
Angular momentum and Killing potentials
E. N. Glassa)
Physics Department, University of Michigan, Ann Arbor, Michigan 48109

~Received 6 April 1995; accepted for publication 1 September 1995!

When the Penrose–Goldberg~PG! superpotential is used to compute the angular
momentum of an axial symmetry, the Killing potentialQ~w!

mn for that symmetry is
needed. Killing potentials used in the PG superpotential must satisfy Penrose’s
equation. It is proved for the Schwarzschild and Kerr solutions that the Penrose
equation does not admit aQ~w!

mn at finite r and therefore the PG superpotential can
only be used to compute angular momentum asymptotically. ©1996 American
Institute of Physics.@S0022-2488~95!03312-9#

I. INTRODUCTION

In this work computing angular momentum with the use of Killing potentials is studied for the
Schwarzschild and Kerr solutions. Killing potentials are bivectorsQmn whose divergence yields a
Killing vector. Both solutions have explicit rotational Killing symmetries, spherical for Schwarzs-
child and axial for Kerr, and we have obtained an axial Killing potentialQ~w!

mn for both solutions.
We expected to use thatQ~w!

mn in the Penrose–Goldberg~PG! superpotential1 to compute angular
momentum in the same way thatQ~t!

mn has been previously used to compute mass2 and found, to
our surprise, that this was not possible.

Killing potentials used in the PG superpotential must satisfy Penrose’s equation3

Pamn:5“

~aQmn2“

~aQn)m1ga@mQn]b
;b50 ~1!

such that“bQ
ab is a Killing vector. Penrose showed that ten independentQmn exist in Minkowski

space, but there can be no solutions in a general space–time which has no Killing symmetries. For
Penrose’s quasi-local mass integral we exhibit, in the following section, a Killing potential for the
Kerr spacetime which satisfies~1! and yields a quasi-local Kerr mass. Unfortunately, one cannot
use the PG superpotential to compute quasi-local angular momentum and so this work has a
negative result. It is proved for the Schwarzschild and Kerr solutions that the Penrose equation
does not admit aQ~w!

mn at finiter and thus the PG superpotentialcannotbe used to compute angular
momentum at finiter .

A Newman–Penrose null tetrad for the Kerr solution is given in Appendix A together with the
details of an anti-self-dual bivector basis. Bivector components of the Penrose equation are pre-
sented in Appendix B. The conformal Penrose equation is given in Appendix C. Sign conventions
used here are 2An;[ab]5AmR

m
nab , andRmn5Ra

mna .

II. KILLING POTENTIALS

For Killing vector ka there is an antisymmetric Killing potentialQab such that

ka5 1
3“bQ

ab.

It is the Killing potential which is the core of the PG superpotential for computing conserved
Noether quantities such as mass and angular momentum. The PG superpotential is

Uab5A2g 1
2G

ab
mnQ

mn, ~2!

a!Permanent address: Physics Department, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
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whereGab
mn is the negative right and left dual of the Riemann tensor. In order for

“bU
ab5A2gGankn ,

it is necessary that the Killing potentialQmn satisfy the Penrose equation.
The Kerr solution has two Killing vectors, stationaryk(t)

a and axialk~w!
a , and the metric, in

Boyer–Lindquist coordinates, is given by

gab
Kerr dxadxb5C dt22~S/D!dr21~12C!2a sin 2 u dtdw2Sdu2

2 sin 2 u@S1~22C!a2 sin 2 u#dw2, ~3!

whereR5r2 ia cosu, S5RR̄, D5r 21a222mr, andC5122mr/S. The Killing potential for
k(t)

a is

Q~ t !
ab52 1

2~RM
ab1R̄M̄ab!. ~4!

HereMab is an anti-self-dual bivector,M* ab52 iM ab, given in terms of Newman–Penrose null
vectors in Appendix A. One-third the divergence of Eq.~4! yields the stationary Killing vector

k~ t !
a 5na1~D/2S!l a1~ ia sin u/&S!~R̄ma2Rm̄a!. ~5!

Direct substitution ofQ(t)
ab in Eq. ~1! verifies thatQ(t) satisfies the Penrose equation. One can now

use the stationary Killing potential with the PG superpotential to compute the mass2 of the Kerr
source:

M ~S2!52
1

16p R
S2

A2gCmn
abQ~ t !

mndSab ~6!

whereS2 is a closedt5const,r5const two-surface. The result ism for any r beyond the outer
event horizon.

An axial Killing potential for the Kerr solution is given by

Q~w!
ab 5Q1M

ab1Q2V
ab1c.c.,

~7!

Q15
ar sin 2u

2S
~r 213a2 cos2u!, Q25

ir sin u

&R
~r 213a2 cos2u!,

and one-third the divergence ofQ~w!
ab yields the axial Killing vector

k~w!
a 52a sin 2uFna1S D

2S D l aG2F i ~r 21a2! sin u

&S
G ~R̄ma2Rm̄a!. ~8!

When the Kerr rotation parameter is set to zero, one obtains the Schwarzschild results

Q~w!
ab 5

ir 2 sin u

&

Vab1c.c., ~9!

k~w!
a 52

ir sin u

&

ma1c.c. ~10!

Neither theQ~w! for Kerr nor theQ~w! for Schwarzschild satisfy the Penrose equation.
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III. NO AXIAL PENROSE SOLUTION

We will show for the Schwarzschild solution and the Kerr solution that the Penrose equation
does not allow an axial Killing potential at finiter . Penrose’s equation,3

“A8
(AWBC)50 for sym-

metric spinorWBC ~equivalent to the antisymmetric Killing potentialQmn!, was used in linearized
theory where Penrose4 showed existence of ten independent Killing potentials, one for each
Minkowski Killing vector. In Goldberg’s generalization1 to a fully curved metric there is no
discussion of the existence of solutions of the Penrose equation at finiter . We know that a solution
exists forQ(t) . It is given in Eq.~4! for the Kerr solution with anti-self-dual components

Q050, Q152 1
2R, Q250, ~11!

where

Qmn5Q0U
mn1Q1M

mn1Q2V
mn1c.c.

We also know that Penrose obtained asymptotic results for angular momentumJ. For axial sym-
metry k~w! at the conformal boundary he foundJ50 for Schwarzschild’s solution andJ5ma for
Kerr’s, so it is reasonable to expect aQ~w! for use in the PG superpotential at finiter .

The argument presented below assumes thatQ~w! exists, goes through a long set of equations
which are the components of the bivector form of Penrose’s equation given in Appendix B, and
ends with no possibleQ~w! . To integrate the equations it is assumed thatQ0, Q1, andQ2 are
independent oft and w, i.e., it is assumed thatLj Q~w!

mn50 whereja is a Killing vector that
commutes with the Kerrk(t)

a andk~w!
a . If this assumption is false, thenLj Q(w)

mn 5Xmn. Penrose’s
equation~1! with ¹bQ

nb53kn can be written as

¹bQ
mn5¹@mQn]

b13k@mdn]
b . ~12!

Since the Lie and covariant derivatives commute, the nonzero bivectorXmn must satisfy

“bX
mn5“

@mXn]
b . ~13!

The Kerr and Schwarzschild solutions do not admit a nonzeroXmn at finite r .
We investigate the existence ofQ~w! for the Schwarzschild solution since the equations are

simpler with the Kerr rotation parameter set to zero but the argument can be extended in a
straightforward manner to the Kerr solution. The null tetrad and spin coefficients given in Appen-
dix A are used. Penrose’s equation~B4! hasna component

L0505] rQ0 , ~14!

with solutionQ05h(u); h an arbitrary function. Them̄a component is

M0505
1

&r
~]uQ02cot uQ0!, ~15!

with solutionQ05 f (r ) sinu, f arbitrary. The two separate solutions require

Q05c0 sin u, c0 const. ~16!

Equation~B2! hasl a component

N2505r ~r22m!] rQ222mQ2 , ~17!

with solutionQ25(122m/r )h(u). Thema component is
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B2505
1

&r
~]uQ22cot uQ2!, ~18!

with solutionQ25 f (r ) sinu. The two solutions forQ2 require

Q25c2~122m/r !sin u, c2 const. ~19!

Thena component of~B2! is

L222B150, ] rQ22
2

r
Q22

&

r
]uQ150. ~20!

UsingQ2 from ~19! we find

Q15c2&~123m/r !cosu1 f ~r !. ~21!

We now have functional forms forQ0, Q1, andQ2. TheQ components are further restricted by
using them̄a component of~B2!:

M222N150,
~22!

1

&r
~]uQ21cot uQ2!1S 12

2m

r D S ] rQ12
1

r
Q1D50.

UsingQ2 from ~19! andQ1 from ~21! we obtain the equation

c26&m

r 2
cosu1] r f2

1

r
f50. ~23!

No solution is possible unless one choosesc250. ThenQ15c1r . TheQ components are now

Q05c0 sin u, Q15c1r , Q250. ~24!

The l a component of~B4! is

N022M150,
~25!

1

2 S 12
2m

r D ] rQ01
m

r 2
Q02

1

r S 12
2m

r DQ01
&

r
]uQ150.

Substituting~24! requiresc050. Comparing~24! and~11! one can now see that the only solution
possible is the one forQ(t) given above.

We have proved that, for the Schwarzschild and Kerr solutions, only the timelike Killing
vectork(t) can have a Killing potential that satisfies the Penrose equation at finiter .

IV. NULL INFINITY

We proceed to solve the Penrose equation at the boundary of Schwarzschild space–time. The
Schwarzschild solution is given in outgoing null coordinates as

gmn dx
mdxn5~122m/r !du212 dudr2r 2~du21sin 2u dw2!. ~26!

We use the null tetrad
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l a dxa5du, na dxa5 1
2~122m/r !du1dr, ma dxa52~r /& !~du1 i sin u dw!,

and spin coefficients given in Eq.~A2! with Kerr rotation parametera50. The general equations
for a conformal map are given in Appendix C. We chooseV51/r5z. On I 1, wherez50, the
metric is

ĝmn dx
mdxn522 dudz2~du21sin 2u dw2!. ~27!

Here the conformal Bondi frame is

l â dxa5du, n̂a dxa52dz, m̂a dxa52~1/& !~du1 i sin u dw!,

with nonzero spin coefficients

b̂5
cot u

2&
52â.

The Penrose equation comprises eight complex equations~B2!–~B4! for Q̂0, Q̂1, andQ̂2. Three
establish finite values for theQs on the boundary:

]zQ̂050, ]zQ̂11
1
2~ d̂22â !Q̂050, ]zQ̂212~ d̂ !Q̂150,

whereD̂52]z , D̂5]u , and onI 1 ( d̂12sâ)h52Zh for h a spin weights scalar~we use the
original definition5 of edth with spin weight opposite to the helicity of outgoing radiation!. In the

following a zero superscript denotes independence ofz, and (Q̂0
0 ,Q̂1

0 ,Q̂2
0) have spin weights

~1,0,21!. The remaining five equations onI 1 are

]uQ̂2
050, ~28a!

ZpQ̂2
050, ~28b!

ZpQ̂2
012]uQ̂1

050, ~28c!

ZQ̂0
050, ~28d!

2ZQ̂1
01]uQ̂0

050. ~28e!

The solutions are

Q̂2
05km21Y1m , Q̂1

052 1
2u ZQ̂2

01 f ~u,w!, Q̂0
05 1

2 u
2Z2Q̂2

022uZf1cm1Y1m , ~29!

wherekm andcm are complex constants. Here we can go beyond Goldberg1 and integrate~28e!
since the Schwarzschild null surfaces are shear-free. The asymptotic Killing vectors are

k̂u5Q̂0
11c.c., V k̂u5c.c.~Q̂0

2!, V k̂w5Q̂0
2 . ~30!

The supertranslations of the BMS group have a full function’s worth of freedom inQ̂0
1 but at the

Schwarzschild boundaryf ~u,w! is restricted to four parameters for ordinary translations andZ̃f50.
The solution of the Penrose equation forQ(t) is contained above. The nonzero anti-self-dual

component of Eq.~4! is Q152r /2 or Q̂1521
2. This solution coincides with the valueskm50,

cm50, and f ~u,w!521
2.

Now lets take the asymptotic solutions found above in~29! and~30! and use them to construct
a Killing potentialQ~w! . Thus our candidate has the form
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Q~w!
mn 5~r 2Q2

0!Vmn1c.c. ~31!

For the Schwarzschild solution we compute the divergence:

1

3
“nQ~w!

mn 52@rQ0
2#m

m1F r
&

~]u1cot u!Q0
2G lm1c.c. ~32!

Equating with

k~w!
m 52

ir sin u

&

mm1c.c.

yields

Q0
25

i sin u

&

.

The lm term in ~32! vanishes when the complex conjugate is added. We have constructed the
Killing potential which was already given above as Eq.~9!. The anti-self-dual components are

Q050, Q150, Q25~ i /& !r 2 sin u. ~33!

Of the twelve terms entering the Penrose equation~defined in Appendix B!, four are nonzero for
the components of Eq.~33!:

L25 i&r sin u, N25~ i /& !~3m2r ! sin u,

M25 ir cosu, B15~ i /& !r sin u.

AlthoughQ2 has ther
2 dependence that one expects for an asymptotic solution and the angular

dependence dictated byk~w! , the components of Eq.~B2!, particularlyN250, show directly that
this Killing potential fails to satisfy the Penrose equation.

V. CONCLUSION

To find a Killing potential one can write the divergence equation relatingka andQab as a
three-form relation, one-third the exterior derivative of dualQ equal to the dual ofka dxa,

1
3d*Q5* ~ka dxa!,

and then integrate~if possible!. We have seen that not just any Killing potential can be used in the
PG superpotential but only one which satisfies Penrose’s equation. Although aQ~w!

ab whose diver-
gence yielded the axial Killing vector was presented for the Kerr solution, it could not be used to
compute quasi-local angular momentum although asymptotically it yieldsma. It has been shown
that aQ~w!

ab cannot be found for either the Kerr or Schwarzschild solutions which will satisfy the
Penrose equation in curved space and so the PG superpotential cannot be used to compute quasi-
local angular momentum.

Some interesting questions remain. What are the complete integrability conditions for the
Penrose equation? What is the physical reason that no quasi-local Killing potential for rotational
symmetry can satisfy the Penrose equation?
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APPENDIX A: NULL TETRAD AND BIVECTORS

A Newman–Penrose tetrad (l a,na,ma,m̄a) for the Kerr metric~3! with l a andna as principal
null vectors is chosen as

l a]a5
1

D
@~r 21a2!] t1D] r1a]w#,

na]a5
1

2S
@~r 21a2!] t2D] r1a]w#, ~A1!

ma]a5
1

&R̄
F ia sin u] t1]u1

i

sin u
]wG ,

whereR5r2 ia cosu, S5RR̄, andD5r 21a222mr. The nonzero spin coefficients and Weyl
tensor component are

r52
1

R
, m52

D

~2SR!
, t52

ia sin u

&S
, p5

ia sin u

&R2
,

~A2!

g5m1
r2m

2S
, b5

cot u

2&R̄
, a5p2b̄, c252

m

R3 .

A basis of anti-self-dual bivectors is given by

Umn52m̄@mnn] , Mmn52l @mnn]22m@mm̄n] , Vmn52l @mmn] . ~A3!

Their inner products areUmnVmn5ŪmnV̄mn52, MmnMmn5M̄mnM̄mn524, and all others zero.
As a basis, they satisfy the completeness relation

1
2~g

abmn1 ihabmn!5UabVmn1VabUmn2 1
2M

abMmn, ~A4!

wheregabmn5gamgbn2gangbm, and 1
2h

abmn is the dual tensor. It is useful to list their covariant
derivatives:

¹bU
mn522Umnab1Mmnbb , ab5enb1g l b2amb2bm̄b ,

¹bM
mn522Umncb12Vmnbb , bb5pnb1n l b2lmb2mm̄b , ~A5!

¹bV
mn52Vmnab2Mmncb , cb5knb1t l b2rmb2sm̄b .

APPENDIX B: THE PENROSE EQUATION

Equation~1!, which a Killing potential must satisfy in order to be valid for use in the PG
superpotential, can be written in terms of anti self-dual bivectors with the definition

Qmn5Q0U
mn1Q1M

mn1Q2V
mn1c.c. ~B1!
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Substituting the bivector expansion into~1! provides equations for the componentsQ0 ,Q1 ,Q2 ,
which can be most simply written with the use of twelve terms:

L05~D22e!Q022kQ1 , L15DQ12kQ21pQ0 , L25~D12e!Q212pQ1 ,

N05~D22g!Q022tQ1 , N15DQ12tQ21nQ0 , N25~D12g!Q212nQ1 ,

M05~d22b!Q022sQ1 , M15dQ12sQ21mQ0 , M25~d12b!Q212mQ1 ,

B05~ d̄22a!Q022rQ1 , B15 d̄Q12rQ21lQ0 , B25~ d̄12a!Q212lQ1 .

HereD5 l a“a , D5na
“a , andd5ma

“a . The Penrose equation has the followingUmn , Mmn , and
Vmn components, respectively:

l a~3N2!1na~L222B1!2ma~3B2!2m̄a~M222N1!50, ~B2!

l a~M222N1!1na~B022L1!1ma~2B12L2!1m̄a~2M12N0!50, ~B3!

l a~N022M1!1na~3L0!2ma~B022L1!2m̄a~3M0!50. ~B4!

If Qmn is to be a Killing potential forkm, then its divergence must satisfy

3km5 lm~N11M2!2nm~B01L1!2mm~B11L2!1m̄m~N01M1!1c.c. ~B5!

APPENDIX C: THE CONFORMAL PENROSE EQUATION

For asymptotically simple space–times with future null infinityI 1 we follow Penrose and
Rindler6 case~iv! to conformally map from the physical metricgab to the unphysical metricĝab :

ĝab5V2gab ~C1!

with the spinor basis mapping asôA5oA , ı̂A5VıA . HereV50 defines the future null boundary
with “aV a null vector tangent to the generators ofI 1. It follows from the map of the spinor basis
that the tetrad derivatives transform as

D̂5V22D, d̂5V21d, D̂5D. ~C2!

The spin coefficients conformally map as

k̂5V23k, r̂5V22r2V23DV,

ŝ5V22s, t̂5V21t2V22dV,

ê5V22e, â5V21a2V22d̄V,

b̂5V21b, ĝ5g2V21DV,

n̂5Vn, m̂5m1V21DV,

l̂5l, p̂5V21p1V22d̄V.

Since the Killing potential obeys the conformal transformationQ̂ab5V21Qab, it’s anti-self-dual
bivector components map as
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Q̂05Q0 , Q̂15VQ1 , Q̂25V2Q2 . ~C3!

The twelve terms in Appendix B which comprise the components of the Penrose equation map as

L̂05V22L0 , L̂15V21L11Q0~V22d̄V!1Q1~V22DV!,

L̂25L212Q1~V21d̄V!12Q2~V21DV!, N̂05N012Q0~V21DV!12Q1~V21dV!,

N̂15VN11Q1~DV!1Q2~dV!, N̂25V2N2 ,

M̂05V21N0 , M̂15M11Q0~V21DV!1Q1~V21dV!,

M̂25VM212Q1~DV!12Q2~dV!, B̂05V21B012Q0~V22d̄V!12Q1~V22DV!,

B̂15B11Q1~V21d̄V!1Q2~V21DV!, B̂25VB2 .

Finally, by direct substitution of the twelve terms above into Eqs.~B2!–~B4! we find the anti-self-
dual components of the Penrose equation conformally transform as

~B̂2!5~B2!, ~B̂3!5V21~B3!, ~B̂4!5V22~B4!. ~C4!

This result is confirmed by the conformal maps

P̂amn5V23Pamn ~C5!

and

Ûmn5V3Umn , M̂mn5V2Mmn , V̂mn5VVmn . ~C6!
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