered is rather time-
consuming and inelegant, especially as it comes at the end
of a 1long path of assumptions about the structure of a
program and the availability of accurate information
describing it. From a purely practical point of view, it is
not worth it to «carry out this optimization procedure.
However, the objective function itself is still useful, in
that it provides a way of selecting the best segmentations
(according to the model) from any given set of proposals.
If the solution were more highly constrained in somnme
particular case, then a simple enumeration of the alterna-
tives which satisfied the constraints might be possible.
Suppose that the matrices 10 and L! gqgive two different
proposed segmentations which obey the segment constraints.
In the notation of the previous section, the cost difference
is given by the sum of the entries in the vector

CF =M Q (L1 - LO)

and the sign of the difference determines the better one.

VII. SUMMARY

In this chapter we have formulated a cost characteriza-
tion to improve segmentation of computer programs. It is
appropriate at this point to consider wunder what circums-
tances the results might be used. First, despite a history
of proposals to that effect (e.g. Ramamoorthy [57]) , it will
not be feasible to put the necessary algorithms into
language processors to gather and use stochastic information
about the way the program is expected to behave during
execution. It is also unlikely that much success can cone
of gathering and using such information dynamically during
the execution of ordinary progranms. The same amount of
effort spent on heuristic techniques would probably achieve
a better average improvement.

There is one specific application, however, for which
this model retains some merit: 1large system programs. One
index of the power of an operating system is the extent to
which a wuser <can rely on the facilities of the system and
avoid writing his own programs. The trend thus seems to be

24 Static Allocation

toward operating systems with many heavily used subsystens,
such as lanquage processors, which tend to be composed of
many subroutines, and are combined at execution time accord-
ing to a rather constant pattern. Aside from the fact that
data and instructions could be separated in order that the
instructions may be shared, the subroutines themselves are
often rather small.

Data usually consists of a number of scalars, fixed-size
arrays, and perhaps dynamically changing data structures.
This natural structure can be exploited in choosing Dblocks
for the Markov model as the entire set of scalars, each
fixed-size array, each subroutine, and perhaps a number of
blocks for each growing array.

System programs not only enjoy heavy use, but they are
available for study, and are normally subject to regular
growth and maintenance. The time spent to collect the data
for a Markov model and carry out the analysis can be
justified if even a small average improvement is realized in
performance. As a purely practical consideration, it is
often possible in this case to enlist the aid of the
individuals who wrote the programs to ohserve and understand
their execution, temporarily add instructions to trace flow,
etc. To take a concrete example, the MTS data collection
facility has been used to trace the subroutine calls in a
new compiler, and show the amount of time spent in each
subroutine before the <call to another. A semi-Markov
transition matrix can easily be constructed froam such data.

VIII. APPLICATION TO MULTIPROGREMMING

When more than one program can reside in rain storage at
once, the cost structure is usually more conmnplicated than
the one outlined in this chapter. For the simplest multi-
program storage allocation scheme, however, it remains the
same. The so-called partitioned system simply divides main
storage into a fixed number of fixed-size units, and one
task at a time is allowed to execute in each such partition.
The CPU 1is allocated to a new task, if possible, whenever
the currently executing task pauses for I/0 or a new progranm
segment, or terminates (to be replaced by another). Any use
of multiple segments by a single task is restricted to the
given partition, as 1if main storage were only that large,
and regardless of the fact that parts of other partitions
may have unused space. Since there 1is no interaction
between tasks except in the use of the CPU, the 1length of

Static Allocation 25

the CPU queue is maximized (and hence the cost of swapping
segments for the whole system is minimized) when each task
is organized as if it were to be run optimally in a
single-thread system with a main storage the size of its
partition.

If +the multiprogramming system can allocate a variable
amount of storage space to tasks, allow their allocation to
change dynamically, and keep a variable number of tasks in
main storage, then the cost structure becomes much more
complex. There are two primary reasons why this is so: (a)
at the very least, a storage use time integral is required
to express the cost to the system of a task's use of
storage; (b) storage cost 1is not necessarily a linear
function of size, for it in fact depends on how many other
tasks can be readied for execution, and hence on systen
decisions. The possibility of queueing for storage is also
introduced whenever a task switches segments.

A model of an individual task cannot hope to contribute
to multitask queueing problems, but the Markov model can ° be
reformulated for optimization with the cost Dbased on a
storage use time integral. The following modifications are
- necessary to the formulas of Section IV:

e a semni-Markov chain is required—allowing a dis-
tribution for the time spent in a given state,

¢ the size constraint can be removed or at least
replaced by a less restrictive one,

e a second term 1is added to the cost function,
consisting of an increment to the space-time integr-
al at the intersegment transition. It is of the
form s(i) t(@E,9) ., where s (1) is the size of
segment i and t(i,j) is the time spent in i

before a transition to .

26 Static Allocation

In practice, then, the additional data consisting of
block executon times is required for the model. A segment
execytion time can be obtained from the block execution
times by the following procedure:; make all states of the
model except those 1in the segment absorbing states, and
compute the mean time to absorption (until +the segment is
exited) . The additional computation required to obtain
these times, however, effectively eliminates the possibility
of using a general optimization procedure, since they mnmust
be computed for each potential segment in each possible
segmentation. Comparison of a handful of given segmenta-
tions remains a possibility, though. The next chapter
considers another way to use the same kind of information.

Static Allocation 27

CHAPTER 2. _DYNAMIC ALLOCATION FOR_A_SINGLE PROGRAM

"Modelling paged and segmented memories is
tricky business."
P. J. Denning

This chapter examines the behavior of a single task in a
virtual storage system and shows how stochastic models can
be applied to dynamic storage allocation decisions. Cost
functions are formulated which allow a comparison between
predictive methods and conventional techniques, as well as
showing the different ways in which the costs occur.

I. TERMINOLOGY

On a large-scale, time-shared computer where a number of
individuals dynamically interact with the system from remote
terminals, the <concept of "program" or "task" in the sense
of the batch system is no 1longer useful. A person may
require a number of programs at any given time, which are
dynamically linked together at his request. Some of then
may be shared with other people. One may initiate an
independent "subtask" which is processed concurrently with
the primary computation. Definitions more appropriate to
these systems are proposed by Dennis and Van Horn [20]. For
our purposes, however, it is sufficient +to <consider as a
task each distinct request for service from the system. In
terns of a remote terminal user, this is a single interac-
tion: the computation initiated with his command and
terminated when the system has obeyed the <command and
returns to him to accept another.

IT. PAGE-TURNING ALGORITHMS

The virtual storage concept is described in the Introduc-
tion as a method of storage allocation which makes the use
of secondary storage for real memory overflow transparent to
the individual programmer. Although some of the functions

28 Dynamic Allocation

of the operating system are also simplifi=2d with this
approach, there tends to be a higher 1level of basic
operating overhead—some in the hardware itself——which one
hopes can be made up by more efficient operation than would
ordinarily be possible under periods of heavy load. Howev-
er, the system is also required to make more and difficult
decisions about scheduling and storage allocation. Because
storage allocation is more flexible, information about the
behavior of individual tasks can be used to Dbetter
advantage.

The real cost to a multiprogramming system of executing a
task is in part determined by the amount of interference it
causes in the attempt to keep at least one task elgible to
use the CPU. However, as we stated in the previous chapter,
measuring that disruption requires a model encompassing all
tasks in the system, as well as the scheduling and storage
allocation algorithms. Since the frequency of storage
allocation evernts depends largely on these algorithms and
the other tasks, it is reasonable to consider only the
storage usage pattern of the given task when wusing a
single-task model. To this end we deal with space-time
integrals as measures of cost in this chapter: the product
of real storage space and the amount of time that space |is
used.

Time-sharing systems in wuse before the 1inception of
virtual storage usually employed a swapping algorithnm 2.9g.
see [59]) for placing an entire task in real storage as it
was about to use the CPU. No additional real storage was
needed during execution, hence the only ways a task volun-
tarily ceased executing were to wait for I/0O or terminate
completely. There were several disadvantages to this
technique:

e The overhead of swapping was great enough so that
during waits for I/0, except from the very slow
remote terminal itself, no other task could use the
CPU (unless there were room in real storage for more
than one complete task).

e To meet response requirements, each task was
swapped out after a certain maximum amount of
execution time (time slice) if it had not completed
by then. During a time slice, however, part of the
swapped-in task was never referenced, so that in the
long run much time was spent moving unused parts of
a task in and out of main storage.

Dynamic Allocation 29

With more recent virtual storage systems the basic memory
allocation algorithm operates in units of cne page, anti-
thetic of swapping: a page is brought into real memory only
when it has actually been referenced. Coupled with this
demand paging rule is a replacement algorithm, which speci-
fies a page to be pushed out of real storage in order to
make room for the one coming in. Although demand paging is
usually used as the input rule, there are a. numnber of
replacement rules [5,11,17,21] which may be selected for the
overall page-turning algorithm. The chief éisadvantage of
demand paging is that a task requesting another page
unproductively occupies a number of real storage pages
during the time necessary to fetch the new page.

IITI. STORAGE USE COST FUNCTIONS

When we examine the costs of various storage allocation
schemes, it 1s necessary to keep in mind the distinction
betwz2en two time scales: that of "real time," in which the
system operates and system costs are assessed, and "task
time," or the execution time of an individual task. A basic
assumption of this paper is that for all the storage
allocation algorithms wunder consideration, the same total
amount of task time is required by a task. That is, a task
must execute for a duration independent of the places and
number of times it is interrupted, and the duration of real
time of those interruptions.

In the discussion that follows we will focus on a time
span shorter than that required to completely process a
task. Since the number of requests for service which are
currently in various states of completion at any moment can
be very large, a subset of these is usually selected for
concurrent execution over a short interval of time. Only
the selected tasks are allowed to acquire more main storage
and compete for the use of the CPU. When a task must wait
for I/0 or another virtual memory page, it may or may not be
allowed to remain in that selected set. If the task has not
completed after using a certain amount of CPU time (a time
slice) it is removed from the set. The number of selected
tasks may vary from time to time, and its membership changes
continually.

In the rest of this chapter we are interested in the
interval of real time over which a task remains selected
(completes a time slice). We will simplify the discussion
by assuming that each time a task ends a CPU interval, it

30 Dynamic Allocation

does so by page fault, and that it resumes execution as soon
as the page has arrived in main memory. Once referenced, a
page remains in real storage until the end of a time slice.
The exact reasons for making these particular assumptions
will be discussed in a later section.

We assign as the cost to the system of a single time
slice the space-time integral

T

l

| P(t) at
|

W

where the task begins the time slice at real time O,
terminates at real time T, and at time t has acquired
P(t) pages of main storage (has referenced P(t) pages of
his programs). The function P(t) is of course a step
function, and the interval [0,T] contains intervals when
the task is not ready to use the CPU as well as intervals of
task tinme.

Let us now consider the situation at a given point t 1in
the interval [0,T]. To simplify the notation, let P(t) =
j. For the moment we assume that several characteristics
of the future behavior of the task are known:

(a) the next page request will occur at time t+s.

(b) the time interval from that request to the
subsequent arrival of the page in main storage is of
length w.

(c) the identity of the next page to be referenced
is known.

Then the cost added to the space-time integral because of
this page request can be described as follows:

¢ If no action is taken until the page demand
occurs at t+s, a delay of w will ensue during
which j+1 real pages are occupied by the task
(space for the new page must be allocated before
transfer begins) at a cost of w(j+1).

e TIf the page were requested in advance, timed to
arrive just as it was required at t+s, the
additional cost would be for only one page over the
time interval [t+s-w, t+s], or w.

Dynamic Allocation 31

e TIf a wrong page were selected and advanced in the
manner just described, the page fault would occur
anyway at t+s, and hence both the above costs are
incurred: w(j+1) + w. (If the space occupied by
the wrong page is not immediately released there
would be a further cost.)

In practice, of course, exact values of s, w, and the
identity of the next page are unknown. For any particular
system, the paging delay w can be approximated by a randonm
variable with a given distribution function H. We will use
the function developed in Appendix B for a specific drum I/O
channel as an illustration later in this chapter. We now
assume that similar information is given about the task:
the interval s between page requests is a random variable
with a kncwn distribution function D, and a probability
distribution 1is given for the selection of a specific next

page.

In his investigation of control policies for allocating
storage, Smith [67] finds that the optimal policy is often
non-stationary. The exact advantage of a dynamic policy
over a stationary one¢ in this context is that it allows the
distributions for w, s, and the next page to be condi-
tional. Here, the delay w depends on the number n of
page requests currently being serviced, the interval s is
a function of the number j of pages already acquired, and
the choice of the next page can be Markovian: conditional
on the 1identity of the page most recently requested. If a
decision is made dynamically, the current values of the
parameters n and Jj are assumed to be known, and although
the probabilities for referencing each new page are condi-
tional on the last reference, a fixed policy can be used for
the choice of the next page (the one most 1likely to be
referenced next). Thus in the ensuing discussion on dynamic
policies we treat the parameters n, Jj, and gq as if they
were unconditional, where q is the probability of
referencing the chosen next page.

We now turn to the question of minimizing the expected
cost of obtaining a single next page, given the options
discussed above and the cumulative distribution functions

H (W) and D(s) . At time t we wish to make a decision
about when to initiate the next page request. For advancing
a page at time t+z we have a mean cost of

gl (s=2) +r(j+1) (w-(s-2)) 1 + (1-q) (s~z+ (j+1)w)

32 Dynamic Allocation

where r 1is the variable
r =0 if w < s-z, and
= 1 otherwise.

Taking expectations with respect to the random variables w
and s, we obtain the average cost

EWS(z) = s-z + (1-q) (J+N) ¥ + g(j+NCN(w,s,2)

where s and w denote the mean values of s and w, and
the function CN in the last term is given by the convolution
of D and H:

00 i Z+W
| |

CN(w,s,z) = | | (w-(s=z)) dD(s) dH(w)
| |

o W

To obtain the value 2z° of 2z which minimizes the expected
cost EWS(z), we set

df EWS (z) }J/dz = 0

and solve for z. This is considered for specific forms of
the functions H{(w) and D(s) 1in Section V.

Using z® in a dynamic control policy, we can advance a
page at time t+2z9, and obtain as a result an expected cost
increment of

ACI = EWS(z9)

If, on the other hand, we wait for the next page demand to
occur, we expect a cost of

DCI = w(j+1)

Thus in order to decide which policy to select at time t,
we compute the sign of

DCI-ACI = g(j+1) {¥ - CN(w,s,29)}

and either advance the specified page at t+2z0 or take no
action.

Now that +the form of the cost function has been estab-
lished, we note that if we condition the distributions for

Dynamic Allocation 33

W and s, as mentioned above, the notation should be
extend2d in the following fashion:

D(s) —> D(j,s)
s ——> s(3J)

where Jj 1is the number of pages currently in main storage
for the task,

H(w) -=> H(n,w)

¥ -=> ¥(n)

where n 1is the number of requests already enqueued at the
paging mechanisnm,

q -2 Q(h'k)
-~

and h, k, are the indices of the last page requested and
the page most 1likely to be referenced next, respectively.
In order to implement a dynamic policy for system progranms,
the constituents of the formula for DCI-ACI must be
computed in advance and included with the program for use
during its execution. To follow a stationary policy of
advance paging we require only the identity of the most
likely =successor ©page tor each page of the task and the
relevant entries of the matrix z©°(n,j).

IV. THE EXPECTED TOTAL COST

In addition to examining the cost added by each decision
in a dynamic policy, it is of interest to write down the
total expect=d cost of a stationary policy: always try to
advance the next page or always wait for the demand to
occur. For the sake of comparison, we also include swapping
as a stationary policy——bringing an entire task into main
storage at the beginning of a time slice.

The minimum cost, which is unattainable in practice, is
the integral over execution time of the actual storage used
(each page is included in this integral from the instant of
its first reference to the end of the time slice):

MC = P(t) dt

E“'—"']

task time

34 Dynamic Allocation

We express the cost of each stationary policy in terms of
the amount which is added to this basic cost. Let us
suppose that a task has a total of M! pages, and that MO
of them will actually be referenced during the given time
slice of duration T+,

We consider first the -additional cost of a swapping
policy: at the beginning of a time slice the entire set of
M1 pages is brought into main storage. Thereafter no page
request can take place, so the space-time integral is taken
only over the initial page-loading delay and the execution
time interval. It 1is reasonable to assume that for a
swapping scheme pages of a task would be arranged conti-
guously in auxiliary storage; and that since page requests
for a single task come in bursts, separated by relatively
long intervals of execution, gqueueing for the paging
mechanism has an entirely different structure than the
demand or advance paging situations. To simplify matters in
this discussion we will assume a swap which requires no
queueing. Thus a request for M! pages takes an average of
half a drum rotation to position the drum at the first page,
followed by the bulk transfer of M?! successive pages. In
the notation of Appendix B, this requires

(m + 2M1) /2
time units, where m is the number of drum sectors and a
time unit is the transfer time for one page. Hence the
additional cost of a swapping policy is given by
CSWP = MIT+ - NC + Ml(m + 2M1)/2
Lauer [U45] has written down the expected additional cost

of a demand paging stationary policy, namely

Mo
CDEM = 2 J u(mn)

Mo (Mo+1)w(n) /2

or the space-time integral over the MO paging delays, each
of which takes a mean time w(n). If an "advance paging"
policy 1is wused over the entire time slice, the expected
additional cost is

0
EWS (z° (n, 3j))
1

CADV =

IIvi=

J

where

Dynamic Allocation 35

EWS(z°(n,3)) = {s(j) - z°(n,3)}
+ q(h,k) (J+1)CN(w(n) ,s(J) ,2°(n,]))
+ {(1 - g(h,k)) (3+1) uw(n)}

Although a dynamic policy would, in general, be expected to
yield a 1lower cost than any of the above stationary
policies, these <cost functions are useful because they
illustrate the extreme cases where a dynamic policy would
produce a stationary choice. The advance paging formula 1is
also interesting because its terms provide a separation of
the kinds of costs entering irnto the total:

e the first term in each summand EWS (z©° (n, j) is
the average cost of advancing a page up to the point
at which the demand actually occurs,

e the second term measures the cost introduced by
the fact that a demand may occur for the advanced
page before it has arrived,

e and tne last term shows the expected cost added
because the wrong page may have been chosen for
advancement.

These total cost functions will be examined in more detail
for a specific example in the <concluding sections of the
chapter.

V. EVALUATION

We rpause at this point in the investigation of the costs
for allocation policies to re-examine the basic assumptions
that were made in deriving the model used in this chapter.
An understanding of that reasoning is necessary to interpret
the concluding example. Three major conditions have been
assumed:

1. Execution time is independent of the storage alloca-
tion policy. This 1is not exactly true for several
reasons.

(a) different policies cause different numbers

of interruptions in service, each of which has
an associated, fixed CPU overhead,

36 Dynamic Allocation

(b) different allocation policies may require
different amounts of CPU time, e.g. to evaluate
the formula for DCI-ACI given in Section III,

(c) since allocation policies in general affect
task scheduling, a specific scheme could include
a variation in the length of a time slice.

The first two effects on execution time are felt to
be an order of magnitude smaller than those consi-
dered in the model of this chapter. By ignoring the
third effect, we are essentially assuming that if
time-slice length varies, it does so uniformly for
the policies under consideration.

2. A page is kept in main storage from the time it is
first referenced until the end of its time slice.

Main memory allocation in existing systems gen-
erally uses a page replacement rule which allows
a page to be returned to auxiliary storage
before the end of its task's time slice. This
means that several page faults can occur in
practice for the same page. This phenomenon
tends to moderate the decrease in the rate of
page faults as the number of pages referenced
increases. We ignore return to auxiliary memory
here because the rate at which this happens
depends on the competition of tasks for main
storage, and we are dealing with a single-task
model. However, this type of analysis applies
to the replacement situation if the distribution
function D(s) for CPU time between page faults
is appropriately adjusted, and the storage use
function P(t) 1is allowed to decrease as well
as increase.

3. Each CPU interval is assumed to be terminated by a
page fault.

The space-time integral for cost functions in this
chapter omits two kinds of time intervals in which a
task is unable to use the CPU:

(a) waiting for the completion of a non-paging
I/0 request

Some kinds of I/0 (such as terminal wait) force

the end of a time slice, and hence are not of
concern here. Others (such as disk I/0) do not,

Dynamic Allocation 37

however, and the corresponding increments to the
cost function were ignored in the previous
analysis. Since these delays occur with the
same frequency and duration for all of the
storage allocation policies, they introduce a
variation in the cost only insofar as different
amounts of main storage are held when such waits
occur. The difference in the added cost between
demand and advance paging, for example, can
occur only if an I/0 wait falls in the interval
between the request for a page and its subse-
quent demand; and the difference 1is only the
cost for one page held for the duration of the
wait. While such differences will be almost
negligible, the increase in cost under a com-
plete swapping policy is considerably larger,
since the entire program occupies main storage
during I/0 waits.

(k) waiting to use the CPU

Under conditions of heavy 1load, a task may
accunulate a large space-time integral while in
the CPU queue. No cost is associated with this
time on the grounds that it 1is a factor in
increasing, rather than decreasing, CPU
utilization.

VI. A SPECIFIC EXAMPLE
this section we compute the parameter z9(n,j)
in the decision formula when H(n,w) is the distribu

function

below, which 1is established in Appendix B £

particular organization of a drum I/0 channel.

Hivis

H(n,w) =
k

G(n,k) F(k,w)
0

where the F(k,t) are piecewise linear functions

38

F(k,t) = Prob[cs<tlk] =

(a) 0 if t < km + 1,
(b) 1 if t > (k+1)m + 1,
(c) (t-km-1)/m otherwise.

Dynamic Allocation

used
tion
or a

The mean value w(n) is shown in Theorem B-2 of that
appendix to be of the form

(m + 2n + 2)/2

where m is the number of drum sectors and n 1is the
number of prior page requests enqueued at all the sectors.

In order to simplify the expression for EWS(z), the
expected cost of advancing a page at time t+z, we must
also assume a specific form for the distribution D(j,s)
(which is the length of time s until the next page request
occurs, given that j pages have already been referenced
during the current time slice). #We assume that this request
occurs at random, with mean time 1/r(j)-——that D(j,s) is
the negative exponential distribution with parameter r(j):

i
<o
fte
rh

D (j,s) s <0,

-r({j)s
(1-e) otherwise.

i |

Given the forms of #(n,w) and D(j,s), we turn our
attention to obtaining an expression for

rM00 rq2tW
| |

CN(w,s,z) = | | (w-(s-2)) dD(s) dH(w)
| |

LI) w40

in the last term of the function EWS(z). The 1lower 1limit
of the outer integral is not unconditionally zero, however,
because 2z may be negative: the occurrence of a negative
value for yA means that the prage request is to have bheen
made before the decision point. 1In practice, the decision
point will probably be the time at which the task is given
the CPU. We thus allow a negative 2z and interpret it as
the 1initiation of a page request before the task 1is
dispatched. The cost up to that time will be assessed for
the requested page, and of course a page demand occurs
before the decision point with probability zero.

Dynamic Allocation 3¢

Applying the definition of D, we have

0o rMZ+w
| I
CN(w,s,2z) = | {(z+w)D(z+w) - | s dD(s)} dH (w)
I |
timax{0,-2] L0
00
I ~T(j)w -r(j)w
= | {C! + C2w + C3e + C4we } dH(w)

Lnax[0,-2)

where the multipliers constant with respect to w have the
forms

-r (J)z

Ct = (z+r(j)—2), C3 = -e (z+zr (J) ~t+r(3J)—2)
-r(j)z

ce = 1, C4 = -e ().

In order to use the definition of H, we let 1 bte chosen
so that

im+l < -z £ (i+1)m+1

and make the understanding that 1if z is non-negative
(i.e. i is negative) we ignore all terms in the formulas
to come which would have a negative index. Then for each
term £f(w) 1in the integral above, we write

40 Dynamic Allocation

00 A @E+NHn+1
| I
| £(w) dH(w) = {G(n,i)/m | £(w) dw
| |

timax[0,-2] tipax[1,-2]
r (k+1) n+1
h |
+ 2 G(n,k)/m | £(w) dw}

k=i+1 |
tikm+1

Next, we obtain the minimal cost value z¢ of =z Dby
setting the derivative of EWS(2z) equal to zero:

EWS' (z) = q(h,k) (3+1)CN' (w(n) ,s(3),z(n,5)) - 1 = 0

The general form of this equation is

-r(Jj) z -r(j)z
Alze + AZ2e + A3z + A4 = 0

where the coefficients contain the G (n,k), the number of
drum sectors m, and the page request rate r(j). The
soluticn to the equation EWS'(z) = 0 can be evaluated for
appropriate values of the parameters n and Je It
provides the value 2z°(n,j) which nminimizes the expected
cost for advance paging.

Further study of the MTS data will provide better
information about the freguency of page requests and their
dependence on other factors. A numerical approximation of

EWS(z) can be obtained even if the distributions are less
tractable analytically. Thus the drum delay distribution
could also be replaced by the appropriate distribution for
another paging device, and modified to include anomalies
observed in actual operation.

VII. NUMERICAL RESULTS

We present here a brief numerical investigation of the
total expected cost functions CSWAP, CDEM, and CADV for
stationary storage allocation policies. The general fornms
of these functions were given in Section IV, and we use the
specific distribution functions discussed in the previous
section.

Dynamic Rllocation 41

A detailed study of the relationship of the paging rates
r(Jj) to the number 3J of pages so far referenced 1is
beyond the scope of this work. Data for exploring this
relationship is available, however, in the normal output of
the MTS data collection facility. It will suffice for our
comparison of cost functions to assume a simple theoretical
relationship between § and =r(j). The general form of the
function P(t), which gives the number of pages so far
referenced, 1is 1like that of a negative exponential: the
rate at which new pages are referenced decreases steadily as
more of them become resident in main storage. This
phenomenon 1is described by Fine, et al. [28], Denning [17],
and Coffman and Varian [11].

We recall that «r(j) 1is the rate of arrival of the
(random) Jj-th page request. By postulating an exponential
form for P(t), we specify the dependence of «r(j) on j:
let us write

~Rt (J)
P(t(3)) = 0 (1-e)

for the value of P at the point t(j) [(3=1,2,...,
M0] where the j-th page request occurs. From the form of
P, we see that

t(j) = 1In(1-j/Q)/-R = 1n(Q/(0-J)) /R

The mean time before the j-th page request is thus described
by

t(J)-t (=1 = s(J) = In((0-3)/(Q-j-1)) /R
or in terms of the arrival rate we have
r(j) = R/1n{(Q-3) /(Q-3-1))

where Q and R are parameters used to adjust the height
and the slope of P(t).

It was shown in the last section that for a specific drun
distribution function H(n,w) and a negative exponential
page request arrival distribution D(j,s), the optimal time
to advance a page is t+z9(n,j), where t 1is the decision
point and 2z9(n,j) is the solution of an equation of the
form

-r(j)z -r{j)z
f(z) = Alze + A2e + A3z + A4 = 0

42 Dynamic Allocation

where the coefficients depend on n and 3j, as well as the
parameters Q and R used to derive r(j). This equation
can be solved for 2z°(n,j) with an ordinary Newton-Raphson
iteration:

z(k+1) = z(k} - £(z(k)) /£ (z(k))

for appropriate values of the parameters. However, as we
‘can see from a few examples of EWS(z) in Figure 2-1, the
slope of this function throughout the neighborhood of the
minimal value is very small. Thus an iterative procedure
like the Newton-Raphson method converges slowly and is prone
to wide oscillations. 1In view of some experience with these
difficulties and the existence of good bounds for the
location of the minimal value, a simple search technique was
used to approximate the optimal values in the calculations
for the figqures discussed in the remainder of this section.

Figure 2-2 shows a range of values of the total addition-
al cost functions CDEM (demand paging) and CADV (advance
paging) for increasing amounts of congestion in the drum I/O
channel. For the given choice of page demand rate (which
depends on the parameters Q and R) and all probabilities
of correct next page selection (PR} taken to be <5, a
stationary demand paging policy costs more than the sta-
tionary advance paging policy. The swap policy cost CSWP,
shown here for only the case of no drum queueing at all,
would presumably lie above the CDEM curve for any method of
organizing the pages of a swapped task in the drum sectors.
Thus the horizontal line showing this cost in Figure 2-2 1is
misleading. The notation "M0=10, M1=15" means that 10 of
a total of 15 pages in the task are actually referenced in
the hypothetical time slice. For a comparison of its
relative magnitude, the minimum cost (MC) is also shown in
the figure. The total cost of each policy 1is the plotted
value plus the minimum cost.

Figure 2-3 provides an indication of the sensitivity of
the (stationary) advance paging policy to the quality of
information available about page references. For three
different values of the ©paging load parameter N, the
function CADV is seen to decrease sharply as the probability
of choosing the correct next page tends toward unity. The
corresponding values for CDEM (which do not depend on this
information) appear as horizontal 1lines. For the given
values of the other parameters, we see that an advance
paging policy is less expensive than a demand paging policy
as long as the probabilities exceed one-half. With the
typical probability of a wrong guess exceeding one-half, the

Dynamic Allocation 43

cost of the advanced pages and the expectation of further
demands combine to make the advance policy more expensive.

Another item of interest is the sensitivity of the cost
functions to variations in the percentage of a task's pages
actually referenced during a given time slice. This rela-
tionship 1is 1illustrated in Figure 2-4. Since the cost of
each page demand is rather high, the principal advantage of
the demand ©paging policy over swapping rests on the fact
that the fraction of referenced pages is not wusually close
to one. For the example of Figure 2-4, CDEM is less than
CSWP until this fraction exceeds about .65, and the
corresponding advance policy retains the edge over swapping
until nearly 80% of the pages are referenced. Again, we
emphasize that the swapping policy illustrated assumes no
drum congestion, whereas the other cost functions are given
for a realistic 1load. Anyone seriously investigating a
swapping policy could obtain a "referenced pages fraction"
from the MTS data collection facility and compare the true
costs for a specified drum storage allocation procedure with
swapped tasks. Because of the way the page demand function
was represented for these calculations, the length of the
time slice increases as more pages are referenced. Hence
even the "very stationary" swapping policy shows an increase
in cost values in Figure 2-4. The minimum cost MC is also
shown in this figure. We see again that this actual
execution time-space integral is quite small in relation to
the additional costs of the storage allocation scheme. Note
that only when almost 100% of a task's pages are
referenced 1is the minimal cost as large as the additional
swapping cost.

Finally, we portray in Figure 2-5 the relationship of the
costs to changes in the parameter R of the rate at which a
task requests pages. Because the length of a time slice 1is
very sensitive to this parameter, we display values for the
cost functions normalized by the time slice 1length. After
the other figures, the curves in the present figure offer no
surprises. The demand cost is most sensitive to variations
in this request rate. With two-thirds or more of the pages
being referenced (M0=10, M1=15), the no-congestion swap
policy is cheaper than the other policies over most of the

range of values shown for R. Although advance paging
"resembles" demand paging in structure, it is somewhat less
sensitive to <changes in this parameter. It is again a

distinct improvement over the given range, at least for the
given page choice probabilities.

In summary, our numerical calculations show that in at
least the cases examined, a stationary advance paging policy

4y Dynamic Allocation

provides a smaller average storage use than demand paging,
and offers the most improvement over the latter policy in
those cases when demand paging is at its worst, 1i.e. when
pages are referenced at high rates and/or most of the pages
of a task are wused during each time-slice. Since the
overall pattern of page request rates was assumed to be
quite "rad" for the purposes of these calculations, we
believe +the numerical results indeed provide a lower bound
for the performance improvement expected with a dynamic
policy which selects the strategy for each page request that
has the smaller expected cost.

Dynamic Allocation 45

uoT3oung 3soD pejzoadxyg ayy o setduexy |-z =2Inb1g

Z INIOd JINBAGE 39Hd

00°0¥1 00°011
(Z)SM3 1S03 04133dX3

00°0LT

007002

00 v- 00°8- 0o°2¢1- 00°91- 00°0c- 00°v2- 00°8¢- 00°ce-
I et e} bt “
01 ONB *8 ‘9 ‘¥ =dHd 0S (03NIYLIB0 S39Hd J0 © H3IGWNN 3JHL 1
S*=dd ONH *S=N °‘ST=1W *‘Q1=0W *S20°=H *S1=0 HOod
{Z)SM3 NOIL1ONNd 1500 03133d4X3 3JHL
1300W 9ONT9IBd 4ONBAOB

Dynamic Allocation

46

3S0D Uo uoT3}sebuo) wnig Jo 30aI3A Z-Z 2InbdbTa

N3N0 WNHO NI S398d JO0 HAGWNN
00°21 00°01 00°8 00°9 00"y 00°z

-

™~ ™ ™

0081 00°91 00°¥1

\/ﬁwa\.ﬂv\
9°=Hd ONB *‘SIi=TW *01=0W °SZ0°=d *Si=0 HOd

ﬂﬂ.mauv SOB07T ONI9Hd INIAHBA HiIM S319318H1S dJ0 NOSTYBAWOD

1300W ONIJBd JONBAGY

00709

(1-01X) L1S0J JWIL1-J36dS TBUNOILI0O

1
1

00°001

I
+-

1
U

00°0v1

V.
T

00081

[
!

47

Dynamic Allocation

3s0) uo A3TTTqRgOold ©ousI9F2y¥ JO 3IO8IIA °*€-Z =2anbta

NOIL1J313S 396d 1J33HHOD 40 ALITI8H80Hd
08 oL il o8 o

. i B* o¢ oz" 01 o
+ + + T T nnv
. S
/f/ >QU -
B = S

— — — — cmmn— — —— — v —— —— wm—— — te—— c— e = o—— o
TE
[

D

°o

1 ©

_— e — — = e e et e e e e ———— e —— o— —

WD _

150

/ /m/m/.m mwNu

————— e — - e — - — —— === S

/m/ 4 »

<

///Jw// D

-~ Ll.l-nlu

//mTIIIla Wn:

< —i

O

+ =<

m

C1 ONB “OF *S=N ONY *Si=1W ‘O1=0W °*SC0°‘=H *S1=0 HO4 N,

S311171184804d 9NIAHEBA H04 S319318541S 40 NOSIHBdWOD anwmw

~ o

1300W ONI9Hd JONBACY 1° .

><

—

oS

L

IO[
o

Dynamic Allocation

48

1s0) uo sabedg jo Isoquny JO 3IO08FFF h-Z 2InbTdg

030N3H3434 AT6NLIY S398d 40 NOI1JbHd
o oe” o 8- o or*

9°=Hd ONHB *S5=N ‘OC=1W °C0°=H *0C=0 HOd
033N343434 S398d 40 NOI1JObBHd 3H1 J0 NOTLONNd § S8 S1S0D

1300W ONIJBd JONBACGY

49

00°0%

Dynamic Allocation

L

" 00°08

" 00°02T

007091

}
A

00002 |
(-0TX) 1S03 JWIL1-335dS BNoI1I0ay

i
1

01°3

3S0D uo e1jey j3sonboy sbed 3o 3093IF G-z 2INnSTI

08" o - oz

00°1

(101X) H 31bY ONUW30 398d
oa* oL 0g* os*

-

-

™

L° ONY “9° *S°=Hd ONY *‘S=N °S1=1W °*01=0W *0C=0 HOd
3184 ONGSW30 399d ONIAHGUA HO4 S1S030 40 NOSIHBAWOD

1300W ONIJBd JONBACH

00°21

00°02

dWIL LINN/LSOJ TBNOILICAY

" 00'82

00°9¢

Dynamic Allocation

50

CHAPTER 3. _DYNAMIC ALLOCATION FOR MANY PROGRAMS

"It is sometimes felt that when phenomena
include men, it is tremendously more difficult
to theorize successfully...,"

J. D. Williams

"Although this may seem a paradox, all science
is dominated by the idea of approximation."

Bertrand Russell

In this chapter we present an analytical model for a set
of programs which alternate bhetween paging operations and
the use of a (single) CPU. Execution times Dbetween page
requests are assumed to be exponentially distributed, and
the duration of paging orerations is given by an Erlangian
distribution (see Appendix B). The model given here pro-
vides an estimate of the general distribution of queue
lengths in front of the CPU, and hence the expected CPU busy
fraction and the output of the system in CPU intervals per
unit time. It can be extended to handle multiple processors
and/or paging mechanisns.

I. MOTIVATION

We wish to examine the effects on productivity found in a
virtual storage computer system when different numbers of
tasks are present to compete for the use of the CPU. If the
system chooses to multiprogram between too few tasks over a
certain period of time, there 1is not enough demand for
execution generated by these tasks between paging and I/0
operations to keep the CPU appreciably busy. If, on the
other hand, too many tasks are in competition at any one
time, they each have a smaller share of real storage, and
hence tend to request pages at a higher rate. This effect,
when added to the already higher paging rate due to more
tasks present, may increase the congestion in the paging
mechanism to the point where the CPU is again idle a large

Multiprogramming 51

share of the +time (and more CPU time is required for the
overhead of operating the paging mechanism). It is also of
interest to estimate the effect on performance of adding a
second CPU or paging drum. This model provides performance
estimates for each such situation (in which all the parame-
ters are fixed). By evaluating these results for a number
of combinations of the parameter values, it is possible to
get a rough idea of the "feasible subspace" of values of the
parameters which can be controlled, and of the sensitivity
of the system to variations in specific directions.

IT. MODEL DESCRIPTION

We suppose that the system over the period of study is
closed, containing a fixed number, U, of tasks. Each task
is assumed to need only the information contained in 1its
virtwal memory: the only input/output is via the paging
mechanism. Thus a task cycles through four states,

e queued at the CPU,

e in execution,

e queued at the paging drunm,
e transferring a page.

The execution intervals of different tasks are required to
be independent, exponentially distributed random variables,
all with the same mean value S. The queueing time plus
service time of the paging drum processor is assumed to be
distributed according to an Erlangian distribution, which is
shown in Appendix B to be a good approximation to the actual
distribution for a particular drum I/O channel.

The movement of tasks through the model 1is pictured 1in
Figure 3-1. Each of the k exponential stages of the drum
transfer distribution appears in the model as a '"queue with
ample servers" [15], that is, the service of all "customers"
at that stage proceeds concurrently according to the same
exponential rate R, with the output process of that stage
being exponential with rate uR, conditional on the number

u of customers at the given stage. Since any stage of the
drum model accepts each customer for service as soon as he
arrives, the only genuine queue in this model forms in front
of the CPU, and it is the distribution of its gueue length
that we wish to study.

The results in this chapter are an adaptation of the work

of E. Koenigsberg [43], who stated and solved the equili-
brium equations for a cycle of single-server stages.

52 Multiprogramming

| B

| b——
{CPUIl//////71<
I b

| | Queue

| F— |

Paging Drum Processing

[° e mme Gem e S g S e S m— . G — — —— — o
5o cme n wwn e w— — — - — . — — o — o ao— c—]

| | I | | |
— — —
[e l+——-4
- | - | -
————2 o > . =2 e o o —>| . }F
-1 P .| P -
| I I | | !
— — —
| I | IS | | IO
Stage 1 2 k

Figure 3-1. The Queueing Model

ITI. ANALYSIS

We number the CPU as the k+1st service point in the
cycle. The equilibrium probability that there are u(i)
customers at stage i, {i=1,2,...,k+1}, will be denoted by

plu(?) ,u(2) yoe.r,u(k+1)] Let the output rate at stage i,
which depends on the number of customers at that stage, be

Multiprogramming 53

denoted by v[i,u(i)]. Then the -equilibrium probability
equations are

k+1
2 v[isu(i)] plu(l),u(2),.c..,u(k+l)] =
i=1
k+1
> v[i,u(@)+1] plu(l),e..,u(i)+1,u(@i+1)=1,...,u(k+1))
i=1

(b) the 1i-th term does not appear in the equation if
either u(i) = 0 or u(i+1)-1 < 0.

(c) the k+1st stage is linked back to the first, in
the sense that the last term on the right is actually

vik+1l,u(k+1)+1] plu()-1,u(2),...,u(k=-1) ,u(k+1)+1].
(d) the output rates v[i,u] have the form

vik+1,u]
vii,u]

S for all u, and
uR for all u and i < k+1.

The solution of the equilibrium equations is given hy

plu(l)seece,u(k+1)]

U-u(k+1) _k_ u(i)
= p[0se--,0,0] v[ik+tl,u(k+1)] /11 vli,u(i)]
i=1

where p[0,...,0,U] is given by the expression

U-u(k+1) _k u (i)
v k+1,u(k+1)] / vii,u(i)]]

1/ (1
U} i=

{k+

N
-

54 Multiprogramming

and the notation ({k+1,U} indicates that the summation is
over all sets of k+1 non-negative integers u (i) which
sum to U. It is also to be understood that for all cases
where vii,u(i)] = 0, the term containing it in the
denominator has value 1. The probability that exactly J
customers are at the CPU stage 1is thus (applying the
definitions of the v[i,ul)

PLdl= > plu(M,e..pu(k),d]
{k,U-J}
U-J _ _k_ u (i) ,
= (S/R) 2 [1/7 1 1 u(1)] p(0,e..,0,U]
{k,U-3} i=1
U-J _ U-u(k+1) _k_ u (i)
= a(U-9)X /[> (S/R) /11 u(i)]
{k+1,0} i=1
U-J U U-i _ _k_ u ()
= a(U-X /[> (S/7) > 1/ 1 1 u(d)]
i=0 {k,U0-1} j=1
u-3 U i
= a(U-3)X / 2 a(i)Xx
i=0
where vwve let X = (1/R) and include the powers of S in

the coefficients a(i). Of particular interest is P[O],
the probability that the CPU is idle. The mean number at
the CPU stage is of course

MN =
i

i P[i]

nivics
-

Since the CPU is working on the average 1-P[0] of the time
at the rate S, its output in number of execution intervals
per unit time is given by

OP = (1 - P[0]) S

We digress briefly at this point to indicate the way this
model may be extended to handle multiple components. Appen-

Multiprogramming 55

dix B, Section IV discusses the change in form of the drunm
delay distribution to accomodate multiple paging mechanisms.
Such a modification alters the value of R and possibly the
number of stages 1in the Erlang approximation of the drum
delay distribution, but the «cyclic dqueue model need not
otherwise be changed. The structure of the model of this
chapter is altered, however, when we consider multiple
processors.

Suppose that the single CPU in this model is replaced by
a (symmetric) pair of ©processors, sharing a commnon CPU
queue. The effect of this change is to double the output
rate of the CPU stage whenever it has at least two
customers. This can be accomplished by making the
replacement

vik+1l,u(k+1)] —> 2v[ik+1,u(k+1)]

in each equilibrium equation for which wu(k+1) 2 2. 1In the
notation of this section, we replace S by 2SS ian the
formula for P[J] whenever J22. Noting that the powers of
S occur in the coefficients a(i), 1let us write a2 (i)
to denote the coefficients defined above with 2S substi-
tuted for S. We can then express the probability distribu-
tion for CPU queue length in the duplex case as follows:

U-1 u i
E2{1] = Sa2(U-J)X /[> 2a2(i)X - a(U)]
i=0
and for all J # 1,
U-J u i
P2[J] = a2(U-3)X /[2 2az(i)X - a(U)]
i=0

The output of the duplex system is
OP2 = (1 - P[O] - P[1]2s + P[1]S
= (1 - P[O0] - P[1)/2) 25

CPU intervals per unit time.

56 Multiprogramming

IV. APPLICATION

At this point we recall that the formulas obtained in the
preceding section were based on the assumption that the
exponential rates R and S of the service stages were
fixed throughout the analysis. While S can certainly be
taken as constant, the value for R 1is in fact dependent on
the amount of congestion in the drum I/0 charnel, or in
terms of this model, on U-MN. Thus the value of the
parameter R is determined, as it were, by the solution.
This suggests an iterative process for determining the value
of R for which one will find the values of P[O] most
meaningful:

(a) choose an initial value R(0) for R,

(b) compute the number of tasks in page wait (not at
the CPU stage) at equilibriunm,

(c) use the egquilibrium number of tasks in page wait
for R(h), together with the Erlangian model of the
drum completion time distribution, to establish a
new value for R, say R(h+1),

(d) repeat steps (b), (¢), and (d) until two
succeeding values differ by less than a prescribed
amount.

It is shown in the next section that the sequence of
iterates for R converges. At this point the system of
queues has reached equilibrium for the rate of drum service
which most closely represents the true rate for the equili-
brium load.

The iteration described above 1is computationally feas-
ible, despite the complicated expressions involved, because
the number of terms in each summation is actually quite
small: the number k of exponential drum stages 1is
typically only 2, 3, or 4, and the interesting numbers of
tasks (U) are wusually 1less than ten. In addition, the
coefficients can be computed in advance of the iteration
process itself.

In order that the results of this chapter be directly
usable in a supervisor scheduling algorithm to improve CPU
utilization, a further optimization problem is encountered:
one would like to know the number U of active tasks which
maximizes CPU usage when all the other parameters have been
fixed. 1In cther words,

Multiprogramming 57

min P[0O]
U

established above as the number not at the CPU stage, 1less
one for the task whose page is currently being transferred:

n==0- MN -1
The mean of the drum distribution is given by
m= (M + 2n + 2)/2 = U + M/2 - MN

where M is the number of drum sectors (see Appendix B).
Thus in the presence of n-1 other transfer requests, we
expect a page to pass through the k drum stages (each of
which services a single request at average rate R) in the
total time m:

m = k/R

In what follows we will add an iteration index h to each
of the values computed from the solution to the equilibrium
equations using the iterate R(h); for example MN becones
MN{h), and for P[J] we write P[J,h]. We will assume
that the number of model service stages remains fixed during
the iteration, and thus write

m(h+1) = k/R(h+1) = U + M/2 - MN(h)
The sequence R(h), [h=0,1,...] converges if and only if
the sequence m(h), [h=0,1,...] does; for, as we shall

see, the values of m(h) lie in a closed interval not
containing zero.

Theorem 3-1.

The sequence of values of m(h), [h=0,1,...7,
converges provided m(0) satisfies the relations

M/2 < m{0) €U + M/2
Proof: We show first that all iterates 1lie 1in the
indicated interval provided the first one does, and in that
interval they form a monotone sequence. Recalling that
MN (h) is a mean value for the number of tasks at the CPU
stage, we see that (0 < MN(h) £ U. This shows, from

m(h+1) = U + M/2 - MN(h)

58 Multiprogramming

that mn(h+1) 1lies in the indicated range. We now show that
each difference
m(h+1) - m(h)

of successive members of the sequence preserves the sign of
the previous difference:

m(h+2)-m(h+1) = MN(h+1) - MN (h+2)
U i U J
= 2 ia(i)X(h) / 2 a(3)X(h)
i=0 §=0
i iU J
- > ia(i)X(h+1) / > a(j)Xx(h+1)
i=0 j=0
= NUM/DEN, where DEN > 0 and
U 1 U]
NOM = [2 ia(i)X(h)][2 a(d)Xx(h+1)]
i=0 3=0
u 1 J]
- [2 ia(@)X(h+1)][2 a(j)Xx(h)]
i=0 3=0
u I i J
= 2 2 ia(i)a(j)X(h) X(h+1)
i=0 §=0
u g i3
- 2 2 ja(i)a(3d)x(h) X (h+1)
i=0 §=0
u U i3
= 2 2 (i-j)a(i)a(j)X(h) X(h+1)
i=0 §=0

and now 1if we let k = i-j 1if i-9 > 0, ard k = j-i
otherwise, we obtain

Multiprogramming 59

i i+k
a(i)a(i-k)X (h) X (h+1)
i<U

_ i i-k
- 2 a(i)a(i+k)X(h) X(h+1) }
0<i<U-k

i i+k
(i)a(i-k)X (h) X (h+1)

_ i+k i
- > a(i-k)a(i)X (h) X(h+1) }
k<i<u

i i k k
(L)a(i-k)X(h) X(h+1) [X(h+1) - X(h)]3}

where all but the quantity

k k
[X(h+1) - X(h)]

is positive and the latter retains the sign of the 4if-
ference of the single powers. Recalling the definition of
X(h), we see that

m(h+1) > n(h) =>

i
il

=> 1/R(h+1) > 1/R(h)
X(h+1) > X(h) ==> mn(h+2) > m(h+1)

and similar reasoning prevails when the signs are reversed.
We have seen that both the m- and E-sequences are
monotonic on closed intervals, and hence they converge.

V. NUMERICAL RESULTS

The computational procedure given in Section IV has been
used to prepare Figures 3-2 to 3-4, which illustrate some of
the characteristics of the model results when they are
computed with parameter values obtained from the MTS data.
Figure 3-2 demonstrates the effect of changing the mean CPU

60 Multiprogramming

service time on the overall CPU utilization. With four or
more tasks in progress (using a 9-sector drum), there is
only a small decrease in idle time after mean service tinme
increases above about 8 msec. (Each of the figures in this
section assumes a drum transfer rate of one page every U
msec.) Figure 3-3 shows the relationship between number of
tasks and CPU utilization for a few fixed values of CPU
service time, in this case for a drum with four sectors. We
see that for all but the smallest values of CPU service
time, increasing the number of tasks beyond four or five has
little effect on productivity.

To ccmpare the 9- and U-sector drums, we see 1in Figure
3-2 that 1if CPU service averages 6 msec. with four tasks,
the CPU is kept busy less than 80% of the time. From Figure
3-3 we read a CPU utilization of over 90% for the U4-sector
drum. Several of the lines plotted in Figure 3-3 exhibit
abrupt changes in slope between a few pairs of the plotted
points. These occur at places where the optimal number of
drum service stages <changes from one small integer to
another. (These numbers are given in Figure B-3, Appendix
B). Since the calculations for the figures always use the
best number of stages, the graphs are essentially composites
based on a number of different models.

Figure 3-4, which gives curves of equal CPU utilization
relating the factors of CPU service time and number of
tasks, shows that increasing the number of tasks beyond the
optimum causes unproductive fighting among them for main
storage: as the number of tasks increases, a small decrzase
in mean CPU time between paging requests (due to the fact
that each task may use a smaller average amount of main
storage), can cause a shift from one of the isometric curves
to the next (they are very close together). Each such shift
represents a decrease in productivity of 20%.

Multiprogramming 61

SWTJL ©TPI UO SWTIL 20TAISS AdD FO 3I09IFF *Z-€ =2Inbtd

AWIL JITAHIS NdI TEIININOLXT 40 ("I3SW NIJ NU3IW

oo.mm

0082 00°¥2 0002 0091 002} 00°8 00*¥ 00
———————f—— 18 .

+

oy’

NOIL3bdd 3701 Nd3 04133dX4

09’

SG3H30Hd NI SMSHL 8 ONY 9 ‘¥ *C HIIM
3WIL 3J3IAHIS NdD 40 NOILINNd H SY JWIL 34T Nd3

WNHO YO0133S5-6 B Y04 1300W 3N3ND J1713AD

08"

00"1

Multiprogramming

62

08°21

—i—t—t—i—t—fd=

SUTL ®TPI UO SYsel JO °*ON IO 309314

*€-€ 2InbTJ

SE3HI0Hd NI SMSHL 40 HIEWNN

B ov°S) omh¢

0Z°¢

02 11 09°6 00°8

-—

T

*J3SH 8 ‘9 ‘v *C °1 = JWI1 33IAH3IS Nd3 NY3NW
SMSH1 40 HIGWNN 40 NOILINNS SY IWIL 3T4I Nd3

WNHO HOLJ3S-¥ Y HO4 T1300W 3N3N0D JI713AD

L
4=

00" "

09* 0¥ 02

i
¥

NOT1Jbdd 3701 Nd3 03133dX3

63

Multiprogramming

SYSeL JO °"ON °SA ®3e¥ NdD °*H-f 2InbTtg

mmummomm NI S)MSHi 4O mumz&z

8

. ‘g 00°9 00°S 00° "
_q ! e s + = . 8
: : - S—
n £— & i il &
= &= =
D
[4)]
ITDMN
—
=
=
=0
ITO
=
[on]
N
83
=
m
=
I-l-
Ing
g™
(9]
O
c
(8° ONY ‘9" “¥#° *2° = NOI1Judd 310I) .-R%
NOI1J9H4 3701 NdY 40 S3AHND JIHLIIWOSIT Wmm
|]
O
WNYHA YO01J33S-¥ " Y04 1300W 3N3ND 3I113AJ m
W
Te=
m_nJ

00°Se

Multiprogramming

64

CHAPTER 4. SIMULATION OF STORAGE_ALLOCATION

"Unquestionably, for the moment, numbers are king."

TIME Magazine

In this <chapter we report the results of a digital
simulation of a virtual storage computing systenm. Elements
of the model include an exact representation of the paging
drum described in Appendix B, the flow of pages between main
and auxiliary storage, the control of tasks during time
slices, and data abstracted directly from the MTS systenm.

I. THE MODEL

The simulation model is described in detail in Appendix
E, where a complete listing of the GPSS5/3€0 program also
appears. Briefly, its characteristics are these: a record
of tasks is kept during a single time slice, beginning with
the scheduling of the first page request. Once requested,
each page is brought into main storage to remain until the
end of its task's time slice. Since no page can be brought
into full storage, there is the possibility of queueing for
space. The time unit in the model is the page transfer time
from the drum to main storage. Phenomena occurring in
shorter time intervals, such as CPU/channel conflicts f£for
storage reference cycles, are ignored. Processing time for
scheduling and interrupt posting is also not modelled.

We assume an overloaded operation: there 1is always a
task ready to enter the system. No classification of tasks
or representation of activities is made beyond the level of
a single interaction: the time from the end of a terminal
I/0 wait until the start of another. The end of a time
slice may also occur 1if a task requests more than a
specified amount of processing time, in which case the task
is enqueued for another CPU service interval. If a page is
requested which makes the main storage total for that task
greater than a certain maximum, the task is terminated as if
it had taken an I/0O wait for the terminal. At any given
instant a task is

Simulation 65

e executing or enqueued for execution,

¢ waiting for a page to be brought from auxiliary
storage,

e or waiting for the completion of a synchronous
(e.g. disk) I/O0 operation

The simulation model represents two types of events: the
flow of tasks Dbetween the aforementioned states and the
induced flow of pages to and from main storage.

II. LIMITATIONS

There are a number of limitations inherent in the model
just described. The decision not to maintain the identity
of individual pages in the model was made in order to reduce
the complexity of the model, and because it was felt that
this aspect of task representation requires more information
about program behavior for less increased accuracy than any
other. (The data <collection facility can provide such
information, however.) Given that the identity of pages is
not retained, one is essentially restricted to modelling
tasks when they can actively compete for the use of the CPU.
Another restriction arising from this assumption is that it
is difficult to model a replacement rule: once a page
enters core it is hard to distinguish a page-out and
subsequent reference to that page from a first reference to
a new page.

While the wuse of actual data to describe the individual
task activities in general enhances the accuracy of the
model a great deal, it also fixes that data so that some
variations in behavior cannot be explored. For example, the
page request rate is a function of the competition for main
storage in the real system at the time the data was taken,
and it cannot easily be varied in the model as scheduling
policies are used which enforce greater or less demand for
simulated storage. Another characteristic which depends on
the actual load is the possibility or "reclaiming" a page in
main memory which has remained there from a previous time
slice or can be recovered while an attempt is being made to
write it out.

The one item of data most desirable, and yet hard to

obtain by software measurement techniques, is the pattern of
actual inter-page references. Knowledge of this data is

66 Simulation

necessary to allow model adjustments to accurately represent
program behavior in a limited amount of main storage under
varying loads. On a very limited scale, the MTS facility
can be used to obtain +that information by artificially
inducing background loads of specified proportions. Actual
references can be observed by temporarily altering the
supervisor to operate dynamic relocation with empty page
tables, so that every off-page reference results in a page
fault. This latter technique significantly alters program
execution time, however, and thus distorts other information
about tasks—such as I/0 delays—which are sensitive to
changes in time scale.

ITI. EXPERIMENTS

In order to validate the theoretical results it was
initially felt that the simulation model should be designed
to be as much like the real system as the chosen 1level of
detail allowed. In fact, this was the principal motivation
for the data collection facility and the resulting direct
link between the analysis programs and the simulation model.
The ultimate effect of pursuing that objective, however, was
to make the model inappropriate for an investigation of the
allocation techniques suggested in Chapters ITI and III. Two
problems emerged:

(a) Because the simulated system closely resembles
the real system, a host of data characteristics and
supervisor algorithms enter the picture which are
not covered by our analysis. Variations in perfor-
mance due to decisions about such matters as CPU
scheduling, page posting, size of core storage, and
length of time slice can be significant enough to
overshadow performance improvement techniques such
as advance paging.

(b) The use of MTS data precludes an investigation
of the cyclic queue model: adjusting the number of
tasks to an optimal value is of no wuse unless an
accompanying change in the page request rate is
observed.

These observations about the application of theoretical
techniques to a simulation model apply as well to the actual
systems: until a number of basic adjustments have been made
to a system and it operates in a reasonably efficient
manner, there is no point in implementing a sophisticated

Simulation 67

memory allocation scheme. The hardware configuration must
be roughly matched to the system 1load, with supervisor
algorithms providing a better match, and the programs for
driving such components as disks and drums must operate well
enough so that no artificial imbalance 1is <created. Most
large-scale systems require a great many adjustments of this
nature, and the problems are thus of considerable practical,
if not theoretical, interest. The simulation program in
this thesis is accordingly used to investigate some of these
simpler controls over storage allocation.

Several algorithms used with the drum I/O channel are
examined to see the extent to which they contribute to the
efficiency of that component: a read-before-write policy
for the sector gqueues 1is compared with the first-in,
first-out discipline, and the effect of delayed posting of
page transfer completions 1is <compared with immediate
posting.

Two aspects of the organization of the paging mechanisnm
itself are considered: a 9-sector drum is compared with the
same drum formatted for 4 sectors (which gives a capacity of
100 fewer pages 'at some increase in performance), and the
use of a more expensive large-core storage device (with the
same transfer rate but no 1latency) is simulated. The
physical size of main storage is another parameter varied
for the simulation runs.

One characteristic of the workload is a variable systen
parameter: the percentage of pages which is left unchanged
through a period of residence 1in main storage. MTS
experience suggests that 20-25% of pages read from auxiliary
storage need not bhe written out because they are unchanged.
Finally, in an attempt to match the CPU demands as well as
possible, several values are tried for the length of a time
slice, although this ©parameter 1is not varied dynamically
during the simulated execution of progranms.

Several inadequacies of the simulation model were
revealed only during the final runs, whose results are
tabulated in Appendix F. In all Dbut the 1last run an
intend=ad variation in the percentage of unchanged pages did
not work, with the result that in each case all pages were
written out instead of the planned 70-80%. It was also
apparent after the runs were over that +the 1initialization
periods before data was taken were too long. While this is
not normally harmful, it had the effect in this instance of
spacing the corresponding segments of different runs less
regularly over the common task streams, thus reducing the
value of that "parametric" feature.

68 Simulation

An attempt to re-interpret the MTS data as characteristic
of a heavier load backfired, with the result that the set of
simulation runs reported in Appendix F is difficult to
compare directly with MTS experience, and shows less than
real differences in performance for the two data sets
considered. The MTS paging load during the data collection
period was usually way below capacity, primarily because the
system was new and developing at the time at a rate which
kept ahead of the increasing workload. Since a much higher
paging load was certain to develop, and it was only then
that improved storage allocation techniques would have any
worth, the data was recast for use in the model in a manner
described in the next paragraph. When a command was typed
by an MTS user to initiate a new interaction, his task often
already occupied several pages of main storage. The pages
of his task in core had not been forced out since his 1last
interaction because there were not enough page requests from
other tasks.

In order to use the MTS data and yet simulate a heavier
paging load, the number of rages already occupied by an MTS
task at the start of an interaction was taken in the GPSS
rodel to be the number of pages which had to be read in
before the 1interaction (=task 1in the model) could begin.
The unintended result of this action was to create an
unusually heavy paging 1load in any MTS data used in the
model. If the paging load was already heavy, this assump-
tion had 1little effect. 1In anything but a heavy load, the
situation modelled was more 1like swapping than demand
paging, because many more pages were brought in initially
for a task than were subsequently referenced during
execution.

IVv. DISCUSSION OF SIMULATION RESULTS

We now examine in more detail the results of applying the
MTS data to variations in the simulation model mentioned in
the previous section. As we see from the figures 1in
Appendix F, the MTS # 1 data tape! produces tasks which
under our interpretation require 75-80% of their pages to be
read into main storage as a prerequisite to execution.
These pages had remained in core in MTS from the previous

1The data used for these simulation runs was also used for
the distributions of MTS task characteristics given in
Appendix D.

Simulation 69

interaction, and some of them would not have been referenced
in the new interaction. Thus the paging load is unusual for
this data in two respects:

(2a) the number of page requests per task is general-
ly greater than the actual number, and

(b} many of the requests come in large bursts at the
beginning of each model task (interaction).

The corresponding "front end load" of page requests with MTS
0 data is considerably smaller—it ranges from 28-60% and
is almost always 1less than half. (One page is always
requested before execution, and since the average number of
pages per task is small (about 5-8) and skewed toward the
smaller values, this case is a much better representation of
the actual MTS situation). The total number of page
requests is also significantly 1less for this data set
because some of the pages forced out of core by a heavier
load were not needed again.

Each of the figures in Appendix F is organized into two
main sections: the wupper half shows the performance
obtained when the specific task stream was used with the
given model. The performance index most useful for compari-
sons is the fraction of CPU utilization, since it 1is not
sensitive to variations in the makeup of individual tasks.
The other item of particular interest here 1is the perfor-
mance of the drum or large core storage (LCS) unit used for

paging.

In order to make comparisons between different model
policies with this data, its workload characteristics are
shown for each run. Although the same two task streams are
used for all runs, the initialization intervals and dif-
ferent run segments (whose lengths are based on simulated
time) wuse different numbers of tasks from the tape. Over
the relatively short real time intervals which the data
represents, there are some significant variations in the
workload over the various run segments. The mean length of
the requested CPU intervals is an direct statistic of the
MTS data itself, but most of the other workload items given
are normalized by run time, and hence are related to the way
the model worked as well.

In all but Figure F-11, which will be discussed later,
the number of pages read and written during the run segments
were essentially equal. Hence only the 1latter figure is
given. The item entitled "percent initial pages" is to be
understood as follows: of the number of pages read, the

70 Simulation

given percentage were required before execution could begin.
Appendix E explains the policy for allocating storage in the
GPSS model: a new task enters the system whenever use of
core storage drops below a certain threshold. A queue is
maintained when core is full, but in order to avoid a
"devil's embrace" in which all tasks in the system are in
the core queue, the queue has finite storage of a length
chosen in conjunction with the maximum pages allowed a task.
When the queue is full an arriving task is terminated
prematurely.

Data not given in the figures shows that core utilization
under the aforementioned policy was always in the range
92-98%, with little variation in the segments of any run.
The number of of tasks encountering a full core gqueue was
similarly rather stable, with this number directly propor-
tional to the rate at which tasks were processed by the
model. The number of tasks exceeding the maximum page count
was negligible. Since any prematurely terminated task had
been simulated in part, results from what had been carried
out are included in both the performance and workload data.

Comparing Figures F-1 and F-2, which show the same Basic!
model with each of the two task streams, we see first ‘that
the workload for the second case consists of CPU intervals
slightly half as long, fewer but longer I/0 operations, and
more evenly distributed page demands than we have in the
first case. With the heavier load, the system seems to be
getting more choked up as time goes on, vrather than
maintaining an equilibrium. However, the actual system was
observed to be operating in the same fashion when the data
was taken: over the sampling period the 1load increased
significantly. A primary cause for the poorer performance
seems to be the increase in duration of I/0 operations, for
drum congestion is much less than with the first task data.

Similar comments apply to the comparison of Figures F-3
and F-4, which show the Advanced model with the same two
task streams. A far greater number of tasks is processed in
each of these runs, however, which makes the average data
appear more stable. The changes made in going from the
Basic to the Advanced model are responsible for the much
smaller degradation under increased load. These improve-
ments greatly affect the ability of the system to cope with
additional page traffic. In contrast to the difference

——— A o o ———— —— ————— -~ -

1The variations in simulation run parameters are discussed
in Appendix F and briefly in a later paragraph in this
section.

Simulation 71

between the first two figures, we see here an increase in
paging mechanism utilization with increased 1load, and a
smaller decrease in CPU utilization. In all of the first
four figures we see that a significant portion of core pages
are enqueued for transfer at any time, with the peak queue
length exceeding two-thirds of the core capacity.

The Basic system is outperformed 20-25% in CPU utiliza-
tion for one data set and 30-35% for the second by its
Advanced counterpart. This is no surprise, and in fact the
difference might have been greater considering the magnitude
of the changes in the systenm:

» The increase in core capacity from 80 to 144
pages, which approximates the increase in available
storage in going from a System/360 MTS system with
two core boxes to one with three,

¢ The use of LCS instead of a drum for paging,
which increases the effective use of core storage,

e The assumption of immediate page posting, which
cannot actually be carried out on the existing
hardware without measurably increasing CPU overhead.

In addition, a longer time-slice was used to reduce the
number of interruptions in CPU service, and a change in the
drum queue discipline improved <core utilization, although
these effects produce smaller increases in performance than
the ones enumerated ahove.

In Figure F-5 we see the results of a single one of the
improvements in the Basic system with the lighter of the two
workloads. Adding only the wextra core box to the Basic
model improves CPU utilization almost to the 1level of the
Advanced system. Though this improvement would undoubtedly
be less for the data with heavier paging load, we see here
that the CPU has become much more efficient than it was with
the Basic system. The larger core allows more tasks to be
active at one time, so that performance is less affected by
longer paging delays.

Figure F-6 shows the vresult of posting page transfer
completions for the 9-sector drumr immediately after each
transmission rather than once per revolution. Though again
performance "goes downhill" as the simulation progresses, it
holds up better under this increasing load than the Rasic
systen. This effect is much less significant than that of
increasing core size, and less than was expectead. Figure
F-7 shows that using LCS is an improvement of yet smaller

72 Simulation

magnitude. One would expect the removal of the delay after
transmission (before page posting) would create about the
same improvement as removing the latency which occurs before
a page is reached (by the use of LCS). While a variation in
the workload may have caused some of the apparent difference
between these two factors, the following characteristic of
the drum is also significant here: because the drum has a
number of sector queues which provide service independently
of one another, its response to a burst of requests
moderates the queueing delays, whereas in the case of LCS
all the page requests pile into the same queue. As the drum
load builds up, pages are delivered at a rate approaching
that of 1CS, and the some of the advantage of the nmore
expensive device is lost.

Figure F-8 illustrates the use of a preemptive priority
scheduling scheme of the type used in MTS (it 1is described
fully in Appendix 1). Each time a task completes an I/0
operation it preempts the task currently using the CPU. In
almost every respect, the results of this test are the sane
as those of the Basic system. The mean CPU service time is
shorter owing to the interruptions, and the paging activity
is slightly increased. The overall CPU wutilization 1is
slightly smaller. This policy exists in MTS in part to
optimize the SPOOLing operations which run in the background
and generate a large number of interrupts for short CPU
service requests. The results of this run suggest that it
does nothing to help overall CPU utilization <£for conversa-
tional tasks, and indeed seems to degrade performance
slightly by increasing the paging load.

In Figure F-9 we give the results of a "negative" test:
a poorer method of operating the paging drum is examined for
the lighter paging load task stream to judge the sensitivity
of the mechanism to such changes. When write requests are
allowed to compete with read requests by being assigned at
random to drum sectors and given equal priority in the queue
discipline with read requests, the result is an expected
decrease in performance, though it is no worse than
expected.

A number of changes 1in the Basic model are lumped
together in the run described in Figure F-10: the drunm
queues are ordered by giving priority to tasks which already
have a large number of core pages (in an effort to complete
these tasks 1in less elapsed time). The option of a
preemptive CPU queue discipline is also included here.
Finally, the time slice is increased from 16 to 24 tinme
units, or for MTS about 64 to 96 msec., in order to reduce
paging. Ccmparing the results with the corresponding Basic

Simulation 73

run, we see that they are 1inconclusive: there 1is an
improvement in the first run segment which 1is at 1least
partially cancelled in the second. Differences are probably
at or below the level of variations in the task data. We
saw earlier that the preemptive CPU queue option had a
negative effect on CPU utilization. From MTS experience and
simulation test runs, it seems that the change in time slice
would produce a very small improvement in performance. Thus
it also seems that the change in drum queue discipline has
made little if any improvement.

As a final case, we consider the use of a U-sector drum
with the results given in Figure F-11, which reduces latency
over the 9-sector drum by a factor of more than two, and
also the effect of writing 20% 1less pages than - are read
(assuming that they are left unchanged since the last read
operation). In this case we see a substantial improvement
in CPU utilization, and a less significant increase in the
use of the drum. Both of these changes improve performance.
In view of our earlier experience with latency and the heavy
paging load in the present case, we suspect that more of the
credit for performance improvement belongs to the fact that
10% more drum operations are available for read operations
than to the decrease in individual paging delays.

74 Simulation

CHAPTER_ 5. _CONCLUSIONS

"The purpose of computing is insight, not numbers."

R. W. Hamming

This study has concentrated on increasing the efficiency
of operating systems by improving storage allocation techni-
ques. The performance of modern computing systems is
sensitive to a number of distinct but related parameters:
the hardware configuration, the operating system algorithnms
which are used to support the machine, the structure and
constraints under which tasks must be presented to the
system, and the characteristics of the demands for service
all have an important influence on the efficiency with which
a system processes tasks. As systems grow larger and
faster, doing more multiplexing and parallel processing,
information about their performance and workload is harder
to obtain and interpret, and theoretical models of systenm
and task behavior are harder to formulate. Heuristic
techniques for improving performance are also less success-
ful because systems are poorly understood.

The central purpose of this research has been to identify
ways 1in which the storage allocation aspect of these
problems can be understood. A prerequisite to this know-
ledge is a method of 1learning exactly what goes on in a
system that is of importance in affecting storage allocation
events. This problem was solved for the purposes of the
current research by designing and implementing a system for
data collection and analysis for a new time-sharing systen,
and demonstrating that the facility could obtain the neces-
sary data with sufficient accuracy. This tool has also
proved useful for studying a number of other previously
unmeasured phenomena, and for use in evaluating experiments
performed with the real systenm.

A second problem in the investigation of storage alloca-
tion techniques for large-scale systems is that refinements
in the scheduler and other central operating system com-
ponents have little impact if the system 1is poorly confi-
gured for its workload or is supported by inadequate
programs for management of the important auxiliary storage
devices, such as disks and drums. Thus a number of equally

Conclusions 75

difficult problems must be solved before the system can be
"tuned up" to its potential. This problem was approached by
using a simulation program to estimate the impact of some of
these basic configuration and device management problems.
Data from the system itself was invaluable in the design
stage for the simulation model, but even more so as a source
of input data for simulation runs. Not only does the use of
an abstraction of real data preserve a number of subtle
correlations and interrelationships among the different
events and characteristics of system operation, but the
simulation results can be compared more directly with the
performance of the real system under the same conditions.
The same data can be used repeatedly to test different
simulated systems under a constant load.

One of the most intriguing possibilities for improving
system storage allocation is the study of the way individual
tasks can be modified in structure and arrangement in
storage in order to meet this goal. 1In particular, one
would like to automate the process of producing 1large
programs which use storage efficiently and act in harmony
with the operating system algorithms and policies, The
first two chapters of this thesis indicate ways in which
stochastic descriptions of the behavior of tasks can be used
to minimize the system cost of processing themn. Both the
static and dynamic technigques can be automated by using a
data collection facility and appropriate analysis programs
to reduce the data to a concise stochastic model of task
behavior.

Models of individual tasks are insufficient, however, to
encompass the entire storage allocation problem for multi-
programmed systems which are designed to capitalize on
variations in individual task behavior. 1In these systems
there are additional problems involved with scheduling
events whose contribution to system cost can only be
measured in terms of the immediate environment or events
which follow it in time. Thus the third chapter of this
work deals with a simple model which represents the nmulti-
programming situation. Here, as with the other models, we
try to represent the actual storage allocation structure as
accurately as possible. The intent is not to decide whether
a particular allocation scheme or hardware configuration is
better than others, but to provide a tool which can be used
to compare strategies in a specific situation. The multi-
program model is also amenable to automation, in the sense
that a range of parameter values appropriate for the
anticipated load can be stored in the system and used to
help control the flow of tasks.

76 Conclusions

A word should also be said about the relation of this
work to questions of response time and other descriptions of
satisfactory system performance. It is frequently true that
system efficiency and the maintenance of good service run
counter to one another. We justify our disregard for this
other aspect of system performance on two grounds: first,
that a certain level of efficiency is required before these
questions come into conflict. A very inefficient systen
serves no one vwell, Second, most questions of adequate
response allow the system a certain amount of leeway in its
control of tasks. Typically, a system must provide several
levels of service, but no further constraints are given as
long as these levels are maintained. Whenever such leeway
occurs, the system should capitalize on the freedom in order
to increase its own efficiency.

In summary, the results of this work demonstrate the
advantages of wusing a "vertically organized" set of models
for studying operating system and individual program perfor-
mance: from data about an actual system we establish a set
of models at different 1levels of abstraction which are
related with the use of common data, and whose results may
be implemented to improve the real system used as a basis.

Conclusions 77

Appendix A: UMMPS and MTS

This appendix describes the time-shared operating systenm
from which operating statistics and job program data were
gathered for use elsewhere in this paper.

I. UMMPS

UMMPS (University of Michigan Multi-Programming System)
is a multiprogramming operating system for the IBM System/
360 series computers. UMMPS executes Jjobs, which are
initiated and controlled from the operator's console type-
Wwriter. Each job runs in problem state and uses supervisor

calls for all its input and output operations.

A job program is the basic set of instructions which are

executed when an UMMPS Jjob is run. Job programs are
core-resident along with the UMMPS supervisor and subrou-
tines. A reentrant job program can be executed at the same

time by more than one job. When a job program is written a
set of device types and a set of memory buffers of various
sizes are specified. Corresponding actual devices and
memory space are allocated for any job initiated with that
job program, and these are retained until the termination of
the job. By means of supervisor calls, jobs may obtain and
release additional devices and storage space during their
execution. A single device (e.g. a card reader, communica-
tions terminal, or a disk module) is available for at most
one job at any given instant.

The more recent (since November, 1967) versions of UMMPS
use the dynamic relocation hardware peculiar to the Systenm/
360 Model 67 in order to provide a virtual memory buffer
space of 256 pages (one page = 4096 bytes) for each Jjob.
The supervisor manages real core memory with a demand paging
algorithm, wusing an IBM 2301 Drum for secondary storage.
The drum format is described in Appendix B, as well as the
queueing structure used to prepare program pages for reading
and writing. The policies for using the queues are as
follows:

(a) A channel program is constructed to read pages
from as many of the drum sectors as possible. The
remaining sectors, if any, are then used for servic-
ing the first write requests. More than one of
these <channel programs may be constructed at one
time and chained together, providing a complete

78 UMMPS and MTS

schedule of drum operations for the next several
revolutions of the drunm.

(b) Unless a page in real core enjoys a special
"temporarily resident" status, it is placed on the
queue for page-out as soon as it enters core. This
queue 1is reordered according to the usage of the
pages enqueued: once every several hundred times
that the supervisor is entered, the hardware
"storage reference bits" are checked for each page
in the queue, and all pages referenced since the
last check are moved to the end of the gueue.

(c) When the paging drum processor requests a set of
pages from the supervisor to be written on the drunm,
those pages are made available from the head of the
page-out gqueue only in case core is sufficiently
full.

(d) The supervisor may also refuse to supply the
drum processor with an empty page for a page-in
request, if there are almost no available empty core
pages.

The organization of the job scheduler information is
diagrammed in Figure A-1. The main CPU queue is a list of
jobs which are scanned in top to bottom order, and are given
the CPU if they are ready to use it. Whenever a job
initiates an I/0 operation which makes it not ready for
execution and guarantees that an interrupt will occur when
it again Dbecomes ready, its entry is removed from the main
CPU queue. UMMPS also allows a job to remain ineligible for
the CPU until a byte in main storage changes value. A job
waiting for such an event remains in the CPU queue, and the
byte is tested only when that job is the next one to be
dispatched. If the byte has not vyet <changed, the job
following it in the queue is given the CPU. (A Jjob in
execution can also voluntarily place itself at the bottom of
the CPU queue.)

UMMPS and MTS

79

SYSTEM CPU QUEUE

head

b o ol

-.ﬁ-rll-

Public

Private

WAIT QUEUE

[~ w— —

L]
!
]

s
————+—-Wait Status

e — — o

P e o —— — —

head

rllrllll

[= wm— —

de — —

b —

po - o—

r——+—-Wait Status

CPU Status

b e bt el

| <——

=

CPU Status

-

The UMMPS Job Scheduler Queues.

Figure A-1.

UMMPS and MTS

80

When an interrupt occurs for a job which does not have an
entry on the main CPU queue, it immediately preempts the job
currently allocated the CPU (i,e. an entry is placed on the
very top of the queue and the job is dispatched, while the
preempted Jjob remains next in the queue). Each job runs
until it waits for some event or until a timer interrupt
signals the end of a time slice.

After several months of demand paging operations, the
UMMPS job scheduler was modified to improve its performance
under heavy paging loads. The new algorithm, suggested in
part by the investigation in Chapter 3 of this thesis,
allows only a handful of jobs to attempt to acquire a large
number of main storage pages at any one time. Another job
requesting a real core page which would give it more than a
certain threshold is made to wait until one of the "privi-
leged"” Jjobs has finished its time slice or begun an I/O
wait. The threshold, which is initially about one quarter
of the total main storage space, is lowered each time a job
becomes privileged, and raised when a privileged job leaves
that status.

The number of privileged jobs is a system parameter. A
job entering privileged status at a time when k more Jjobs
may yet do so is given a time slice which is k+2 times as
large as the fixed value for unprivileged tasks. As an
additional attempt to keep the jobs from fighting among each
other for storage space, all main storage pages belonging to
a job 1in page-wait are counted as having been referenced
whenever the page-out queue is reordered.

Each job has a personal CPU queue which is used to keep
track of multiple levels of execution. The top entry refers
to the sub-task (if any) currently in contention for the
CPU. A lower-level entry represents a sub-task which has
been interrupted but may later be resumed. For exanmple,
some I/0 interrupts cause a new entry on the gueue for their
processing. A job using the MTS job program with a remote
terminal device may be given an attention interrupt by the
MTS user (or operator), and then restarted after other
commands, such as those to display and alter storage
locations, have been given.

A wait queue is maintained for each job. It contains an
entry for each personal CPU queue entry which represents a
sub-task currently waiting. Thus a job may be waiting at
several of its lower levels and executing at the top level.
An interrupt signalling the end of such a wait can be
properly recorded by removing a wait queue entry for the
appropriate CPU queue level.

UMMPS and MTS 81

II. MIS

MTS (Michigan Terminal System) is a reentrant job program
in UMMPS. It provides the capability of loading, executing
and contrclling programs from remote terminals and through a
batch streanm. In the rest of this paper, the term MTS job
denotes an UMMPS job using the MTS job program. Since an
enabled communications 1line may be used serially by more
than one person, the term MTS task is used to refer to an
MTS job during its use by a single individual, i.e. from the
execution of a $SIGNON command to the corresponding
$SIGNOFF. Together with UMMPS, MTS provides a simple Dbut
powerful time-shared computer system, whose salient features
are these:

(a) Command language. Several dozen commands are
available to cause the running and monitoring of
programs, the manipulation of line files, and other
communication with the systen.

(b) line_files. A system of information organized
in units of lines (1 to 256 characters) and files (0
to many thousands of 1lines) 1is provided for the
storage of programs and data. A file may be public
or private, and a private file may be permanent or
temporary. These files reside on direct-access
storage devices.

(c) Logical devices. When an MTS user specifies the
origin or disposition of data, he may give, inter-
changeably, the name of a file 1location or a
physical device. A logical device name or number is
then attached to it. It may refer, for example, to
a system (public) file, a new temporary private
file, a card punch, or the operator's console.

(d) Dynamic loader. A program to dynamically load
programs is an integral part of MTS. It may Dbe
invoked by both commands and subroutine calls.

(e) Libraries. External symbols which have been
referred to by a set of loaded programs, but not
defined, may be resolved by reference to a private
or system library, which is a file containing object
programs in a special format. Facilities exist in
MTS and the Loader to pass over a library and
selectively load only needed subroutines (and the
subroutines that they need, etc.).

82 UMMPS and MTS

(f) Llangquage _processors. The MTS system mnakes
available the IBM System/360 F-Level Assembler, the
IBM FORTRAN IV G-Level Compiler, WATFOR (University
of Haterloo FQRTRAN "Load and Go" Compiler), PIL
(University of Pittsburgh Interpretive Language),
SNOBOL4 (Bell Laboratories string manipulation lan-
guage), and UMIST (University of Michigan Interpre-
tive String Translator), a string processor based on
the TRAC text-processing language. These programs
reside in system files, and are executed in the same
way as one's own programs produced by their execu-
tion. Other powerful system features, such as the
I0H/360 1input-output conversion subroutines, macro
libraries, plotting routines, etc., reside in the
library and other systenm files.

UMMPS and MTS

83

Appendix B: _The Drum_I/O Channel

This appendix describes a type of input-output channel
with an attached magnetic drum storage unit. An organiza-
tion 1is specified for using this "drum I/O channel" as an
extension of main storage 1in a paging systen. For a
particular set of parameter values, this section describes
the IBM 2301 Drum with IBM 2820 Storage Control Unit. The
organization described is in fact used with this drum in the
IBM Time~-Sharing System/360 (TSS) and Michigan Terminal
System (MIS) operating systems.

I. Equipment and Data Format

We assume that both input and output data transfers nust
be processed sequentially through a single channel, with
each transfer consisting of one page of information. For
this purpose the drum is formatted laterally into a number,

k , of tracks, with each track divided on the circumference
of the drum into m sectors of equal size. The part of a
track lying within one sector has a capacity of one page of
information. Thus each of the m times k pages stored on
the drum has a unique identifying address consisting of 1its
(track, sector) pair. As a new sector of the drum reaches
the read/write heads, the choice of a +track for the next
transfer request is made electronically (with essentially no
delay), so that any of k pages may be selected regardless
of the track used for the previous read or write.

We note, parenthetically, that on the IBM 2301 Drum four
physical tracks may be read in parallel; hence they forn
together one '"track" in the sense of the preceding para-
graph. Furthermore, with the given page size of 4096 bytes,
one "track" is divided into four and one-half sectors. Thus
9 pages are stored on a set of two adjacent "tracks" (eight
physical tracks), and two drum revolutions are necessary 1in
order to access the entire set. Used in this manner, the
2301 drum has 100 logical tracks, providing a total capacity
of 900 pages (m=9, k=100).

84 Drum I/O0 Channel

II. Data Access Organization

A page read or write request for the drum I/0 channel is
placed on one of m sector queues. Since a read request
involves a page which already exists on the drum, it is
constrained to a specific sector. A write request, on the
other hand, may be assigned to any sector (releasing a
previous drum address, if any). A channel program for data
transfer during one revolution past the m sectors 1is
constructed by removing the first entry in each sector
queue. The paging drum processor constructs each channel
program and links it to the ‘Y"command chain" of channel
programs already enqueued for execution. Thus the queues
are serviced cyclically as the appropriate sectors reach the
read/write heads.

I1I. Analysis

We adopt a time scale in which one unit of time is the
transfer time for one page of information, or almost
equivalently, the rotation time of the drum divided by the
number of sectors (for the IBM 2301 Drum this time is about
3.9 milliseconds [35]). We now compute the cunmulative
distribution function for the drum service completion time
(queueing time plus unit service time), assuming that

(a) page transfer requests are uniformly distributed
over the m drum sectors, and

(b) the sector gqueues are serviced with a first-in,
first-out discipline.

Lemma EB-1.

The completion time distribution function F(k,t)
given that the sector associated with the request is
known and k requests precede the arriving one on
that sector queue is

Drum I/0 Channel 85

86

F(k,t) = Prob[c<t|k]
(a) 0 if t < km + 1,
(b)y 1 if t > (k+)m + 1,

(c) (t-km-1)/n otherwise.}

Proof: The minimum time required to service the
given k+1 requests 1is k drum revolutions plus
one time unit, or km+1 time units. The arrival of
the last request is arbitrary with respect +to the
rotational position of the drum, and the maximum
time for servicing k+1 requests is one additional
drum revolution, or (k+1) m+1 time units. The
completion time of the (k+1)st request is uniform-
ly distributed Dbetween the minimum and maximum
values.

Lemma B-2.

The probability G(n,k) that a given sector queue
contains exactly k entries, given that n transf-
er requests are enqueued in the entire system, is

n-k n
G(n,k) = C(n,k) (m=1) /n

where C(n,k) denotes the binomial coefficient.

Proof: The k sector queue entries can be chosen
from n in C(n,k) different ways, and the remain-
ing n-k requests can be found on the other m-1
queues in
n-k
(m-1)

ways. The total number of distinct configurations
is of course

n
m

Since the given sector queue must contain k

entries, for some value of k between O and n,
we have also that

Drum I/0 Channel

G(n,k) =1
0

Hivis

k

Theorem B-1.

n-k n
G(n,k) = C(n,;k) (m—1) /nm

where C{(n,k) denotes the binomial coefficient.

Proof: The k sector queue entries can be chosen
from n in C{(n,k) different ways, and the remain-
ing mn-k requests can be found on the other mn-1
queues in
n-k
(m=1)

ways. The total number of distinct configurations
is of course

n
m

Since the given sector queue must contain k
entries, for some value of k Dbetween 0 and n,
we have also that

i ivis
@
o
o
<
o
{
et

k=0

Theorem B-1.
The unconditional distribution function H(n,t) for

the completion time, given =n prior requests to the
drum I/0 channel, is

H{n,t) = Prob[cst] =
k

G(n,k) F(k,t)
0

v i

Proof: An arriving request is assigned at random to
a sector queue in which k requests are already
enquened with probability G(n,k), and n requests

Drum I/0 Channel 87

are already waiting in the whole system. Its

completion +time in this case is F(k,t), where k

may take on any value between 0 and n.
The drum I/0 channel completion time distribution function
is plotted in Figure B-1 for small values of n. Because
its algebraic form is simple, the first and second noments

can be obtained in closed forn:
Theorem B-2.

The mean value M(n) of H(n,t)

(m+2n+2) /2

Proof:
of t
We apply the
and integrate under
split the
tions, according
F(k,t).
then applied to each of the final terms.

By definition, M{(n)
with respect to the differential
definition of H(n,t),
the summation

the of the

to form

Moo

|

| t dH(n,t)
|

L1

M(n)

oo

=] td
] k
L1

G(n,k)F(k,t)

Hivis

0

m(n+l)me

I
G(n,k) |
0 |

L0

i
nivis

t dF(k,t)
k

r1km+1 m (k+1) n+1

| |
G(n,k) [I 0 dt + |
0 | |
o Ldkm+1

t/n dt

i
hivis

k

88 Drum I/0 Channel

operation,
resulting integrals each into three sec-
functions
The identity in the proof of lemma B-2 is

is given by

is the total integral
of
differentiate

H(n,t).

and

Mmoo
|
+

I
L (k+1) m+ 1

0 dt]

G(n,k) ((2k+1)m + 2) /2

i
Hivis

k

k G(n,k) + m/2 + 1
0

it
=
nivis

k

1
G(n-1,k) + m/2 + 1
0

n
n
k

]
vt

= (m+ 2n + 2)/2

]
i

The same method of proof establishes the formula below
for the second moment of the distribution, with which the
standard deviation and coefficient of variation can -easily
be calculated.

Corocllary B-1.
The second moment of the drum delay distribution is

m2/3 + m + 2mnn + n2 + n + 1

Corollary B-2.

The standard deviation of the- same distribution is
the square root of

(m2 + 12(m-1)n) /12

The graphs of Figure B-1 show that the drum delay
distribution has the general slope of a negative exponential
distributiorn. However, Figure B-2, which compares a few of
the same curves with exponentials of the same mean values,
shows that the exponential itself is not a particularly good
fit.

Since the standard deviation of H(n,t) 1s less than its .
mean, a much better approximating function of the exponen-
tial type is a gamma distribution [26] with integral
parameter, sometimes called an Erlangian distribution. The

Drum I/O0 Channel 89

Erlangian distribution is selected so that it has the sanme
mean value as H(n,t), and the standard deviations agree as
closely as possible.

Figure B-3 gives the basic parameters of some of the
functions H(n,t) together with the parameter g of the
best Erlangian function, whose definition is

X

3

g g1 -qt/M (n)
(g/n(n)) (t /(g-N1) e dt

0

E(q,x) =

| S

L

Finally, several of the drum delay distributions are plotted
with their corresponding Erlangian approximations in Figure
B-4. It is interesting to note that for small values of n,
the best Erlangian fit has a small, relatively constant
parameter.

90 Drum I/O Channel

oo.mb

oo.mm

(3’u)H suoT3zoung 3YJ

(1) SL1INN 3WI1l 40 H3IEWNN

00°95 00°8v oo.o« oo.mm

00°¥C

*L-9 8anbrg

00°91

00°8

o
(=]

1
LA

i 'S 1
L] L L

-+

L
4+

~ ONI1lIbM S1S3ND3Y HOIWd ST 01 O ONY
SHO1J3S 6 HLIM WNHO U dod

SNOTLNAIHISTO JWIL HIJSNUHL WNHO ONISHd

+

-

-+~

b
T

ot 02

y -
L

R i 09’.

08*

i
v

00" ”

1 NI 03137dW03J Y34SNBYL 1UHL ALI11859804d

91

DPrum I/0 Channel

3TA [eTiusuodxy a2ATIebON ayjg *Z-49 oInbtg

(13 S1INN JWI1 40 H38WNN

0006 00°08 . 00°0L . 0009 . 00°0S 00°0¥ _ oo.oM_ ~ 00°02 . 00°01 . 00°
NOILNAIHISIO THIININOAX3 HLIM NOSIHHLWOD
6153ND3Y HDIHd 02 S1 D1 S O ONW |
SHO1J3S 6 HLIM WNHO Y 404
SNOILINAIHISIO JWIL HIJASNGH1 WNHO ONI9Bd
I

-

R R A A

08"
L NI Q3137dW0J- 444SNBHL 1HHL A1I71188804d

L

v

00°1

Drum I/0 Channel

92

L @ T 1] 1 i) A
| Congestion | Mean | Standard | Coeff. of | Erlang |
{ index n | Value | Deviation | Variation | parameter |
L i 1 1))

] L)]) | Ll

Number of | | | | | |

Sectors | 0 | 5.5 | 2.598 | 47.23 | 4 |

mn=9 I 1| 6.5 | 3.841 | 59.09 I 31

| 2 | 7.5 | 4.770 | 63.60 | 2 |

I 31| 8.5 | 5.545 | 65.23 I 2 |

| 4 | 9.5 | 6.225 | 65.52 I 2 |

{ 51 10.5 | 6.837 i 65.12 i 2|

| 6 1 11.5 | 7.399 | 64.34 | 2

i 71 12.5 | 7.921 | 63.37 I 2 |

I 8 1 13.5 | 8.411 | 62.31 I 3|

I 9 | 14.5 | 8.874 | 61.20 G I |

| 10 § 15.5 | 9.314 | 60.09 | 31

| | | | | |

| 12 | 17.5 | 10.14 | 57.92 | 3|

| | | | | |

I 15 | 20.5 | 11.26 | 54.92 i 3

| | | { I l

I 20 | 25.5 | 12.91 | 50.64 | 4 |

| | I | i |

| 50 | 55.5 | 20.17 | 36.34 | 8 |

+- t + t i {

| { | | I |

n=4 | 0 | 3.0 | 1.155 | 38.49 i 7 1

I I | 4.0 | 2.082 | 52.04 | 4 |

I 2| 5.0 | 2.708 | 54.16 I 3|

I 3| 6.0 | 3.215 | 53.58 I 3|

| 4 | 7.0 | 3.651 | 52.16 | 4 |

I 51 8.0 | 4.041 | 50.52 | 4 |

| 6 | 9.0 | 4.397 | 48.86 | 4

| 71 10.0 | b.726 | 47.25 { 4 |

| 8| 11.0 | 5.033 | 45.76 I 5 |

Il 91 12.0 | 5.323 | uy. 36 I 5 |

{ 10 | 13.0 | 5.598 | 43.06 I 51

| | | | | |

| 12 | 15.0 | 6.11 | 40.73 | 6 |

| | | | | |

| 15 1 18.0 | 6.807 (37.82 I 7 1

| | | | | [

| 20 | 23.0 | 7.832 | 34.05 I 9 |

l | | | | |

| 50 | 53.0 | 12.30 | 23.21 | 19 |

L AL 1] . L.]

Figure B-3.

Characteristics of the Distribution H(n,t)

Drum I/0 Channel 93

(3‘b)a 3Ta uetbueray oyl “p-4 2INnbTJ

(1) SLINN dWIL 40 Y3AGWNN
00°06 00°08 00°0L 00709 00°0S 00°0¥ 00°0E 00°® 0001 00

4
L L

1
+

NOILNAIHISIO NHIONYTHI HLIM NOSIHHAWOD ; /
S153N03Y HOIH4 0Z G1 D1 S D ON
SHO1J3S 6 H1IM WNHO B 404
SNOILNEGIHISIO 3WIL H34SNBdl WNHd ONI9gBd

-
-

i
L

o¥*

[

1

08*

L

go*”

1 NI 03137dW00 H34SNBHL L1BHL AlIT18H804d

Drum I/O0 Channel

0¢*

T

09’

00°1

94

IV. Multiple Drums

We note here that a simple modification of the function
H(n,t) 4is all that is needed to represent a configuration
of several independent paging mechanisms. For example, with
tvo drums on separate channels, we assume that requests for
pages are equally distributed between the two, which leads
to

Lemma B-3.

The probability G2(n,k) that a given sector queue
contains exactly k entries, given that n transf-
er requests are enqueued in the entire system, is

n-k n
G2(n,k) = C(n,k) (2m-1) /(2m)

where C(n,k) denotes the binomial coefficient.

Proof: The proof of Lemma B-2 applies when the page
requests are uniformly distributed over 2m sector
queues instead of m. =

Theorem B-3.

The unconditional distribution function HZ2(n,t)
for the completion time, given n prior requests to
the pair of drum I/O channels, is

H2(n,t) = Prob[c<t] =
k

G2 (n,k) F(k,t)
0

I ivis

Proof: Exactly the same as the proof of Theoren
B-1.

Drum I/0 Channel 9%

V. Practical Considerations

There are several ways in which the management of the
drum I/0 channel by an operating system tends to alter its
performance from the functional characterization given in
the previous section:

(a) If a channel program is constructed and added to the
command chain too far in advance of its execution, there nmay
be sectors for which no read or write requests are avail-
able. Yet such a request arriving once the program 1is
enchained cannot be serviced until a subsequent revolution.
This phenomenon tends to make the drum I/O channel respond
as if it were subject to a heavier load.

(b) The real core page involved in a transfer request
cannot be used until the completed transfer 1is posted (a
table 1is updated to record the transfer). Programmed
interrupts are usually inserted in the command chain to
trigger page posting, but since a noticeable amount of CPU
time is required to process such interrupts, one can afford
to use them only to signal the completion of groups--say 5
to 10--of transfers. Thus the effective service time |is
increased by the fact that a typical page is unavailable for
a time after the actual completion of its associated
transfer.

(c) In practice a queue discipline other than first-in,
first-out might be used with the drum sector queues. If,
for example, there are priority classes of page transfer
requests, then the drum delay distribution is applicable
only to the highest priority class, where for the number n
of prior requests waiting we use only the number of highest
priority requests waiting. A reasonable priority schene,
for example, is to give all read requests priority over
every write request in the sector queues. This is done in
the MTS systen.

96 Drum I/O0 Channel

Appendix C: The Data Collection Facility

This appendix describes additions that were made to UMMPS
and MTS in order to record details about jobs executed in
the system, and the way in which they were processed. The
effect on the data of measuring it is considered, and shown
to be s0 small as to be negligible. Also described are
programs written for the analysis and reduction of the data
obtained in this fashion.

I. Data collection

The data collection facility includes two job programs
added to the UMMPS system (STAT, STATSW), a subroutine
available for execution at the MTS device support routine
interface, a supervisor call (SVC) instruction, and a number
of additions and modifications to UMMPS and MTS to use the
new programs: data is taken from those points in the systen
wvhere relevant information 1is available about a job being
run.

(a) STAT Job

An UMMPS job called STAT exists to dispose of data
being collected by the systen. STAT 1links and
manages a chain of one-page buffers into which the
supervisor places data. This job is dormant except
when a buffer becomes full, whereupon STAT empties
it onto tape and marks its availability again. One
or two tape units may be used, with reel-switching
when necessary.

Whether data is collected or not for a particular
UMMPS job depends on the condition of a word of
sWwitches in the job table. Provision has been made
for each type of data item to be collected or not
for each Jjob independently of the other items, but
currently either all the items are collected or
none. A data item is placed in the current STAT
buffer by the supervisor or by executing the pre-
viously mentioned SVC, which obeys only in case the
job table bit is set for that job. Parameters for
the STAT job therefore not only include the names of
tape units, but also job (and eventually iten)
identification numbers as well, specifying what data

Data Collection 97

98

is to be collected. The STAT job sets the appropri-
ate job table bits, and resets them when data
collection is terminated.

The CPU idle <condition is handled in UMMPS by
pretending to execute a (non-existent) job whose
number is zero. Specifying this job number for data
collection will cause recording of all transitions
to and from the CPU idle state.

(b) STATSW Job

If data collection is to be initiated or terminated
for a job once the STAT job has already been
activated, the STATSW job is used. This job simply
turns specified job table bits on and off.

(c) SVC STATENT

The supervisor call for entering a data item in a
STAT buffer accepts up to 24 bytes of data, and
prefixes it with a standard 8-byte unit which
contains

1. one byte of item identification and length
2. a two-byte job number
3. a five-byte timer value

Separate identification codes for 32 distinct items
are provided. Most of these <codes have been
assigned meanings by their use in UMMPS and MTS for
specific kinds of system data. The remaining codes
may be used in job programs by system programmers as
an aid in error analysis. Figure C-1 summarizes the
definitions of the existing codes.

Data Collection

STANDARD DATA ITEMS COLLECTED WITH THE STAT JOB

Parts of the data items which are not described below are unused
or contain meaningless data. Each standard item begins with a
two~word prefix: the ID and 1length in byte 1 in the form
ID*8+LEN-1, then the low order timer byte in byte 2. The job number
occupies bytes 3-4 and the timer word is in bytes 5-8.

Note: The first two items are placed in the buffers by STAT
itself and do not have the standard prefix described above.

NAME ID/LEN DESCRIPTION

Overflow* 0:1 The second half-word of this one word item contains a

' ‘ count of the number of items which were missed at the
point of occurrence because the STAT Jjob could not
keep up.

Datex 1:3 Words two and three of this item contain the EBCD
date obtained from the system and placed in the first
buffer by the STAT job.

Adtotp 2:3 This item occurs when a new entry is added to the top
of the CPU Q for this job. Byte 9 contains the index
of the new CPU Q entry, and bytes 10-12 contain 1its
address.

Popg 3:3 This item occurs whenever an entry is removed from
the top of the CPU Q for this job. Byte 9 has the
index and bytes 10-12 the address of the new top of Q
entry, as above.

Wayt 4:4 A wayt 1item occurs when a job enters wait state at
its top CPU Q level for any reason. Byte 9 contains
the index of the next lower wayt O entry, and byte 10
the index of the CPU Q entry corresponding to the new
Wayt. Bytes 11-12 contain the hex value 00ff if the
wait was not for I/O, otherwise they contain the
device address. Bytes 13-16 contain the flag and
address specifying the location of a wait byte.

Unwayt 5:3 Whenever a job stops waiting for any event at any CPU
Q level, the index of the top remaining Wayt Q entry
is given in byte 9, and the address in bytes 10-12.

Figure C-1. Standard System Data Items

Data Collection 99

NAME ID/LEN

o) 6:3

Statsw 7:3

Paginstr 7:5

Pagindon 9:5

Pagoutst 10:5

Pagoutdn 11:5

Pagreclm 12:5

Getvmpag 13:5

Frevmpag 14:5

Mark 23:?

Vmpages 24:5

DESCRIPTION

This type of item is recorded whenever the job given
by the number in bytes 3-4 relinquishes the CPU to
the job whose number is in bytes 11-12.

The job number given in bytes 11-12 is that of a job
whose status with respect to data recording has Jjust
changed. Recording has just begun if byte 9 is zero
and has just ended if byte 9 is FF.

When a page-in operation is started the following 1is
given: the real core page address in bytes 8-9, the
virtual memory page address in bytes 10-11, the page
control block status bits in byte 12, the storage key
and other bits in byte 16, the PDP and address flags
in byte 17, and the extermnal (track, slot) address in
bytes 18-19.

When a page~in operation is completed the same data
is given as for 'Paginstr' above.

When a page-out operation is initiated the same data
is given as for 'Paginstr' above.

When a page-out operation is completéd the same data
is given as for 'Paginstr' above.

If a page is reclaimed during page-out the very sanme
data is given as for ‘'Paginstr' above. ’

When a new virtual memory page is allocated the samre
data is given as for 'Paginstr' above.

When a virtual memory page is released the very same
data 1s given as for 'Paginstr' above.

This entry is reserved for the use of system program-
mers in that it is the only one guaranteed to be
unassigned to some standard system function, and is
'watched for' by the *ANALYSIS program so that it
appears with interval timing on the output format,
and is appropriately marked on input format,

Whenever the number of virtual memory pages used by a
job either increases or decreases, an entry appears
to give the current value of the space-time integral
in 300ths of a second times half-pages-.in bytes 9-12

Figure C-1. Standard System Data Items (cont'd)

100 Data Collection

Iz
o
=

HE ID/LEN DESCRIPTION

and the time of day when the value 1last changed in
bytes 13-16, with the current (new) number of half
pages in bytes 17-20. Note that this is a virtual,
not real, storage usage integral.

Waitfor 25:2 B minimal entry is made whenever an MTS user signs
off, leaving the job for someone else.

Unlocad 26:7 When this type of item appears a program has just
been unloaded in MTS. Its name is given in bytes
9-24 and the storage index number corresponding to it
is in byte 25.

Load 27:7 The information provided above for an ‘'Unload' is
also given for every 'Load'.

Freespac 28:3 When core space is released by an MTS job the storage
index number is given in byte 9 and the number of
bytes released is given in bytes 10-12.

Getspace 29:3 The same information is given whenever core space is
requested by an MTS job. '

Dsrin 30:2 When a device support routine is entered the minimunm
two-word item is given for an input line, and for an
output 1line the following: bytes 9-12 contain the
file or device name. Byte 13 contains the current
prefix character. The first byte of the FDUB
(including a bit for input or output) is given in
byte 14. Bytes 15-16 contain the length of the I/0
message, and bytes 17-20 contain the first four
characters. This information is currently collected
only for I/0 for devices (not files), and not for
lines with a prefix character of . (indicating
loading).

Dsrout 31:5 When a device support routine is exited, the ninimun
entry is given for an output line, and the item which
is described above for output lines at Dsrin is given
at 'Dsrout?! for input lines.

Dsrout 31:7 If an input line begins with the characters $SIG then
two additional words (8 characters) of the line are
given in bytes 21-28.

Figure C-1. Standard System Data Items {cont'd)

Data Collection 101

II. Effects of Data Collection

A software method of sampling operating system data
itself requires system resources, hence it is necessary to
take a hard look at possible bias in the data introduced by
the concurrent use of the CPU, I/O channel, and core storage
for the data collection activity itself. Happily, the
interference in this case can be shown to be negligible.

Data collection overhead occurs in five situations:

CPU time for deciding if data is to be collected.
Core storage for data buffers.

CPU time to enter data in buffers.

I/0 channel time to write buffers to tape.

CPU time for buffer management.

® 6 » 6 ¢

The first two of these items can be quickly dealt with. By
counting mean instruction times, it has been determined that
an average of less than 10 microseconds per supervisor entry
is required to decide whether or not to collect one or more
data items. This time is spent whenever the system 1is 1in
operation. Core storage consisting of three pages 1is
required for data buffers whenever data is being collected.
In the pre-paging versions of the supervisor and MTS, this
represented over three per cent of the total storage
capacity for MTS Jjobs, since a maximum of 97 pages was
available for non-resident progranms. However, with the
advent of a virtual memory space for each MTS job, the
effect of reserving those three pages of real memory is only
to increase the paging load on the system by a maximum of
3%.

Data is placed in the buffers in two essentially dif-
ferent ways:

1. by the supervisor use of a buffer entry ousrou-
tine during supervisor activity for some other
purpose, e.qg. for interrupt processing

2. by an SVC instruction issued by MTS or any job
program, which causes an entry into the supervisor
especially for data collection

In the former case the additional time required is only the
execution time of the buffer entry subroutine. 1In a typical
data collection period over 90% of the items are entered in
this manner. The CPU time required by this routine was
estimated by summing the average execution times for its

102 Data Collection

instructions. Four <cases are distinguished, with their
corresponding execution times shown in Figure C-3.

e ITtems consisting only of the standard 8-byte ID,
length, Jjob number and timer value, all supplied
by the subroutine itself.

¢ Items including one to 24 additional bytes of
data peculiar to the item type and passed to the
subroutine from the point of call.

e Items which cannot fit in the <current buffer,
and therefore require buffer switching in addition
to the normal entry execution time.

¢ Items which cannot be written because no buffer
is available. These are <called overflow items.
When the STAT job cannot keep up, a count is kept
of the total number of items missed before the
next new buffer becomes available, and the count
is entered as the first item in the new buffer.

Figure C-2 shows a typical distribution of data among the
various item types. The first count indicates the total
number of items of each type which appear in that portion of
the data which was examined. 1In practice, over 60% of the
items are the three-word queue items, and most other items
do contain additional data words. Since the buffers hold an
average of 310 items each, the additional buffer-switching
time occurs only infrequently. And finally, data is lost
only when a job enters a loop while generating items, or
tape writing errors occur at a peak period of activity. The
average overhead induced by a supervisor-written item is
about 65 microseconds.

When a data item is written via an SVC instruction,
additional activities are performed which overshadow the
data collection time itself: (a) machine status is saved at
the supervisor entry, (b) +the SVC 1is +traced and the
appropriate processing subroutine is called, (in this case
the Dbuffer entry subroutine), and (c) the job scheduler is
activated to dispatch the appropriate job at the supervisor
exit (usually the same job in this case). The total time
required for a data collection SVC was measured by repeated-
ly executing the SVC and differencing the successive timer
values appearing 1in the resulting data itenms. As an
additional check the time required to execute a sequence of
"null" SVC instructions was noted: a supervisor call with
no processing subroutine. The results are displayed 1in
Figure C-3.

Data Collection 103

ITEM FREQUENCY DATA

1IEM TYPE IOTAL _COUNT NO. SELECTED
Overflow 0 0
Date 1 0
Addtotop 7372 4814
Popqueue 7243 4737
Wayt 56339 34438
Unwayt 56327 34433
Queue 328031 197544
Statsw 17 9
Paginstr 702 491
Pagindon 702 491
Pagoutst 783 523
Pagoutdn 779 519
Pagreclm 3621 2098
Getvmpag 4098 2346
Frevmpag 4087 2333
Mark 0 0
Vmrages 5220 2975
Waitfor 54 29
Unload 150 75
Load 152 77
Freespac 9690 5635
Getspace 9858 5685
Dsrin 4496 3188
Dsrout 4491 3185

Total number of input items = 504204

Total number of missing items = 0

Figure C-2. A Sample Distribution of Data Items

Timer units with the System/360 high-resolution timer are
of thirteen and one forty-eighth microseconds duration.
Thus only two to four different timer values were observed
when timing SVC instructions. Since succeeding SVCs
occurred at different instants with respect to the beginning
of a timer unit, however, a more precise value <could be
obtained by dividing the total elapsed time by the number of

104 Data Collection

*All times are given in microseconds.

4 T 1
! BUFFER ENTRY SUBROUTINE TIMES* | PAGING]
{ (Sums of mean instruction times.) | without with |
t { .| 1
| | | |
i e Called by supervisor | | |
| | | |
H short item | 58.0 | 58.0 |
i long itenm | 65.5 | 65.5 |
| buffer switch item | 82.2 | 82.2 |
| overflow itenm | 4.4 34.4
| : i i {
| ¢ Called by SVC instruction { | |
| | | |
{ short item | 58.0 | 4.4 |
| - long iten | 65.5 | 81.9 |
| buffer switch itenm | 82.2 | 98.6 |}
i overflow iten { 34.4 | 50.7 |
| | | |
t - . 4 L 4
| SUPERVISOR CALL TIMES* |
| (Obtained with the data collection facility.) |
I ' T T i
» Data collection		
short item	263.3	323.9
longest iten	253.5	339.9
no entry		265.8
¢ Null SVC		261.6
'r - ' 1		
] i

Figure C-3. CPU Time for Data Collection

SVCs. The data in Figure C-3 is based on averages for 500
or more such successive observations. Data taken before and
after paging was introduced differed significantly in accor-
dance with the changes made in the system, but showed
surprising -agreement with the expectations of the system
programmers, and consistency among the various observations.

Data Collection 105

Two more overhead values for data collection remain to be
discussed: the CPU and I/O channel times required for the
STAT Jjob to write the data buffers onto tape. These values
were easily determined by collecting the standard data for
the STAT job itself. The average CPU time required per
buffer written was also determined by observing the total
time at the end of the run and counting the number of tape
records written.

The STAT job execution times exhibited a variation of as
much as about 20%, due to the fact that it is nearly all
spent in the supervisor and is therefore sensitive to the
system load. Slightly over one msec. is required to set up
a full buffer for tape writing, and a similar interval 1is
necessary after output to prepare the buffer for reuse.
These execution intervals are separated by an I/0 wait of
about 51 msec. (or 49 msec. for one of the buffers, which is
5% shorter). The overhead per record of data written is
about 2.3 msec. of CPU time and 51 msec. of channel time.
The +total amount of time required by the STAT job depends,
of course, on the volume of data collected. Three to eight
MTS terminal users working concurrently generate an average
of about six records/minute. Each record contains between
120 and 508 items, depending on the buffer length and item
sizes, but the value is usually very close to the average of
310 items/record.

Thus the typical overhead values for one ninute of
operation consist of

6 X 2.3 = 13.8 msec. CPU for STAT job.

65 x 280 x 6 109 msec. CPU for supervisor itenms.

330 x 30 x 6 = 59 msec. CPU for SVC itenms.

51 x 6 = 306 msec. channel time.

or not more than about 170 msec. (0.3%) of the total CPU
time and 306 msec. (0.5%) of channel time.

In summary, then, we assert that both in terms of total
time and individual time intervals, the use of systen
resources by the data collection facility is so small as to
have a negligible effect on the other jobs which share then.
This 1is particularly true since the total CPU idle time
(also measured with the data collection facility), averaged
between 50% and 90% during the months in which this data was

106 Data Collection

collected, and the I/0 channel is one of two nmultiplexor
subchannels dedicated to the eight tape drives.

ITI. Data Analysis

Several programs have been written to analyze and reduce
the data collected as described above. The following are
the primary goals of the analysis programs:

(a) To. print the data items which were collected,
with the timer information and other standard data
interpreted. An example of this format is given 1in
Figure C-4.

(b) To reduce the standard job scheduler items to a
sequence of WAIT, READY, and ACTIVE intervals for
each job, sifting out only relevant additional
information, such as the reason that an active job
terminated execution. A typical page of the printed
form of this option is shown in Figure C-5.

(¢) To produce distribution tables and graphs which
describe the storage execution and I/0 wait charac-
teristics of jobs, especially the MTS jobs run from
remote terminals.

(d) To provide input data for a simulation of other
possible operating system policies and designs,
using known workload characteristics.

Functions a and b above are provided by an object
program in the MTS file *ANALYSIS. Parameters to the
program include a selection of one or both of the a and

b formats, a selection of a subset of jobs, item types,
and tape locations (records, files) of data to be analyzed.
The latter options are necessary in view of the large
volumes of data which can be collected by the facility in
short periods of time.

The output of *ANALYSIS gives the information for mul-
tiple jobs interspersed in chronological order. Yet the
reduction indicated in b above requires that the informa-
tion actually be separated according to jobs during proces-
sing. The remaining analysis required is essentially that
of interpreting information from the job scheduler tables
and queues and isolating what the job actually requested
from the way the requests were handled by the supervisor.

Data Collection 107

Thus we distinguish, for example, between the active inter-
vals when a job has the CPU and the 1longer ‘"potentially
active" intervals for which it would have used the CPU
before a wait, if other jobs had not been dispatched.

The information produced by the analysis program can be
further analyzed using several modes of output the progran
provides. Options are available for passing the data to
subroutines. A Dbinary tape output format is also provided
from *ANALYSIS for input to other programs. The information
provided in these formats is more comprehensive than that
which is printed.

Functions c and d above are carried out by a second
program (STP2) which can read the tape output from *ANALYSIS
or be called as a subroutine. STP2 produces two output
tapes, which are formatted for input to the GPSS/360 models
described in Appendices D and E. The model explained 1in
Appendix D consists solely of tabulation statements to
collect and display MTS job characteristics.

The second simulation model, described in Appendix E,
forms a major tool in this work for the investigation of
operating system phenomena., The input data for this simula-
tion takes the form of models of the actual jobs run in MTS,
with most of the characteristics due to MTS itself removed.

108 Data Collection

e3eq pes3yerizouuy Jo ofdues ¥

‘-0 @anbrg

8GT100000 43314400 <€1004dvYVvI <€69716¢£9¢ 61 ERY RN ER
80000000 43314400 84310000 43314400 €100L2%D %11L6€92 61 SIOVAWA
_ 0300000 33314400 €10084VI 29696¢€9¢ 61 3OVdS1I39
00002001 08%00030 €0T10L600 33314400 €10062Y9 §68S6E92 61 WI3349v d
00000CGOT 0800080 €0I00000 3I33TJ4400 €100%8739 11946¢9¢ el IVdWALIS
890000C0 3I33T4400 €10018VI €1066€92 61 JIVdSi3s
0¢000000 3J33T4400 €1004ev3l €61%6€9¢ 61 33v¥dS1i3s
61000000 33314400 €10040V3 H26€6€92 61 Jovdsiise
2eS0L09T (08€0T103¢ 10100500 (C33T4400 €100D333% 969¢6¢9¢ 61 NOUNI9V ¢
€0000010 (3314400 €100%02¢ 26626¢€972 61 Inanc
€1002€21 03314400 €000%vce <c088YHEL9?Z € INnanod
2eS06091T 0820103% 1010VS00 03314400 €100VEvy 6G28%€92 61 YESNIOV d
£3673238¢ 01000000 €d471410€ed 30314400 €1001234 94%864H€97 61 1NoYs e
0e%0L091T 08201032 00106200 30314400 €ICOLLIY 6H%s1%E9? 61 NOCGNIOV ¢
¢0C00C0TO 30314400 €1000127¢€ 8GHI%c9c 61 ININt
€1002€21 10314400 €0009232¢ 6£L66297 € anane
0€%0509T 8610T10D2% 00106200 14314400 €10012%% 6L166292 61 HdLESNIOV ¢
00000000 1G3T4400 €10039VZ 86086292 61 LAVENN
24210068 10314300 €10009VI 91616797 61 ININDAO d
2%6200€8 10314400 €1003121 15016292 61 ¢01i010ay
00000000 00314400 €100D022¢ 6865629¢ 61 anane
€1002221 #5304400 (©L00L82E HZw82ZZ1 621 Inane
2421006¢ +#6304400 €10089Y1 02082221 61 IN3INO40d
%236120026 €6304400 €10046vZ 0Lgvezzzl 61 LAVYMN G
Y8€I00VYy €6304400 €1I0016VI 88tveecl 61 IN3INBLO0 d
¥121008¢ €6304400 €1000€21 866€2221 61 4010100V
01008097 ¢€9304400 ¢€100132¢ 62622221 61 ERERES
€1002221 25304300 1200022€ 91402221 6¢ Inane
60020T0¢ J400V%Z6 16304400 €1004d4€l 96661271 61 LAV M
Y8E€L00VY 16304400 €1002121 1€041221 61 d0L010Q YV
00t0L097T ©OCLiI01032 <J0I0EL00 063043G0 €100€E43% Loev91ieet 61 NOONIOV d
€0000010 06304400 €100932¢ ¢€6€91221 61 Inant
£1002€21 1T¥304300 ¢000482¢ 66159911 € Inant
00€0¢091 +#9001023% 207104600 14304400 €10069%% Q0L¥9121 61 YISNIOV d
gL00809¢ 1#%304400 €100€12€ O0BCE9ICI 61 INang

1 1 TEFIVWIDOIOVX3H NT WIIT 33SOUDIW aor IWVN

109

Data Collection

e3eq pozifeuy jo aoTdues Y

*G-D 2Inbtg

9 =S3I9VIWA % 1272 JATLOV 61 1
£e Tell AQV 3Y 61 1
cey =33¥d d€9t =139 9 =S3TVdHKWA (¢t 9s1¢ IALLIDV 61 1
1€ 96¢cd AQV 3y 61 1
S =S39VdWA 0¢ segl AATLOV 61 1
IS¢ S1 00 L120 071 62 09261 FIvi 61 1
S =S39VdWA 8¢ 616¢ JALL DY 61 T
LZ G9¢5s AQV 39 61 1
S =SJ9VdWA 9¢ 80c01 FATLOV 61 1
T4 16c¢ AQV 3y 61 1
9¢l¢ =139 G =S39VdWA ¢ 98w L JATLEOV 61 1
1 %4 699¢ AQV 3y 61 1
% =S30VdAWA ¢ c0s¢e 3AILOV 61 1
OISs 91 00 L120 0/1 1¢ celll 1LIVM 61 1
% =S3IVVARWA 0¢ teCe JATLOV 61 1
9ISS 91 00 L120 0/1 61 celle 1IVM 61 1
% =S39VdWA 81 G6¥vS JATLIV 61 1
L1 1682 AQV 3 61 1
¥ =S3OVAWA 91 a¢ed JATLOV 61 1
O1ISS 91 00 L120 a/1 S 1 Geevyl 11VH 61 1
Y =S30VdAWA ¥1 68LE 3ATLDV 61 1
OISS$ 91 00 L120 0/1 €1 616869 1IVM 61 T
896% =130 & =S3IOVIWA 21 c0ell SATLOV 61 1
11 0siey 11vM39ovd &1 1
O =S39VdWA OT1 evel JATLTV el 1
6 81L1Y 1I1YM39vd 61 1
0 =S39VdWA 8 0sle IAT13V 61 1
0 00 4400 O/1- L G96190%1 Jd4NSNN 61 1
0 =S39VdWA 9 646G JATLOV 61 1
0 00 4400 0O/1I- S e 16¢ LIVM 61 1
0 =S39VdWA ¥ €c0® JATLOV 61 1
0 00 00060 NMNN € L6TTG JANS NN 61 1
0 =S39VdWA ¢ 191 JATLOV 61 1
0 00 0000 NMNM 1 €H9L16901 3UOSNN 61 1

LZ2%82:61T SVM 3WIL 3HL ANV 89-1<¢-€0 SVYM ILVG ONIQYODIIY TFHIL sk %

INTT Xdd HI9INIT O/T 3IWVNGd ATIT ITVH Wil RERSE Y 41IVIS |agT MSV1

Pata Collection

110

Appendix D: The MTS'Data

This section describes the data collected from the
University of Michigan MTS time-shared operating systen
using the facility for data acquisition explained in Appen-
dix C. The nature and limitations of the data are discussed
and the data is displayed in tables and cumulative frequency
distributions.

I. General Description

The data acquired for this study was taken during the
period October 15, 1967, +to March 31, 1968, 1in nornal
operating periods of the MTS systen. Data collection
periods ranged from 15 minutes to 7 hours duration, depend-
ing on the volume of data being generated and the nature of
the jobs being observed. The periods were selected insofar
as possible to mirror the typical prevailing demand on the
system: unusual circumstances of light load (such as Jjust
after system startup or malfunction) and heavy load (such as
the hours preceding a student problem due date) were
avoided.

Essentially three types of jobs are run in the UMMPS-MTS
system:

(a) Normal remote terminal, interactive use of MTS
with Model 33/35 Teletypewriters, IBM 1050 and 2741
Communications Terminals. (During the data acquisi-
tion period the number of such tasks which could be
supported concurrently by the system grew from about
4 to 40).

(b) Non-interactive use of MTS via batch mode, using
an IBM 2540 card reader/punch and 1403 line printer
as input/output devices, while providing full use of
the command language and other system features.

(c) Peripheral support programs for an IBM 7090
batch-processing system (University of Michigan
Executive System ([70]) which produce input tapes
from punched cards, and print and punch from UMES
output tapes.

The MTS Data 111

During normal daily operation of the MTS system, from 9
a.m. to midnight, the then current maximum number of con-
munications 1lines for remote terminals was enabled, one or
two batch streams were processed, and up to two additional
line printers and reader/punches were used for peripheral
support jobs. Generally, 1less than half of the remote
terminals were active at one time, one batch stream was
rather consistently busy, and an average of two to three of
the SPOOling! operations were in progress. Data are not
included here for the SPOOLing jobs, since they exhibit a
very regular Dbehavior: each I/O0 wait for tape or unit
record device requires 50-200 msec., and is separated fron
the next such event by 2 to 3 msec. of processing. These
peripheral support programs create a maximum of about 15% of
the CPU load, and normally only 5-10%.

Data given here for the use of the CPU and I/O devices
are separated for batch and conversational tasks. The I/O
delays are also shown separately for different kinds of
devices. A great deal of information is implicit din the
data being collected which is not shown here, and additional
kinds of data can be collected to answer specific questions.

At least three distinct points of view could be taken to
govern the organization and collection of computing systenm
data:

e workload
¢ system
e user

For the purposes of this investigation we have regarded
their relative importance in the given order. For exanple,
in displaying CPU data, we are more interested in the CPU
intervals requested by a task than by the service actually
supplied by the system. Again, when considering I/0 delays,
we are concerned about the length of time the system nmust
wait before it can resume processing a task rather than the
time an individual must wait to receive his answer. Thus in
our case some output delays appear to take almost no time
because the lines are buffered and the computation can
proceed while the line is still being typed.

- —— - —— - — o — - -—

1Simultaneous Peripheral QOperations On-Line.

112 The MTS Data

II. Specific Characteristics

Some facts about the MTS data chosen for display in this
section are given in Figure D-1. The number of jobs is the
approximate number of UMMPS jobs using the MTS job progranm
(see Appendix A) that were observed with the data collection
facility. The number of tasks is the approximate number of
individuals who used these jobs during the <collection
interval. The total number of unit record devices, communi-
cation lines, disks, etc., that were referenced by these
jobs 1s also given, The identification numbers 0-5 of
these different sets of data will be used to label graphs in
the succeeding figures.

Several general observations can be made about the
environments in which the data was +taken. MTS # U4 was
obtained after only a few weeks of experience with paging in
MTS. At that time the system had a communications line
capacity of about 10: at most 10 conversational users could
run in addition to the batch and SPOOLing operations.
Furthermore, use averaged considerably less than the capaci-
ty. The data sets # 2 and # 3 include only data for the
batch streams active at the time. Because they use unit
record devices instead of remote terminals, batch jobs are
processed much more quickly and create a heavier system load
than conversational Jjobs. More 1I/0 operations generally
occur in batch, since people take advantage of 1its lower
cost and speed for input and output functions.

The data # 1 was taken with 10-20 conversational users,
which approximated an average load at that stage of MTS
development. With less than about 16-20 users, the paging

drum frequently had periods of inactivity: most command
chains for 1I/0 operations were half-empty, and there was
often no channel program in progress at all. In order to

observe tasks under a heavier system load, data set # 0 was
taken while a special background job (called PAGE-IT) was
running to increase drum activity. The PAGE-IT job acquires
a large number of virtual storage pages and references them
cyclically in rapid succession. When run with a moderate
load of normal tasks, PAGE-IT keeps drum channel progranmns
running more or less continuously and forces other tasks?
pages out of main storage at a faster than normal rate.

Figure D-2 shows the distribution of actual CPU intervals

obtained by tasks during the data collection periods. Any
interruption in service to process another task ends the CPU

The MTS Data 113

General Characteristics of the MTS Data

r ; ’1 T ¥ T 1
1D | MTS # 0 | MTS # 1 |MTS # 2% [MTS # 3% | MTS # 4 |
F { } t } i
| | I ! | |
Date | 3-20-68 | 3-18-28 | 3-18-28 | 1-15-68 |11-29-67 |
k 1 t } i 1
| I | I | |
Time | 15: 27 | 15:36 | 11:41 | 14:51 | 10:23 |
3 + + t f i
| | | | | l
Duration | 20 min. | 76 min. 150 min. | 79 min. [266 min. |
b t + 1 1 4
| [| I I |
Items | 542246 | 1355274 | 1123503 | 466223 | 705890 |
t % 1 + t 1
| | | | | I
Jobs | 40 | 40 | 2 | 11 9 |
t + t + } i
’ - I ! ! | l
Tasks | 50 | 150 | 75 | 16 | 84 |
5 + t i + 1
| | | | | |
Devices | 57 1| 65 | 29 | 20 | 29 |
L A1 1 L 1 i]
* Denotes batch job data.
Figure D-1. The Selected Data
intervals appearing in this distribution. One to four

percent of these intervals lie in the neighborhood of about
300 microseconds, or about the minimum time regquired by
UMMPS to service an interrupt which requires little or no
processing. The smoothest curve, and the one with the
smallest mean, is that of data set # 0. The reason for this
is that the system was the most occupied with ordinary tasks
at that +time, and PAGE-IT was running to force additional
page-wait interruptions for the normal tasks. Since # 0 was
the latest of the given data to be taken, it also reflects
some improvements made to the system which make it operate
more efficiently under periods of heavy load..

114 The MTS Data

Actual CPU intervals depend on the frequency of inter-
rupts, hence it 1is not surprising that the data set (# 2)
with the longest mean value was collected over a noon hour.
Except "for that «case, the mean length of a CPU interval
decreases steadily with time—average system load grew
significantly over the period of study. Data set # 1, whose
curve shows a large number of intervals of length about 4
msec., was taken during the testing of a new I/0 routine
when an error occurred, and over 28,000 I/O operations were
executed in rapid succession, generating an equal number of
short CPU intervals.

In Figure D-3 we have distributions of CPU intervals
requested by individual tasks: here the interruptions 1in
service to process other tasks are removed from the data, so
that the given times represent CPU intervals terminated only
by I/0 and paging operations for the task using the CPU.
The curves for # 3 and # 4 also accumulate time across
paging delays for the given task—they show the distribu-
tions 6f CPU time requested between I/0 operations. We note
here that both of the latter curves exhibit a gap in
observed values near the origin: there are a few nearly
immediate I/0 operations, but then almost none of duration
800 to over 2000 microseconds. The difference between the
curves for # 3 and # 4 is probably due to the fact that the
former data 1is for batch jobs, which generally do more I/0
operations,

Turning to the curves for # 0 and # 2 1in Figure D-3,
which represent CPU intervals terminated by either page or
I/0 wait for the given task, we see again that a heavy
paging load (# 0) significantly reduces the mean length of a
CPU interval. There is too much variation in the origin and
makeup of batch jobs to draw hard and fast conclusions fronm
differences between the 'curves for # 1 and # 2, which
represent conversational and batch jobs run on the same day.
Batch runs include a number of distinctly different tasks:
small student problems limited to batch mode, use of faster
devices for listing and card reading jobs, and long computa-
tional tasks. The difference between the two curves is
probably more influenced by the fact that the batch data was
taken earlier in the day, when a lighter overall 1load
contributed an average of fewer page-wait interruptions.
The density functions for requested CPU intervals exhibit a
number of local maxima in the range 0-6 msec., which are
present in almost every case and more noticeable with less
paging load. B careful analysis could probably associate
these peaks with one or more frequently-used systen
functions.

The MTS Data 115

Figure D-4 displays the distributions of page-wait delays
experienced with the MTS paging drum processor. The organi-
zation of the queues and the format of the drum are detailed
in Appendix B. The mean values of these distributions
strictly increase with increasing system load, which is the
reverse order from which the data sets are numbered.
Although the given data all represent the time required to
obtain a requested page, each curve is a composite of
several different kinds of distributions. Once an unavail-
able page is referenced one of five actions may be taken:

(1) it 1is a new page for which space <can be
allocated immediately in core (1-5 msec.)

(2) it is a new page for which <core space <can be
allocated only after another page has been pushed
out (a written page may be posted at any time)

(3) an existing page must be read from the drum (at
least 36 msec.)

(4) an existing page must be read from the drum but
must wait for a write to provide core space

(5) the page may still exist in core even though a
write operation is currently in progress, which may
be cancelled to make it available immediately.

If a drum operation is required (cases 2 to 4 above) then a
further distinction is possible: whether or not the drum is
currently wunder the control of a channel program to which
the new request(s) can be chained. If so the distribution
of actual completion time is that discussed in Appendix B.
If the drum is not <currently transmitting an additional
average delay of half a physical revolution is experienced,
since a new channel program is always started at the drunm
index point. In the latter case, however, it is unlikely
that more than a single revolution will be necessary to
reach and transmit the desired page.

One final fact 1is of importance in understanding the
distributions of Figure D-4: MTS page transfers were posted
(at the time) exactly once at the end of each logical
revolution of the drunm. Thus every actual read or write
operation is known to be completed only after some nmultiple
of the logical revolution time (35 msec.), plus any delay in
synchronizing with the construction of channel progranms.

All the data in Figure D-4 is dominated by the charac-
teristics of start-stop rather than continuous drum opera-

116 The MTS Data

tion except # 0, where the drum was forced to run more or
less continuously. 1In that case a great many read opera-
tions took three 1logical revolutions or more. Apparently
most available core pages were "reclaimed" or used for newly
created pages, so that read requests for drum-resident pages
often had to wait for drum writes as well as queueing and
read delays. In any case the performance of the drum under
the conditions of # 0 leaves a great deal to be desired.

The overall distribution of I/0 wait times given 1in
Figure D-5 is poorly shown due to a gap in the plotted
points in the range from 0.2 to 2.5 seconds. Most delays
fall into three ranges according to the type of device:

(a) terminal and other I/0 to buffered devices which
appears to take almost no time at all

(b) disk and unit record I/0, most of which lies in
the range from 35 to 70 msec.

(c) terminal ocutput with buffer full, and unbuffered
input, which usually takes over half a second.

The curve for MTS # 1 is missing from Figure D-5 because
of the large number of identical I/O waits occurring in the
test mentioned earlier. Batch and conversational jobs have
distinct distributions—in the former case the 1longest
normal I/0 operation is a maximum disk seek, which requires
about half a second.

The ready distributions of Figure D-6 show how the MTS
system responds to requests for service. This data 1is
rather consistent. The fact that # 0 has the shortest mean
is again due primarily to the fact that the heavy paging
load forces many more transitions between tasks entering
page-wait.

The remaining figqures in this section give disk and
terminal <characteristics. The disk observed during this
period was the IBM 2314 Disk Storage Unit, which provides a
bank of eight separate packs on a single control unit and
channel. The disk is used in MTS for line file storage and
utility files for compilations and assemblies. In Figure
D-7 we see the actual lengths of disk I/O operations. The
principal components are

e control unit wait (transmission of data or com-
mands from another disk pack on the unit

The MTS Data 117

s seek time to move the read/write heads to the
proper cylinder (which is often not required)

e rotational delay to reach the front of the
appropriate record on the disk track

e transfer time for actual reading or writing of
the record

The distribution with the longest mean is that for the
data taken under the heaviest load. Under these conditions
we expect control unit wait to be a significant factor,
since at the time up to six of the packs could be 1in
competition for the use of the single control unit. Another
very 1large factor is the frequency with which seeks are
necessary: a single task will often require several records
from the same cylinder in short succession, hence few seeks
are necessary unless the load is such that a task can obtain
only cne record at a time before another task causes a seek
to a new cylinder.

The fact that the earliest data has the second 1longest
mean value 1s due in part to the fact that less efficient
file routines were in use at the time, which required more
long search operations that tie wup the <control unit.
Another cause is the fact that only four disk packs were
available. Similar remarks can be made for Figure D-8,
which shows the distributions of times that tasks had to
wait 1in queue for the use of a specific disk pack. The
times in Figure D-8 are somewhat inflated because the end of
a wait for a pack is non-interrupting, and hence it 1is not
discovered to be over until the task reaches the head of the
CPU queue.

Finally, we display in Figure D-9 a few distributions of
terminal I/0 times. Two distributions each are given for
specific Teletype lines from the three se*s of ~onversation-
al data. Although this data exhibits counsiderably more
variation than the synchronous intervals, we <can see the
effects of the following characteristics of terminal I/0
operation: over half the times are for output liunes, which
clearly predominate. Many of these 1lines can be placed
immediately in the one-line output buffer, so that most
output times are less than the time required to actually
print a line at the remote device. Shorter times for the
input lines of MTS # 0 data suggest that as system response
time moves away from practically instantaneous, an individu-
al can make use of the time to formulate his next command,
which he then gives more quickly.

118 The MTS Data

oo.mv

STea183uUl Ndd SIW *Z-d 2Inbrg

SONODJFSTITIIW 40 Y38WNN

oo.mv _ oo.mm _ oo.@m _ oo.wm _ oo.mﬁ) oo.mﬁ . oo“m 00"
YEI=CSINIQd 031107d 40 Y38WNN

6¥°9 ONH *‘26°S *8S°S *‘SL°t *L8°C =SNU3INW 4
STHAH3LINI NdD WNLdY

H1HO W3ILSAS SLW 1

4

k _ |

¢ ¢ 1

=

i
+

00°1

09° or’ 0c’ 00"

08°
S3IHING 40 NOIL3JBdd JATLEINWNI

119

The MTS Data

00°96

STeAI®3UI NdD peissnbey +g-q =anbtg

SONOJISITIIW 40 Y3EWNN
00°09 00’8y 00°9 00°%2

]
) T ¥ T

oo.mm oo.mﬁ

]
T

00°¢1

+

00

-t

1 i 1
T L] + ¥

601=SINIOd (0311071d 40 Y3GWNN
09°1C ONY °‘LI°I1 °6L°01 °*¥8°L °‘E1°% =SNU3W
STUAHIINI N4 031S3n03Y

B180 W3LSAS SI1NW

00° "

0c”

SJIHINS 40 NOIL3JBd4 JATLIHINKND

The MTS Data

or*

09"

08’

120

sheTeq 3TeM obeg *fH-d 2InbTI

SAONOJISITIIW 40 Y3IEGWNN
00091 00°821 00°96 00°79

i
L]) L1 ¥ LB ¥

oo.mmw _ oo.vw

oo.wma

1
T

Qc’

¥y =SINIOd 031107d 30 H3GWNN
66°3 ONB *C°11 “€°91 *C°LZ ‘6°89 =SNUIW
SAHT30 1S3N03Y 394d

Bl8d W3LSAS S1NW

T

e

09°

08
SAIHINT 40 NOILJudd 3IAILYINWND

1]

001

121

The MTS Data

- 00°0v8 . 00°0¢ . oo.ow . oowomv

UoT3INGTIISTO 2TeM O/I TIeI=aA0

(1-01X) SONOJISITIIW 40

1

*5-q 2InbTa

H38WNN

co.om . 00°0

_ oo.owﬁ

afe

00"

LI L ¥ L) L 1]

911=SINIOd 031107d 40 HIGWNN
0£°8S ONB °66°6S °C°986 ‘°Z¥11 =SNUIW
SAUT30 0/1 TWH3IA0

B18d W3LSAS SI1NW

1

00°

03.

SAIHINT 40 NOIL3BHd 3AILHINWNAD

The MTS Data

"
v

ov°

08° 09°

'..

122

sSTeAIa3uT Apeod SIW

‘g~ INDTg

SONQJISITIIW 40 HIGWNN

oo.mm . oo.om _ oo.mm) oo.@N _ oo.mﬁ . oc“m _ 00°,

T T T T T T T ¥ =t ¥ T T AﬂW
iwwﬁu
JE1=GINIOd 03L107d 40 H3GWNN S
¥9°L ONY ‘L0°L *C1°9 *2E°S °“01°¥ =SNU3W 1 mm
STHAHIAINI AQY3H w
180 W31SAS S1W L2
-u.an-_J.._
-
oy
T D
Q)
l
s
e=
()
+ ™
m
. =
-+ o0 —i
<70
—
m
e aud S

To

(o]

L

123

The MTS Data

skeTsa 0/I ¥STA °L-a 2anb1g

| | | SONOJIASITIIW 40 HIGWNN
00°0001 00°SL8 00°0SL 00°SZ9 ~ 00°00S 00°SL . 00°0S . 00°SZ 00

L] L B | L ¥ L] | T Ll L}

00"’

02"

S3ITHINT 40 NOIL3gdd 3ATLEINWNI

The MTS Data

€01=SINIOd Q31i07d 30 H3EWNN
8°0F ONY ‘9°8¥F ‘8°1S °C°69 °‘¥°E8 =SNU3N
SAUI30 0/1 MSIO

Bidd WILSAS SIiW

oy’

09’

08"

124

sfkera2g Hutensnd yoed YSTIA

*g-0 2Iubtg

(1-01X) SONCIJ3ISITIIW 40 H3IGWNN

_ oo.cmv 00°09€ oo.omm oo.oww

. oo.cm

s

007,

L }]
BB L) 1 L] ¥ ¥

111=SINIOd G31107d 40 Y3IEWNN
€°S0C ONB °‘L°1SZ *“6°69C “‘0°CE¥ °‘L°LES =SNHIW
SAGTI30 0/1 3IN3IND Y¥3ud MSIO

Bl8d W3L1SAS S1W

o T

00°

02"

SATHINI 40 NOIL38dd JAILEINWND

]
¥

09° op

p

08"

T

125

The MTS Data

s3Tem O/I Teutuidl °6-a 2INHTL

(2-0TX) SONOJISITIIW 40 Y3GWNN

00°95¢

0c’

. oo.wm . oo.mm . oo.ow~ . oo.wmﬁ . oo.mm . oo.&w _ oo.mm . oo.
8S =SINIOd 031107d d0 Y3GWNN
S69L ONH °S20S *‘SS¥b *‘8YEE *SELE *€90C =SNU3W

SAUT30 0/1 TUNIWHAL

B180 W3LSAS SIKW

C 09t ope

08"
SJIIHINT 40 NOIL3gdd JAILIEINWND

The MTS Data

T

[}
L3

00°1

126

Appendix E: _The GPSS/360_ Simulation Model

This section discusses the details of implementing the
simulation model of Chapter 5 in the GPSS/360 language.

I. GPSS/360

The General Purpose Simulation System/360 is a discrete,
digital simulation program developed by the IBM Corporation
[34] which runs in the standard IBM Operating System/360.
Simulation model statements, after simple processing by an
assembly program, are interpreted during execution by the
GPSS/360 pregram.

GPSS/360 is the outgrowth of a series of general purpose
system simulators for the IBM 7000-series computing
machines, the most recent version of which is titled
GPSS-III. GPSS/360 relaxes many GPSS-III restrictions,
introduces new entities and block types, allows much more
control over storage allocation, and provides a limited
graphic output feature.

The GPSS language is particularly suited for modelling in
such commercial applications as Jjob shop scheduling and
manufacturing network flow. However, it is also useful for
computer system simulation at the fairly gross level of
detail which is used here. Its primary disadvantages are
that it is comparatively difficult to learn and relatively
slow in execution. Its generality and flexibility were
considered to outweigh those disadvantages for this particu-
lar application.

II. oOrganization of the Model

The simulation model described in this paper consists of
about five essentially different parts:

hardware descriptions
operating system algorithms
workload characteristics
variable system parameters
statistics gathering

The GPSS Model 127

The first of these 1is the 51mplest to implement in a
simulation language, and requires a negligible fraction of
the set of model statements. Characterizing the data in the
system (in this case requests for computing services) and
spec1fy1ng the parameters by which the system is "tuned" to
improve its performance require about the same amount of
effort, and together account for only a fifth or so of the
total description. By far the most design and analysis work
and the resulting model statements are required to describe
the algorithms used by the operating system for handling
devices and service requests, and to decide what information
about the model operation is relevant and measurable, and
how it should be collected and presented. Each of these two
aspects of this particular model required over a third of
the total simulation effort.

The following sections will discuss each of the Dbasic
aspects of the model in terms of its content, overall
structure, and the GPSS statements essential to its
implementation.

III. Model Data: the workload description

Chapter 5 of this paper has described the motivation and
methodology for collecting data from a specific system for
use in this study. An approximate description of each NTS
interaction is given by the parameters of a single transac-
tion (XACT). The size of the executing program, the time
intervals required for execution and synchronous I/0 waits,
and the frequency of requirements for additional virtual
memory pages during execution are all described by XACT
parameters.

The master XACT representing each MTS interaction is
passed through the Jjob scheduling part of the nmodel.
Transactions are also used elsewhere to stand for a single
memory page as it passes through the drum I/0 <cnannel, an
entry on the queue for use of the CPU, and to 1mplement the
data transfer during the drum rotations.

Virtual memory page XACTs required by a task are members
of a GPSS assembly set, and a specified number of them must
be ASSEMBLEA before a task is ready for execution. These
XACTs are SPLIT from others as needed, and TERMINATEA when
they are no longer required to trigger additional events by
their flow through the model.

128 The GPSS Model

IV. Hardware Descriptions

The only parts of this model which directly represent
physical devices occur in the choice of the time unit as the
drum sector rotational delay, and in the model parameter
which specifies the capacity of core storage. Hardware/
software combinations such as the operation of the drum as
an extension of main memory and the supervisor algorithm
which drives it are also modelled.

As each page transfer request arrives at the drunm
processor, it 1is LINKed to one of the GPSS "user chains,"
which are used to represent drum sector queues. Once every
time wunit a special "clock" XACT passes through an UNLINK
block which attempts to remove a queue entry from the sector
currently at the read/write heads. Any XACT so UNLINKed 1is
next ADVANCEd for one time unit to represent the transfer
time, and then either sent to be ASSEMBLEd for CPU service
(if a page-in request) or simply TERMINATEd to remove it
from the model (if a page-out request).

V. Operating System Algorithms

Additional algorithms represented in the model for the
operating system itself include

(a) the choice of when to 1interrupt the task
currently using the CPU

(b) the choice of when to allow a new task to bring
its pages to real memory and compete for the use of
the CPU

(c) the choice of when to page-out a task not ready
to use the CPU.

Decisions are made with these algorithms at specific
"control points" in the model by routing task XACTs based on
the value of task characteristics (XACT parameters), systenm
load factors (QUEUE 1lengths and STORAGE wusage), and
decision-aiding parameters (SAVEVALUEs). The control points
occur when the executing task requests a virtual memory page
which is not in real memory, when a task has used a certain
amount of CPU time, when real memory usage drops enough to
allow room for the pages of another task, when a task begins
an I/0 operation, and when an executing task is interrupted.

The GPSS Model 129

VI. System Paranmeters

Decision-making algorithms for operating systems are
normally designed to use a number of parameters--numerical
values which can be changed as frequently as desired to
improve performance as more 1is learned about how the systenm
behaves, as the hardware configuration changes, and as' the
workload develops different patterns of demand for system
resources. Examples of such parameters existing in this
model are

e the maximum -amount of real memory available to a
single task at one time

e the maximum length of time a task may continuously
use the CPU :

e the maximum number of real memory page requests
allowed to enqueue in the system when core is full

e the number of real memory pages required to be
free before a new task is allowed to compete for the
CPU.

These values are stored in GPSS SAVEVALUE 1locations. They
are initialized for each run, and can be changed during the
simulated operation if necessary.

VII. Statistics Gathering

Many statements in the model exist for the purpose of
measuring and summarizing its Dbehavior. 0f particular
interest are the performance of the system in terms of the
percentage of time the CPU and other facilities are used (by
means of standard data accumulated by GPSS for STORAGEs,
FACILITYs, and user chains), the characteristics ~f conges-
tion occurring in various places as tasks enqueue for use of
devices (using standard GPSS data for QUEUEs, interarrival
times and interarrival rates), and the relationship of task
characteristics to the quality of service obtained {(by
TABULATEing task data at points in the model).

The information produced by statistics-collecting model
statements is displayed in terms of frequency distributions,
mean values, cumulative percentages, and maximum and minimun
values. Although such data is much easier to collect from a

130 The GPSS Model

simulated system than a real system, care must be taken in
choosing relevant data and the appropriate places to measure
it. In a typical run statistics are displayed for a nunmber
of intervals, using the GPSS RESET feature, so that they may
be examined for consistency and stability. Statistics must
also be ignored at startup to allow transient effects to
disappear (hence the interval before the first RESET is
ignored).

VIII. The Progranm

This section consists of a listing of the GPSS/360 nmodel
used for the simulation study.

The GPSS Model 131

REALLOCATE XAC, 1399,BLO,210,FAC,3,5T0,4,QUE,5,L0G,6,TAB, 16
REALLOCATE FUN,1,VAR,3,FSV,10,HSV,35,CHA,10,GRP,0,BVR,0
REALLOCATE FMS,0,HMS,0,COM,340000

SIMULATE

XACT PARAMETERS
PAGE TRANSFER PARAMETER:
1 READ KEQUEST=NEGATIVE OR 1, WRITE REQUEST=2
CPU SERVICE PARAMETERS:
NUMBER OF XACT TO ASSEMBLE BEFORE READY FOR CPU
AMOUNT OF CPU SERVICE REQUIRED THIS TIME
LENGTH OF I/0 WAIT FOLLOWING CPU SERVICE, IF ANY
REASON CPU SERVICE TERMINATED
1=ASYNCHRONQUS I/C (COMPLETION)
2=SYNCHRONOUS I/0
3=PAGE IN REQUEST
4=TIME SLICE END (TSE)
MASTER TASK RECORD PARAMETERS:
6 TOTAL NUMBER OF PAGES IN TASK
7 NUMBER OF PAGES CURRENTLY IN CORE
8 TOTAL AMOUNT OF TIME USED SO FAR
9 AMOUNT OF CURRENT INTERVAL USED SO FAR
10 INDEX OF CURRENT TIME INTERVAL PARAMETER
11
12
13

NMEwWwN

FIRST TIME INTERVAL
REASON FOR TERMINATION
SECOND TIME INTERVAL

END PARAMETERS WITH ZERO TIME INTERVAL

98 CUMULATIVE NUMBER OF CPU INTERVALS ACTUALLY TAKEN

99 CUMULATIVE NO OF SYNCHRONOUS I,/O WAITS TAKEN
100 INDEX OF LAST NON ZERC PARAMETER IN INTERVALS LIST

%*
*
*
%
*
¥
*
*
*
%
*
*
*
*
%
*
*
%
*
%*
*
*
*
%*
%
%
%
*
%
%
%
* LAST XACT ON TAPE IS ONLY ONE WITH A WRITE REQUEST P1

132 The GPSS Model

VARIOUS TYPES OF PARAMETERS FOR ADJUSTING MODEL OPERATION

CONTROL PCLICY PARAMETERS

DATA

TIME SLICE LENGTH

MAXIMUM LENGTH OF CORE QUEUE
MAXIMUM NO OF PAGES ALLOWED
FULL CORE THRESHOLD

READ BEFORE WRITE DRUM Q (FIFO)
SHORTEST QUEUE FOR DRUM WRITES
PREEMPTIVE CPU PRIORITY TO TASKS
USE DELAYED POSTING OF PAGES

USE OF LCS AS PAGING DEVICE

PERCENTAGE OF UNCHANGED PAGES

NUMBER OF DRUM SLOTS
SIZE OF CORE STORAGE

FIRST COMPLETIONS REQUIRED

NO OF INITIAL TASKS

NO OF COMPLETIONS BEFORE RESET
MAXIMUM TIME UNITS TO RUN

SYSQ LENGTH REQUIRED

INITIAL XH2,16
INITIAL XH20,2
INITIAL XH21,38
INITIAL XH25,12
GROSS TECHNIQUE PARAMETERS
INITIAL XH1, 2
INITIAL XH5,1
INITIAL XH6, 1
INITIAL XH31,2
INITIAL XH32,1
DEPENDENT PARAMETER
INITIAL XH10,20
HARDWARE CONFIGURATION PARAMETERS
INITIAL XH3,9
INITIAL XH15,80
MODEL ADJUSTMENT PARAMETERS
INITIAL XH11,3
INITIAL XH17,8
INITIAL XH18,250
INITIAL X4,7714
INITIAL XH28,20
INITIAL XH29,1200

TASK OVERFLOW IN SYSQ CRITERION

The GPSS Model 133

CORE
SYSTM
PAGEQ

1
2
3

1

STORAGE 80
STORAGE 100
STORAGE 100

VARIABLE (C1@XH3)+1
FVARIABLE RN&4* (1/10)+1
VARIABLE C1%389

FUNCTION RN1,D10

NUMBER OF CORE PAGES
MAXIMUM NUMBER OF TASKS IN SYSTEM
NUMBER OF PAGES AWAITING TRANSFER

CHOXICE OF DRUM SECTOR
CHANGED OR UNCHANGED PAGE
RUN SEGMENT TIME

UNIFORM DISTRIBUTION ON 1,2,...,9

0,1/.111111,1/.222222,2/.333333,3/. 4444044, 4
.555555,5/.666666,6/.777777,7/.888888,8/1.0,9

134

OCONALNNEWN =

TABLE P6,K1,K1,K101 TOTAL NUMBER OF PAGES IN TASK
TABLE P8,k10,K10,K116 TOTAL AMOUNT OF CPU TIME USED
TABLE P98,K1,K1,Ku49 TOTAL CPU INTERVALS USED

TABLE P99,K1,K1,K33 TOTAL I/0 WAITS USED

TABLE P5,K1,K1,K116 LENGTHS OF CPU INTERVALS WANTED
TABLE P4,K10,K10,K116 LENGTHS OF SYNCH I/O WAITS TAKEN
TABLE M1,K1,K1,K116 LENGTHS OF READ REQUEST WAITS
TABLE 41,K1,K1,K116 LENGTHS OF WRITE REQUEST WAITS
TABLE P3,K1,K1,K101 LENGTHS OF ACTUAL CPU INTERVALS
TABLE 41,K100,K100,K116 TOTAL TIME IN THE SYSTEM
TABLE IA,K1,K1,K101 INTERARRIVAL TIME OF TASKS

TABLE P7,K1,K1,K101 NUMBER OF PAGES TASK PUTS IN CORE
TABLE IA,K100,K20,K116 INTERARRIVAL TIME TAIL

QTABLE CPUQ,K0,K5,K116 CPU QUEUE DELAY DISTRIBUTION
QTABLE COREQ,K0,K5,K116 CORE QUEUE DISTRIBUTION

The GPSS Model

* STARTUP PROCEDURE TO INTRODUCE TASKS

ALLOW

GENERATE
LOGIC S
LOGIC S
ADVANCE
GATE SNF
TEST GE
TERMINATE

"I1

PCI
SOURC
1
CORE

NSCNT,XH17,ALLOW

’

CREATE INITIALIZATION XACT

POSTING OF PAGES AT FIRST

ALLOW A TASK TO ENTER SYSTEM

LET IT PERCOLATE A LITTLE

WAIT UNTIL IT CAN GET A CORE PAGE
CHECK IF SPECIFIED NUMBER

STOP THE INITIALIZATION

* CONTROL THE ENTRY OF TASKS TO THE SYSTEM
JOBTA1,INPUT,0,12 LET A TASK IN NOW AND THEN

INPUT

INGO

CNT

* TAKE
END

* BRING A NEW TASK INTO THE SYSTEMNM

NOEND

JOBTAPE
TEST G
LOGIC S
TERMINATE
QUEUE
GATE LS
ENTER
DEPART
MARK
LOGIC R
TABULATE
TABULATE
GATE LS
TEST E

SOME NOTES

LOGIC S

LOGIC S

SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
SAVEVALUE
TERMINATE

ASSIGN
ASSIGN
ASSIGN
ASSIGN
SAVEVALUE

P1,K1,INGO

EOF

14
SYSQ
SOURC
SYSTHM
SYSQ

[

SOURC

11

13

EOF, NOEND

Q$SYSQ,KO0,NOEND

AT THE END OF A

STAT
INIT

13,5$SYSTH,H

6,NSPRPR

12,N$0UT,H
16,N$DONE, H

3,C1
26+,K1,H
1

9,K0
10,K11
98,K0
99,K0
4,K3,H

CHECK IF END OF TAPE OF NEW TASKS
NOTE THE END OF FILE ON JOBTAPE
THROW AWAY THE LAST TASK ON TAPE
GET IN LINE FOR SYSTEM ENTRANCE
LET NEW TASK IN NOW AND THEN
COME IN PLEASE

AND LEAVE THE LINE

NOTE WHEN TASK ENTERS

CLOSE SYSTEM AFTER ONE ENTRY
SAVE INTERARRIVAL TIME IN TABLE
WITH AN EXTRA TABLE FOR THE TAIL
PROCEED UNLESS END OF TAPE FILE
PROCEED UNLESS TASK QUEUE EMPTY

RUN SEGMENT

MAKE SURE INITIALIZATION OVER
AND MORE TASKS CAN ENTER SYSTEM

COUNT CURRENT TASKS

COMPUTE THE TOTAL TIME OF RUN

NOTE THE NUMBER OF PAGE INS

SAVE THE NUMBER OF TERMINATIONS

AND THE TASK CPU INTERVALS COUNT

NOTE THE TIME AT WINDUP

ADD ONE TO JOB SEGMENT NUMBER

STOP A RUN SEGMENT HERE

SET CPU TIME ALREADY USED TO ZERO
SET PARAMETER POINTER

SET INITIAL CPU USE TO ZERO

SET INITIAL I/O WAIT USE TO ZERO
NOTE THE ENTRY TO COMMON SECTION

The GPSS Model 135

* ESTA
NEXT

NXTOK

NXTGO

NXTIN

* HOLD
TASKS

BLISH THE LENGTH OF THE NEXT CPU INTERVAL

ASSIGN 5,P%10 GET THE CPU INTERVAL LENGTH
TABULATE 5 ENTRY IN CPU INTERVALS TABLE
ASSIGN 5-,PS SUBTRACT THE AMOUNT ALREADY USED
TEST G P5,XH2,NXTOK DOES TIME LEFT EXCEED ONE SLICE?
ASSIGN 3,XH2 SET NEXT CPU INTERVAL=TIME SLICE
ASSIGN 9+,XH2 ADD TO AMOUNT OF INTERVAL USED
ASSIGN 5,K4 SET TSE AS REASON FOR TERMINATION
TRANSFER » NXTGO PROCEED TO LEAVE COMMON SECTION
ASSIGN 3,P5 SET THE CPU INTERVAL LENGTH
ASSIGN 9,K0 CLEAR TIME FOR NEXT PARAMETER
ASSIGN 10+, K1 MOVE TO REASON FOR TERMINATION
ASSIGN 5,P%10 AND SET IT UP AS THE CURRENT ONE
ASSIGN 10+,K1 MOVE TO NEXT TIME INTERVAL

TEST NE XH4,K1, PRGO BRANCH IF ENTRY FROM PAGE IN
TEST NE XH4,K2,CORWT BRANCH IF ENTRY FROM I/O WAIT
TEST G P7,XH21,NXTIN SEE IF MAXIMUM PAGES EXCEEDED
TRANSFER ,BYE TERMINATE THIS ONE IF SO

ASSIGN 2,P17 SET NUMBER OF INITIAL PAGES
SPLIT P7,PAGEI, , K6 SEND OUT PAGE IN REQUESTS

TASK HERE UNTIL IT GETS A CPU INTERVAL

MATCH DONE SAVE THE TASK DATA WHILE AT CPU Q
ASSIGN 98+, K1 NUMBER OF CPU INTERVALS

ASSIGN 8+,P3 TIME USED SO FAR

GATE LR STAT,CKCK IS THE INITIALIZATION OVER?

* DETERMINE THE APPROACH TO EQUILIBRIUM

CKIN

CKCK

136

TEST GE N$CNT,XH17,CKOUT INITIAL READING NOT OVER

TEST GE N$TERM,XH18,CKIN TERMINATIONS FOR RESET

SPLIT K1,END, ,K1 STOP FOR THE RESET

TEST GE NSTERM,XH11,CKOUT HAS SYSTEM BEEN OPENED AGAIN?
LOGIC S INIT YES, WE HAVE DONE THAT

GATE 1S INIT,CKOUT ENTER ONLY IF INITIALIZATION OVER
TEST G R$CORE, XH25,CKOUT IS CORE USE BLLOW THRESHOLD?
LOGIC S SOURC ALLOW ANOTHER TASK IN IF SO

The GPSS Model

* DECIDE WHAT TO DO WITH A TASK WHICH HAD THE CPU

BRANCH IF PAGE IN
BRANCH IF SYNCH I/0

BRANCH IF TIME SLICE END

BRANCH IF ASYNCH I/0

ESTABLISH A WRITE REQUEST

SEND PAGES TO DRUM QUEUE

ADD ENTRY IN PAGE TABLE

TOTAL CPU TIME USED BY TASK

ADD ENTRY TO CPU INTERVALS TABLE
ADD ENTRY TO I/O WAITS TABLE
TOTAL TIME TASK IN SYSTEM
COMPUTE NUMBER OF PAGES INTO CORE
NOTE THAT A TASK IS GONE

SEE IF WE FACE TASK OVERFLOW
DESTROY MASTER RECORD

ADD ONE TO I/O WAITS PARAMETER
SET LENGTH OF I/O WAIT

MOVE TO NEXT TIME INTERVAL

PAGE OUT IF NO MORE DATA

NOTE WHERE TO RETURN AFTER COMMON
SET UP NEXT CPU INTERVAL

IN CORE FOR END OF SYNCHRONOUS I/O OPERATION

ENTER TI/0 WAIT

WAIT FOR SYNCHRONOUS I/0

NOW THROUGH WITH I/O

ADD ENTRY TO I/O WAITS TABLE

I/0 GIVES CPU PRIORITY?

SEND XACT TO CPUQ

WAIT FOR CPU SERVICE TERMINATION
SEND XACT TO CPU PREEMPTIVELY

CKOUT TEST NE P5,K3,PREQ
TEST NE P5,K2,SIN
TEST NE P5,K4,0UT
TEST NE P5,K1,00T
OUT ASSIGN 1,K2
SPLIT P7,PAGEO, ,K6
TABULATE 1
TABULATE 2
TABULATE 3
TABULATE 4
TABULATE 10
TABULATE 12
BYE LEAVE SYSTM
TEST LE 0$SYSQ, XH29,END
TERM TERMINATE ,
* PROCESS A SYNCHRONOUS I/0 INTERRUPT
SIN ASSIGN 99+,K1
ASSIGN 4,P*10
ASSIGN 104+, K1
TEST G P*10,K0,0UT
SAVEVALUE 4,K2,H
TRANSFER , NEXT
* WAILT
CORWT QUEUE 10Q
ADVANCE PU
DEPART 109
TABULATE 6
TEST E XH6,K1,CORPR
SPLIT K1,READY, , Kl
TRANSFER ,TASKS
CORPR SPLIT K1,PREAD, , Kl
TRANSFER , TASKS

AND WAIT UNTIL SERVICE OVER

The GPSS Model 137

* PROCESS A PAGE IN REQUEST

PREQ GATE SF CORE,PRPR PROCEED IF THERE IS ROOM IN CORE
TEST GE Q$COREQ,XH20,PRPR CHECK FOR QUEUE OVERFLOW
SAVEVALUE 8+,K1,H COUNT THE TIMES THIS HAPPENS
TRANSFER , 00T AND TERMINATE THIS TASK

PRPR TEST G P7,XH21,PRON PAGE OUT TASK WHICH EXCEEDS SIZE
SAVEVALUE 24+,K1,H MAKE A NOTE OF THIS EVENT
TRANSFER , 00T AND TERMINATE THE RESULT

PRON ASSIGN 7+,K1 NUMBER OF PAGES IN CORE
SAVEVALUE’ 4,K1,H NOTE WHERE TO RETURN AFTER COMMON
TRANSFER s NEXT SET UP NEXT CPU INTERVAL

PRGO ASSIGN 1,K1 SET READ REQUEST PARAMETER

-~ TEST G XH1,K2,PRFF BRANCH IF NOT PRIORITY READ
ASSIGN 1,K0 SET REQUEST TO ZERO
ASSIGN 1-,P7 SET PRIORITY OF READ REQUEST

PRFF ASSIGN 2,K2 SET NUMBER OF PAGES TO ASSEMBLE
TEST G P7,P6,PRRP SEE IF OVER TOTAL PAGE COUNT
ASSIGN 6,P7 SET NEW COUNT IF SO .

PRRP SPLIT K1,PAGEI, , K6 SEND PAGE REQUEST TO DRUM
SPLIT K1,IPAGE, ,K4 WAIT FOR THE PAGE
TRANSFER , TASKS WAIT FOR CPU SERVICE TERMINATION

* SET UP A PAGE IN REQUEST

PAGEI QUEUE COREQ WAIT FOR A FREE CORE PAGE
ENTER CORE ALLOCATE THE CORE PAGE
DEPART COREQ THROUGH WAITING FOR CORE

RPAGE SAVEVALUE 9,FN1,H CHOOSE A DRUM SLOT AT RANDOM

* ENQUEUE A PAGE TRANSFER REQUEST

PAGE MARK NOTE TIME PAGE GOES IN

PAGE4 ENTER PAGEQ NOTE NEW PAGE IN QUEUES
TEST NE XH32,K2,PAGE3 SEE IF LCS PAGING
TEST L XH1,K2,PAGE?2 CHOOSE DRUM QUEUE DISCIPLINE

PAGE1 LINK XH9,FIFO FIFO DISCIPLINE ‘

PAGE2 LINK XH9,P1 READ BEFORE wikaiillE DISCIPLINE

PAGE3 LINK K10,FIFO LCS INSTEAD OF DRUM

138 The GPSS Model

* SET UP A PAGE OUT REQUEST

PAGEO TEST G
TEST NE
TEST NE
ASSIGN
ASSIGN
ASSIGN
TEST L
ASSIGN
ASSIGN
TEST L
ASSIGN
TRANSFER

PPBK

POUT

PPGO
TRANSFER

SAVEVALUE

V2,XH10,PDONE
XH32,K2,PAGEY
XH5,K2,RPAGE
2,K2

3,CH1

4, K1
CH*2,P3,POUT
3,CH*2

4, P2
P2,XH3,PPGO
2+,K1

, PPBK

9,PU4,H

,PAGE

CHECK IF AN UNCHANGED PAGE
SEE IF LCS PAGING
CHOOSE WRITE Q CHOICE RULE
SET COUNTER TO TWO

SET VALUE TO FIRST CHAIN LENGTH

SET FIRST CHAIN NUMBER TO ONE

SEE IF CURRENT CHAIN IS SHORTER

IF¥ SO SAVE THE LENGTH

AND THE CHAIN NUMBER

SEE IF WE ARE AT END OF CHAINS
MOVE TO THE NEXT CHAIN IF NOT
AND PROCEED

SAVE THE RIGHT CHAIN NUMBER
AND PROCEED TO SEND IT OUT

* SELECT NEXT REQUEST ON APPROPRIATE SLOT QUEUE
GENERATE ereles 1, F GET TIMING PULSE
TEST NE XH32,K2,TIME2 SEE IF LCS PAGING
TIMER UNLINK V1,CHANL, 1 LOOK FOR REQUEST IN SLOT QUEUE
ADVANCE 1 HOLD TIMER BACK
TRANSFER TIMER AND LET THE CLOCK TICK AGAIN
TIME2 UNLINK K10, CHANL,1 GET PAGE REQUEST FROM LCS SLOT
ADVANCE 1 HOLD TIMER BACK
TRANSFER , TIME2 AND LET THE CLOCK TICK AGAIN

* CONTROL PAGE POSTING AND MAXIMUM RUN LENGTH

GENERATE rreles 1, F GET TIMING PULSE
POST LOGIC S PCI RELEASE PAGES

PRIORITY K0,BUFFER LET THEM BE USED

LOGIC R PCI AND CLOSE THE DOOR AGAIN

TEST GE C1,X4,TNEXT ARE WE OUT OF TIME?

SPLIT K1,END SEND OUT A TERMINATION IF SO
TNEXT ADVANCE 9 HOLD TIMER BACK

TRANSFER ,POST AND THEN POST AGAIN

The GPSS Model 139

* SERVICE AND DISPOSE OF PAGE TRANSFER REQUEST

CHANL SEIZE
LEAVE
ADVANCE
RELEASE
TEST E
GATE LS

PCICK TEST G
TABULATE

PDONE LEAVE
GATE LS
TEST G
LOGIC S

GONE TERMINATE

IPGIN TABULATE

DRUM
PAGEQ

1

DRUM
XH31,K2,PCICK
PCI
P1,K1,IPGIN

8

CORE
INIT,GONE

R$CORE, XH25,GONE

SOURC

’

7

HERE GOES THE ACTUAL TRANSFER

NOTE THAT WE ARE OUT

FOR ONE TIME UNIT _

AND LET THE NEXT ONE HAVE IT

SEE IF WE ARE DELAYING POSTING

WAIT HERE IF SO

BRANCH IF PAGE IN REQUEST

OTHERWISE NOTE THE WRITE WAIT

THEN RELEASE THE CORE SPACE

SEE IF INITIALIZATION IS OVER
CORE USE BELOW THRESHOLD?

LET ANOTHER TASK IN IF SO

AND DISCARD THE PAGES INVOLVED

ADD ENTRY TO PAGE READ WAIT TABLE

* ASSEMBLE PAGES AND WAIT TO OBTAIN CPU SERVICE

IPAGE ASSEMBLE
READY QUEUE
SEIZE
-DEPART
ADVANCE
RELEASE
EREAD PRIORITY
TABULATE
MATCH
TERMINATE

DONE

P2
CPUQ
CPU
CPUQ
P3
CPU
KO

9
TASKS

14

* PREEMPT CFU TASK FOR SERVICE

PREAD SAVEVALUE
PRIORITY
PREEMPT
ADVANCE
RETURN
SAVEVALUE
TRANSFER
INITIAL
INITIAL
START

END

7+,K1,H
XH7
CPU, PR
P3

CPU
7-,K1,H
, EREAD
XE24,0
XH8,0

1

140 The GPSS Model

COLLECT PAGES FOR TASK

WAIT FOR CPU

OBTAIN CPU SERVICE

STOP WAITING

CPU SERVICE INTERVAL

RELINQUISH CPU SERVICE

MAKE SURE ALL TASKS ARE NOW EQUAL
ADD ENTRY TO CPU INTERVALS TABLE
FIND TASK INFORMATION

DISCARD CPU REQUEST

SET PRIORITY FOR PREEMPTION

AND MAKE IT PRIORITY OF TASK

NOW GET THE CPU

AND USE IT

BEFORE GIVING IT BACK

REDUCE PREEMPTION LEVEL

AND CONTINUE AS II NORMAL SERVICE

Appendix F: The Simulation Results

This section gives the data obtained from GPSS/360
simulations made with the model described in the previous
appendix. The results of these runs are discussed in
Chapter 4. A number of simulation runs were made using a
pair of JOBTAPEs of task transactions from the MTS data.
These tapes were obtained by abstracting data sets # 0 and
1 during the analysis of that data for the presentation in
Appendix D. Each simulation run begins at the front of one
of these two tapes and uses as many transactions as
necessary in order to simulate system operation for a
specified amount of elapsed time.

For initial runs, both JOBTAPEs were run with a pair of
"extremal" choices of the model parameters:

(a) a Basic configuration of hardware and program-
ming techniques, using

80 core pages

a 9-sector drunm

16 time unit time-slice

read before write drum queue discipline
drum writes to shortest queue

FIFO CPU queue discipline

posting of pages once per revolution

(b) an Advanced configuration, which differs fronm

the Basic one in the following choices of parameter
values

144 core pages

large core storage instead of drum

24 time unit time-slice

priority in drum gueues to large tasks
immediate posting of pages

The remaining runs were made using parameter choices differ-
ing from Basic in only one or two parameter values, and
generally with values chosen from the Advanced model substi-
tuted for the Basic values.

Each run begins with an initialization period, after
which two or three sets of data are taken for intervals of
30 simulated seconds. Because the initialization intervals
were taken to be rather 1long, their data (which 1is not
included here) agrees quite closely with the values observed

Simulation Results 141

for the regular intervals. The Basic and Advanced models
were each run for three intervals, and the remaining models
for twvo. In several cases, however, runs were terminated
after a somewhat shorter last interval because of a problen
with controlling the input rate of task data from the
JOBTAPEs. Thus the data displayed in the fiqures of this
section is normalized by the length of the run segment.

Figures F-1 and F-2 show the results of running the Basic
model with +the MTS # 1 and MTS # 0 JOBTAPEs, respectively.
The same data for the Advanced model is given in Figures F-3
and F-4. Figure F-5 lists the values obtained by using the
Basic model except for the larger core size taken for the
Advanced model. Similarly, Figure F-6 gives the data for
the Basic configuration altered only by immediate page
posting. Subsequent figures show other variations. Only
one run (described in Fiqure F-9) was made with values
deliberately chosen outside the techniques used in the Basic
and Advanced models. 1In this case several poorer techniques
were used to gauge the sensitivity of paging drum processing
to such changes.

Figure F-11, which was run with a 4-sector drum in the
(otherwise) Basic configuration, also provides for a frac-
tion of unchanged pages: 20% of the write requests were not
executed in this case, assuming that the pages were
unchanged since their last trip to the drunm.

142 Simulation Results

BASIC SIMULATION

MTS Data # 1

MODEL

T T ;] T x|
| PERFORMANCE... | I | II | III |
F t { } 1
(. : ‘ l ! | |
{ e CPU Utilization { 456 | 436 | .591 |
{ Average queue contents | .601 | .508 | .767 |
Maximum queue contents	9	T	6
Percent zero entries	53.6	55.3	40.7
	l I		
I e Paging mechanism utilization	499	.685	.672
Average queue contents	12.5	22.1	19.4
Maximum queue contents	69	69	65
§ Mean completion time	25.1	32.0	28.9
		!	
Tasks Completed/Second	10.5	12.8	16.4
Mean No. of Active Tasks i 8.8	7.1 1 9.2		
i ‘			
b t t + 4			
] WORKLCAD] I	IT1	IIT	
— } + + {			
	250- } 564~	950~	
Task No. Range I 563	949	1319	
	l		
No. of CPU Intervals/Second	52.4	43.2	63.8
Mean CPU Service Time	2.24	2.60	2.38
		!	
Percent Initial Pages	86.4	89.7	82.3
No. of Pages Written/Second	64.2	88.3	86.2
'	{	{	
Mean No. of I/O Operations { 5.49	3.38	5.20	
Average I/0 Tinme	42.3	41.3	41.6
		l	
L L i]]
Figure F-1. Basic Simulation Data
Simulation Results 143

BASIC SIMULATION MODEL

MTS Data # 0

r T T -1 !
| PERFORMANCE... | I | II | 1IIX |
F t + +— 1
| ’ | { | |
i e CPU Utilization | <253 | 311 | .189 |
| Average queue contents | 304 | .261 | .136 |
I Maximum gueue contents | 81 6| 5 |
| Percent zero entries | 37.6 | 51.0 | 55.3 |
i | | | |
e Paging mechanism utilization { 439	.401	.263	
Average queue contents (- 11.0	5.56	3.48	
Maximum queue contents	71	47	48
Mean completion time	24.6	13.8	13.2
			I
Tasks Completed/Second i 11.0	7.8	4.9	
			.
Mean No. of Active Tasks I 7.5	8.7	6.0	
	l		
i [1 { 4			
r - T T L e 1			
{ WORKLOAD { I (II	1IIT j		
— + { f———q			
‘	252-	582-	816~
Task No. Range	581	815	901
! { { i			
] No. of CPU Intervals/Second	47.7	/62.8	36.5
Mean CPU Service Time	1.37	1.28	1.34
			!
Percent Initial Pages	51.3	34.2	34.9
No. of Pages Written/Second	56.5	51.7	33.4
		I	
Mean No. of I/0 Operations	3.73	5.55	3.24
Average I/0 Time	102.4	68.4	82.5
I {

L IR

Figure F-2. Basic Simulation Data

144 Simulation Results

ADVANCED SIMULATION MODEL

MTS Data # 1

T . T T T 1
| - PERFCRMANCE... | I | IT | 1IIT |
t - ‘ { + t {
I	i		
e CPU Utilization	717	.621	.856
Average queue contents	2.19	2.14	5.08
Maximum queue contents	16	20	16
Percent zero entries	28.9	34.9	15.2
e Paging mechanism utilization	-804	.779	.721
Average queue contents	32.9	36.8	21.1
Maximum queue contents	2100	2100	95
Mean completion time	40.2	47.2	29.3
Tasks Completed/Second	13.7	13.8	16.2
Mean No. of Active Tasks [14.5	12.9	18.3	
[1 i 1 i			
¥ L i 1 1			
WORKLOAD	I	IT	- III
[i i A]			
Y T I 1			
	251-	661-	1077-
Task No. Range	660	1076	1483
No. of CPU Intervals/Second	81.5	64.8	100.6
Mean CPU Service Time	2.26	2.47	2.19
i I	_		
Percent Initial Pages	78.2	76.1	74.6
No. of Pages Written/Second 1104.5	99.2	92.3	
,]		
Mean No. of I/O Operations	6.69	3.98	7.60
Average I/0 Time	38.1	37.5	32.0
	I		

L [i i Jl

Figure F-3. Advanced Simulation Data

Simulation Results 145

ADVANCED SIMULATION MODEL

MTS Data # 0

| Rl 1 LD 1
| PERFORMANCE... I I | II | III |
+ + { i {
| ; I ! | i
| e CPU Utilization | 642 | .630 | .555 |
| Average queue contents | 1.55 | 1.79 | 1.74 |
| Maximum queue contents i 16 | 17 | 17 |
| Percent zero entries | 36.3 | 37.7 | 40.2 |
| | | | |
| e Paging mechanism utilization | .900 | .881 | .957 |
| Average queue contents | 25.4 | 29.4 | 45.2 |
| Maximum queue contents | 96 | 2100 { 2100 |
| Mean completion time | 28.0 | 33.2 | 47.2 |
{ | | | |
| Tasks Completed/Second | 21.1 4 16.9 | 20.5 |
I | I { |
| Mean No. of Active Tasks | 18.5 | 15.7 | 17.9 |
| | | | |
k —- ¢ + i
| WORKLOAD { I | IT | IIT |
[L L. 1]
 § ' L 1] : 1
| | 251- | 884- 11392~ | |
| " Task No. Range | 883 | 1391 | 2007 |
| | | | |
l No. of CPU Intervals/Second {114.7 1100.5 | 88.7 |
| Mean CPU Service Time | 1.44 ¢ 1.61 | 1.61 |
| | | i I
| Percent Initial Pages | 46.6 | 48.4 | 60.3 |
| No. of Pages Written/Second 1116.2 1112.5 1123.1 |
| | l i | | |
| Mean No. of I/0 Operatiocns { 7.32 | 3.69 | .2.48 |
| Average I/0 Time | 59.2 | 37.0 | 32.9 |
| |] | |
T i 1 1l J

146

Figure F-4. Advanced Simulation Data

Simulation Results

MODIFIED BASIC SIMULATION MODEL

(Using 144 core pages)

MTS Data # 1

T —— T T !
| PERFORMANCE... | I | ITI |
k t + {
| | l -
e CPU Utilization	.601	.707
Average queue contents	1.78	4.08
Maximum queue contents i 15	17	
Percent zero entries	38.0	21.8
		a
e Paging mechanism utilization { .854	.856	
Average queue contents	49.3	56.2
Maximum queue contents	2100	2100
Mean conpletion time i 56.8	65.5	
Tasks Completed/Second	17.6	20.0
		1
i Mean No. of Active Tasks	12.8	13.3
i	i]	
A 1 1		
WORKLOAD	I	I1
t } t !		
l	250-	777-
Task No. Range { 776	1378	
,	{	
No. of CPU Intervals/Second	68.1	72.2
{ Mean CPU Service Time	2.27	2.52
Percent Initial Pages	91.0	89.2
No. of Pages Written/Second §110.3 1110.2		
i		
Mean No. of I/0 Operations	6.78	4.79
Average I/0 Time	42.9	30.5

| L

Figure F-5. Modified Simulation Data

Simulation Results

147

MODIFIED BASIC SIMULATION MODEL

(Using immediate page posting)
MTS Data # O

I R 1 1 1
| PERFORMANCE... | I | II |
t — - t t {
| | | I
| ¢ CPU Utilization { 484 | .310 |
| Average queue contents | 250 | .099 |
| Maximum queue contents |, 6 | 5
| Percent zero entries I 73.9 | 82.8 |
| ' | | I
e Paging mechanism utilization	705	.387
- Average queue contents { 16.6	5.96	
Maximum queue contents	69	55
~ Mean completion time	23.5	15.4
o		
Tasks Completed/Second { 14.0	6.1	
Mean No. of Active Tasks 1 7.7	7.6	
'		I
L i (] 1		
rv ' 1 L i		
WORKLOAD	I	II
b t } 1		
	201-	621-
Task No. Range { 620	805	
!		
No. of CPU Intervals/Second	98.3	60.1
Mean CPU Service Time	1.44	1.33
i	l	
Percent Initial Pages	44.3	28.9
No. of Pages Written/Second	90.7	50.0
! !		
Mean No. of I/O Operations	4.41	5.05
Average I/0 Time	51.9	69.3
	! l	
L [] 1]

Figure F-6. Modified Simulation Data

148 Simulation Results

MODIFIED BASIC SIMULATION MODEL

(Using LCS for paging mechanism)

MTS Data # 0

PERFORMANCE. ..

] R | B

| | I | I7T
3 + f :
! | |

| ¢ CPU Utilization | 362 | .202
| Average queue contents | .562 | .332
| Maximum gqueue contents | 10 | 10
] Percent zero entries | 36.2 | 39.8
| | I

} e Paging mechanism utilization | 598 | .369
| Average queue contents { 10.8 | 7.15
| Maximum queue contents | 59 | 62
| Mean completion time { 18.0 | 19.3
| » | |

{ Tasks Completed/Second i 16.9 | 9.8
i | |

| Mean No. of Active Tasks I 12.6 |} 7.3
| I |

b + f

| WORKLCAD | I | 1II
¢ + t

| | 251- { 759-
§ Task No. Range I 758 | 1052
| : { |

| No. of CPU Intervals/Second | 72.7 | 37.6
| Mean CPU Service Time | 1.28 | 1.39
| | !

] Percent Initial Pages { 53.5 | 61.6
| No. of Pages Written/Second | 77.0 | 47.5
| | |

| Mean No. of I/0O Operations | 7.42 | 3.24
| Average I/0 Tinme | 9u4.5 | 85.2
I f

1 ’L 1

Figure F-7. Modified Simulation lata

Simulation Results

i o s ——e St o St e oy - m— d—— A SdOS cmtn b wm—— Ge — D — Do e — at—— ot Seew e omen wman Bl s o

145

MODIFIED EASIC SIMULATION MODEL

(Using preemptive CPU queue discipline)

MTS Data # 1

v . . 1 R | i
| PERFORMANCE... | I | 1II i
F i —t 1
e« CPU Utilization	425	407
Average queue contents I 339	.347	
Maximum queue contents	5	8
Percent zero entries	53.0	53.3
i		
¢ Paging mechanism utilization	.513	.709
Average Ggueue contents	13.5	22.9
Maximum gqueue contents	68	74
Mean completion time	26.4	32.1
i		
Tasks Completed/Second { 10.8	13.0	
i		
¥ean No. of Active Tasks i 8.7 { 7.0		
i	[
H - —+ } ——		
WORKLCAD	I	I
F + } {		
	250~	574-
Task No. Range { 573	963	
! I		
No. of CPU Intervals/Second	54.4	42.8
Mean CPU Service T me	2.01	2.45
	I	
Percent Initial Pages	85.4	89.3
No. of Pages Written/Second	66.2	91.4
Mean No. of I/0 Operations	5.28	3.30
Average I/0 Time [39.8	41.9	
[1 i]

150

Figure F-8. Modified Simulation Data

Simulation Results

MODIFIED BASIC SIMULATION MODEL

(Using random drum writes and FIFQ queues)

MTS Data # 1

| Al 1 i
| PERFORMANCE... | I | II |
{ +-—- i
e CPU Utilization	410	.291
Average queue contents	455	.154
Maximum queue contents i 9	5	
Percent zero entries	59.7	65.9
¢ Paging mechanism utilization	493 { .515	
Average gqueue contents	13.2	15.2
Maximum queue contents	62	61
Mean completion time	26.7	29.4
Tasks Completed/Second i 9.7	8.9	
i		
Mean No. of Active Tasks	9.1} 7.3	
I		
b t } 1		
WORKLOAD	I	IT
b + i		
i	250-	542-
Task No. Range	541	808
I] {		
No. of CPU Intervals/Second 1 52.3	37.8	
Mean CPU Service Time	2.02	1.98
	i	
Percent Initial Pages	82.9	80.7
No. of Pages Written/Second	63.3	66.5
Mean No. of I/0 Operations	4.88	3.24
Average I/0 Time	39.3	51.4
l

| {1

Figure F-9. Modified Simulation Data

Simulation Results

151

MODIFIED BASIC SIMULATION MODEL

(Using queueing options and longer time
MTS Data # O

slice)

B 1 bl 1
| PERFOERMANCE... | I | II |
— t f———
e CPU Utilization	.324	.238
Average queue contents { 533	.180	
Maximum queue contents	10	51
Percent zero entries	33.9	42.2
e Paging mechanism utilization	478	.296
Average queue contents	9.56	3.72
Maximum queue contents N 67	39	
Mean completion time] 20.0	12.6	
Tasks Completed/Second	1.2	5.9
Mean No. of Active Tasks	7.7	7.8
	l	
[1 1]		
v 1 v 1		
WORKLOAD	I	II
—- i } ———		
	251-	588-
Task No. Range	587	765
No. of CPU Intervals/Second I 55.1	47.9	
Mean CPU Service Time	1.51	1.28
[
Percent Initial Pages	47.6	31.3
No. of Pages Written/Second	61.7	38.1
{	!	
Mean No. of I/0 Operations	3.68	4.98
Average I/0 Time	80.1	79.8
I | l |
L L : 1
Figure F-10. Modified Simulation Data
152 Simulation Results

MODIFIED BASIC SIMULATION MODEL

(Using Ub-sector drum and 20% unchanged pages)
MTS Data # 0

r R nl 1
| PERFORMANCE... | I | 11 |
(3 } f 1
| | | |
| e CPU Utilization | 426 | .350 |
| Average gqueue contents { 475 .223 |
| Maximum queue contents] 6 | 7 1
| Percent zero entries { 30.6 | 36.9 |
I | | |
| e Paging mechanism utilization | .574 | .458 |
| Average queue contents | 11.2 | 6.08 |
| Maximum queue contents [70 57 |
i Mean completion time | 19.5 | 13.3 |
] | | |
| Tasks Completed/Second | 13.9 | 9.7 |
{ | l !
1 Mean No. of Active Tasks | 9.2 | 8.2 |
I | | |
} + t 4
| WORKLCAD i I | II |
F - t + 1
| | 253- | 669- |
] Task No. Range { €68 | 959 |
	I	
No. of CPU Intervals/Second	81.4	68.2
Mean CPU Service Time { 1.35	1.32	
[‘
Percent Initial Pages { 63.4	62.2	
No. of Pages Written/Second	64.6	52.7
	I	
Mean No. of I/O Operations	5.32	5.05
Average I/0 Time	45.4	67.4
I I i i
[i i J

Figure F-11. Modified Simulation Data

Simulation Results 153

3.

5. "

9.

10.

154

Amdahl, G. M. "Effects of Certain Parameters on Time-
Sharing Systems." Geophysical Theory and Computers.
Edited by C. L. Fekeris. Oxford: Blackwell Scien-
tific Publishers, 1966.

Amdahl, G. M., and Behman, S. B. "A Simulation of the
Effects of Dynamic Storage Allocation Hardware and
Scheduling Algorithms on Time Sharing Systems."
Unpublished paper, 1966.

Arden, B. W. "Time-Sharing Systems: A EReview." Pro-

ceedings of the IEEE International Convention, 15

Eart 10 (March, 1967) 23-25.

Arden, B. W., Galler, E. A., O'Brien, T. C., and Wes-
tervelt, F. H. "“Program and Addressing Structure in
a Time-Sharing Environment." Journal of the ACM, 13
(January, 1966) 1-16.

Belady, L. A. "A Study of Replacement Algorithms for a
Virtual-Storage Computer.® IBM Systems Journal, 5
(July, 1966) 78-101.

Bryan, G. E. "JO0SS: 20,000 Hours at a Console—A
Statistical Summary." Proceedings of the Fall Joint
Computer Conference, 31 (November, 1967) 769-~778.

Codd, E. F. "Nultiprogranm Scheduling;“ Communications
of the ACM, 3 (June, 1960) 347-350.

Coffman, E. G. "Stochastic Models of Multiple and
Time-Shared Computer Operations. Leport NO.
6€-38, Department of Engineering, UCLA. 1966.

Coffman, E. G. and Wood, R. C. "Interarrival Statis-
tics for Time-Sharing Systems." Communications of
the ACM, 9 (July, 1966) 500-503.

Coffman, E. G. "A Simple Probability Model Yielding
Ferformance Bounds for Modular Memory Systems."
Unpublished Note, June, 1967.

Bibliograghy

11.

12.

13.

4.

15.

16.

17,

18.

19.

20.

21.

Coffman, E. G., and Varian, L. C, "An Empirical Study
of the Behavior cf Frograms in a _Paging Environ-
ment." Proceedings of the ACM Symposium on QOperat-
ing System Principles, Gatlinburg, Tennessee, Octob-
er, 1967.

Cohen, J. "A Use of Fast and Slow Memories in
List-Processing Languages.™" Communications of the
ACM, 10 (February, 1967) 82-86.

Comeau, L. W. "A Study of the Effect of User Progranm
Optimization on a Paging System." Proceedings of

——— e o w—— o — P2

Gatlinburg, Tennesee, October, 1967. : ,

Corkato, F. J., and Vyssotsky, V. A. "Introduction and
Overview of the Multics System." Proceedings of the
Fall Joint Computer Conference, 27 (November, 1965)
1€5-196. ‘

Cox, D. R. and Smith, W. L. Queues. London: Methuen
and Co., Ltd., 1961.

Denning, P. J. “"Effects of Scheduling on File Memory
Operations." Proceedings of the Spring Joint Com-
puter Conference. 30 (April, 1967) 9-21.

Denning, P. J. "The HWorking Set Model for Progran
Behavior," Proceedings of the ACM Symposium on
Cperating System Principles, Gatlinburg, Tennesee,
October, 1967. :

Denning, P. J. Review Number 12,531, Computing
Reviews_8 (July, 1967) 393-394.

Dennis, J. B. "Segmentation and the Design of Multi-
programmed Computer Systems." Journal of the ACHN,
1z (October, 1965) 589-602.

Dennis, J. B., and Van Horn, E. C. "Programming
Semantics for Multiprogrammed Computations." Con-
munications of the ACM, 9 (October, 1S566) 143-155.

Edwards, D., Kilburn, 1., lanigan, M., and Sumner, F.
"One Level Storage System." IRE I;ansgctions on
Electronic Computers, EC-11 (April, 1962) 223-235.

Bibliography 155

22.

23.

24.

25.

26.

27.

28.

29..

30.

31-

32.

33.

156

Estrin, G., and Martin, D. "Models cf Computations and
Systems—Evaluation of Vertex Probabilities in Graph
Models of Computations." Journal of the ACM, 14
(April, 1967) 281-299.

Estrin, G. and Turn, R. "Automatic Assignment of
Ccmputations in a Variable Structure Computer Sys-
tem." ISZEE Transactions on Electronic Computers,

EC-12 (December, 1963) 755=773.

Evans, D. C., and LeClerc, J. Y. "Address Mapping and
the Control of Access in an Interactive Computer."
Eroceedings of the Spring Joint Computer Conference,
30 (April, 1967) 2z3-30.

Feller, W. An Introduction to Probability Theory and
Its Applications. I. 2nd Ed. New York: Wiley and
Scns, 1957.

Feller, W. An Introduction to Probability Theory and

dts Agpllcatlons.. II. New York: Wiley and Sons,
1965. '

Fife, D. W. "The Ortimal Control of Queues, with
Aprlication to Computer Systems." Technical Report
170. Ann Arbor: Cooley Electronics Laboratory,
University of Michigan, 1965.

Fine, G. H., Jackson, C. W., and McIsaac, P. V.
“Dynamic Program Eehavior under Paging.' Proceed-
ings of tne ACM 21st National Conference, (August,
1966) 223-228.

Fine, G. H., and McIsaac, P. V. “Simulation of a
Time-Sharing System." Professional Paper SP-1909.
Santa Monica: System Development Corporation, 1964,

Gaver, D. P. Jr. "Frobability Modele ..r ¥ulvipoogran-
ming Computer Systems." Journal gi xw: acH, 14
(July, 1967) u423-438.

Gikscn, C. T. "Time-Sharing with the IBM Systen/360:
Model 67." Proceedings of the Spring Joint Computer

Conference, 28 (April, 1966) 61-78.

Hammersley, J. M., and Handscomb, D. C. Monte Carlo

Methods. New York: Wiley and Sons, 1964.

Howard, R. Dynamic Programming and Markov Processes.
Cambridge: MIT Eress, 1960.

Bikliography

34.

35.

36.

37‘

38.

39.

40.

41.

42.

43.

44.

45.

46.

International Business Machines. GPSS5/360 liser's Manu-
al. IBM Publication H20-0326.

International Business Machines. IBM System/360 Model
671: Time-Sharing System Functional Characteristics.
IBM Publication A27-2719.

Ivanescu, P. L. "Pseudo-Boolean Programming and Appli-
cations." Lecture Notes in Mathematics, 3. Berlin:
Sgringer-verlag, 1965.

Ivanescu, P. L., and Kkudeanu, S. "Pseudo-Boolean
Methods for Bivalent Programming." Lecture Notes in
Mathematics, 23. Berlin: Springer-Verlag, 1966.

- i i s waral o ot e s e

Karp, R. M. "A Note on the Application of Graph Theory
to Digital Computer Programming." Information and

Karp, R. M. Some Applications of 1logical Syntax to
Digital Computer Erogramming. Ph.D. Thesis, Depart-
ment of Engineering, Harvard University, Cambridge,
19859,

Kemeny, J., and Snell, J. Finite Markov Chains.
Princeton: D. Van Nostrand Co., 1960.

Kleinrock, L. "A Conservation Law for a Wide Class of
Queueing Disciplines." Naval Research Logistics
Quarterly, 1z (June, 1965) 181-192.

Kleinrock, L. "Time-Shared Systems: A Theoretical
ITreatment." Journal of the ACM, 14 (April,1967)
242-261.

Koenigsberg, E. "Cyclic Queues." OQOperational Research
guarterly, 9 (January, 1958) 22-35.

Krider, L. “"A Flow Analysis Algoritam." Journal of
the ACM, 11 (October, 1964) 429-436.

Lauver, H. C. “Bulk Core in a 360/67 Time-Sharing
System." Proceedings of the Fall Joint Computer

— > WO . e e e o

Livermore, F. G. "A General Approach to Time-Sharing;
Algoritams for Scheduling and Control of Computer
Resources." Research Publication GMR 549, General

Motors Corporation. 1966.

Bibliography 157

47.

48.

ug.

50.

51.

52,

53.

54.

55.

56.

57.

58.

158

McGee, W. C. "On Dynamic Program Relocation." IBNM
Systems Jourpal, 4 (July, 1965) 181-199.

Marimont, R. B. ‘"Applications of Graphs and Boolean
Matrices to Computer Programming." SIAM Review, 2
(October, 1960) 259.

Medgyessy, P. Decomposition of Superpositions of Dis=
tribution Functions. Budapest: Hungarian Academy

of Sciences, 1961.

Morris, D., Sunner, F. H., and Wyld, M. T. "An
Appraisal o¢f the Atlas Supervisor." Proceedings of
the ACM 22nd National Conference, (August, 1967)
67-75.

University of Michigan Computing Center. MIS: = Michi-
gan Terminal System. Ann Arbor: University Press,
1568.

Nielsen, N. R. "The Analysis of General Purpose Con-
puter Time-Sharing Systems." Document No. 40-10-1.
Stanford: Computaticn Center, 1966.

Pankhurst, R. J. "Program Overlay Techniques." Com—
munications of the ACM, 11 (February, 1968) 119-125.

Pinkerton, T. B. "On the Automatic Computation of
Integral Homclogy Groups." Mathematical Algorithnms,
I (January, 1966) 3€.

Prossner, k. T. "Applications of Boolean Matrices to
the Analysis of Flcw Diagrams." Proceedings of the
Eastern Joint Computer Conference, (December, 13959)
133.

Ramamoorthy, C. V. "Discrete System Representation and
Analysis by Generating Functions of Abstract
Graphs." IEEE International Convention Record, 13
Part 6. 1965.

Ramamoorthy, C. V. "The Analytic Design of a Dynamic
look~-Ahead and Program Segmenting System for Multi-
prcgrammed Computers." Proceedings of the ACM 21st
National Conference, (August, 1966) 229-239.

Rosenberg, R. S., and Wallace, V. L. "RQA-1, The
Recursive Queue Analyzer." Technical Report 2. Ann
Arbor: Systems Engineering Laboratory, University
of Michigan, Ann Arbor, 1965.

Bibliography

59,

60.

61.

62.

63.

6u.

65.

66.

67.

68.

saltzer, J. H. "C1ISS Technical Notes." Report MAC-TR-
16. Cambridge: Project MAC, 1965.

Salwicki, A. "On a Certain Theorem of Graph Theory and
Its Application to Automatic Programming." Algoryt-
ny, 4 (December, 19€5) 69-83.

Seaman, P. H. "On Teleprocessing System Design, Part
Iv: The Role ot Ligital Simulation." IBM Systenms
Journal, 5 (September, 1966) 175-189.

Scherr, A. L. "An Analysis of Time-Shared Computer
Systems"™. Report MAC-TR-18. Cambridge: Project
MAC, 1965.

Schulman, F. D. "Hardware Measurement Device for IBU
System/360 Time-Sharing Evaluation." Proceedings of
the ACM 22nd National <Conference, (August, 1967)
1€3-109.

Schurmann, A. "The Application of Graphs to the
Analysis of Distribution of Loops in a Program."
Information and Control, 7 (September, 1964)
275~-282.

Shemer, J. E. "Some Mathematical Considerations of

Time-Shared Scheduling Algorithms." Journal of the
ACM, 14 (April, 1967) 262-272.

Shemer, J. E., and Shippey, G. A. "Statistical Analy-
sis of Paged and Segmented Computer Systems." IEEE
Iransactions on Electronic Computers, EC-15 (Decemb-
er, 1966) 855-863.

Smith, J. L. "“Markov Decisions in a Partitioned State
Space, and the Contrcl of Multiprogramming". Techn-

ical Report 3. Ann Arbor: Systems Engineering
Laboratory, University of Michigan, 1967.

Smith, J. L. "Muitiprogramming under a Page on Demand
Strategy." Comnunications of the ACM, 10 (October,
1567) 636-6U6.

Bibliography 159

69.

70‘

71.

72.

160

Tukey, J. W., and Wilk, M. B. "Data Analysis and
Statistics: An Expcsitory Overview." Proceedings
of the Fall Joint Computer Conference, 29 (November,
1666) 6595-709.

University orf Michigan Computing Center. University of

Ann Arbor: University Press, 1966.

Varga, R. S. Matrix _Iterative_ _Analysis. Englewood
Clififs: Prentice-dall, Inc., 1962.

Wecnderly, R. A. A Segmenting Model for Digital Comput-
er Programs. Master's Thesis, Department of Mathe-
matics, University of North Carolina, Chapel Hill,
1561.

Biblicgraphy

Unclassified
Security Classification

DOCUMENT CONTROL DATA - R&D o

{Security classification of title, body of abstract and indexing annotation must be entered when the overail report ia classified)
1. ORIGINATIN G ACTIVITY (Corporate author) o 28. REPORT SECURITY C LLASSIFICATION
Unclassified

2b. GROUP

The University of Michigan
CONCOMP Project

3. REPORY TITLE

Prograu Behavior and Control in Virual Storage Computer Systems

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)
Technical Report

5. AUTHOR(S) (Last name, first name, initial)

Tad Brian Pinkerton

6. REPORT DATE 78 TOTAL NO. OF PAGES | 7b. NO. OF REFS
April 1968 160 72

8a. CONTRACT OR GRANT NO. 9a. ORIGINATOR'S REPORT NUMBER(S)
DA-49-083 0SA-3050 Technical Report 4

b. PROJECT NO.

c. 9b. OTHER REPORT NO(S) (Any other numbers that may be essigned
this report) v)

d.
10. AVAILABILITY/LIMITATION NOTICES

Qualified Requesters may obtain copies of this Report from DDC

11. SUPPL EMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agenéy

13. ABSTRACT

This stuuy attempts to resolve some problems in the allocation of
storage to computer programs. In both large and small systems, it
is necessary to periodically transfer parts of programs between
main and auxiliary storage devices. Several stochastic models are
used to represent the behavior of programs with respect to their
use of storage. These models are used to suggest ways in which
main storage should be allocated in order to maximize the efficiency
of the operating system. Both packaging the parts of a program
into memory units and scheduling the storage assignment events
during execution are considered as optimization problems. A de-
tailed set of data from a particular large timesharing system was
taken to illuminate the storage use characteristics of the system
load and provide parameter values for the theoretical models. In
addition, these data were used directly in a simulation study of
storage management techniques which served to bridge the gap
between simple analytical models and the complexities of a real
system.

F
DD 1425'34 1473 Unclassified

Security Classification

IInclassified

Security Classification

14.
KEY WORDS

LINK A LINK B LINK C

ROLE WT ROLE wT ROLE wT

Storage Allocation
Virtual Memory
Simulation
Scheduling
Multiprogramming

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECURITY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
“‘Restricted Data’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters, Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial.
If military, show rank and branch of service. The name of
the principal author is an absolute minimum requirement.

6. REPORT DATZ: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
shouid follow normal pagination procedures, i.e., enter the
number of pages containing information

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written, ‘

8b, 8¢, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc.

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controlled by the originating activity. This number must
be unique to this report.

9b. OTHER REPORT NUMBER(S): If the report has been
assigned any other report numbers (either by the originator

or by the sponsor), also enter this number(s).

10. AVAILABILITY/LIMITATION NOTICES: Enter any lim-
itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) *‘Qualified requesters may obtain copies of this
report from DDC.”’

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized.””

(3) *“U. S. Government agencies may obtain copies of
this report directly from DDC, Other qualified DDC
users shall request through

ER]
.

(4) *“‘U. S. military agencies may obtain copies of this
report directly from DDC. Other qualified users
shall request through

iR
.

(5) ‘“All distribution of this report is controlled. Qual-
ified DDC users shall request through

"
.

If the report has been furnished tc the Office of Technical
Services, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project offics or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though
it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS), (S), (C), or (U).

There is no limitation cn the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may bLe used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

GPO 886-551

Unclassified

Security Classification

i

