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When the Penrose—GoldbetBG) superpotential is used to compute the angular
momentum of an axial symmetry, the Killing potenti@f; for that symmetry is
needed. Killing potentials used in the PG superpotential must satisfy Penrose’s
equation. It is proved for the Schwarzschild and Kerr solutions that the Penrose
equation does not admit@{;) at finiter and therefore the PG superpotential can
only be used to compute angular momentum asymptoticallyl996 American
Institute of Physics.S0022-24885)03312-9

I. INTRODUCTION

In this work computing angular momentum with the use of Killing potentials is studied for the

Schwarzschild and Kerr solutions. Killing potentials are bivec@t$ whose divergence yields a
Killing vector. Both solutions have explicit rotational Killing symmetries, spherical for Schwarzs-
child and axial for Kerr, and we have obtained an axial Killing poter@g} for both solutions.
We expected to use th&(; in the Penrose—Goldber@C) superpotentialto compute angular
momentum in the same way th@’ has been previously used to compute rhassl found, to
our surprise, that this was not possible.

Killing potentials used in the PG superpotential must satisfy Penrose’s equation

Pa,uv::V(aQ,uV_V(aQV)M+ga[MQV]ﬁ;B:0 (1)

such thatVBQ"‘B is a Killing vector. Penrose showed that ten indepengtitexist in Minkowski

space, but there can be no solutions in a general space—time which has no Killing symmetries. For
Penrose’s quasi-local mass integral we exhibit, in the following section, a Killing potential for the
Kerr spacetime which satisfi€$) and yields a quasi-local Kerr mass. Unfortunately, one cannot
use the PG superpotential to compute quasi-local angular momentum and so this work has a
negativeresult. It is proved for the Schwarzschild and Kerr solutions that the Penrose equation
does not admit &{,) at finiter and thus the PG superpotenttainnot be used to compute angular
momentum at finite .

A Newman-Penrose null tetrad for the Kerr solution is given in Appendix A together with the
details of an anti-self-dual bivector basis. Bivector components of the Penrose equation are pre-
sented in Appendix B. The conformal Penrose equation is given in Appendix C. Sign conventions
used here areR,.,5=A,R", .5, andR,,=R%,,,.

Il. KILLING POTENTIALS
For Killing vector k® there is an antisymmetric Killing potenti@®? such that
k*=3V zQ“~.

It is the Killing potential which is the core of the PG superpotential for computing conserved
Noether quantities such as mass and angular momentum. The PG superpotential is

U*f=\=g36"%,,Q"", )
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whereG“BM,, is the negative right and left dual of the Riemann tensor. In order for
VBU“B= V—9G*k,,,

it is necessary that the Killing potentigl”“” satisfy the Penrose equation.
The Kerr solution has two Killing vectors, stationakff, and axialk{,,, and the metric, in
Boyer—Lindquist coordinates, is given by

ghg' dx*dxf=w dt?—(2/A)dr?+(1-V¥)2a sin? 0 dtdp—3d6?

— sin2 4[> +(2—W¥)a? sin? 6]de?, (3)
whereR=r—ia cosf, 3=RR, A=r2+a%—2mr, and W=1—-2mr/3. The Killing potential for
KE, is

Qif=— {RM*+RM?#). 4)

HereM“? is an anti-self-dual bivectoM* “¥= —iM ¢4, given in terms of Newman—Penrose null
vectors in Appendix A. One-third the divergence of E4). yields the stationary Killing vector

k&,=n"+(A/235)I°+ (ia sin 6/V23)(Rm*—RnT). (5)

Direct substitution oQaf in Eq. (1) verifies thatQ,y satisfies the Penrose equation. One can now
use the stationary Killing potential with the PG superpotential to compute the’ migse Kerr
source:

1
M(SZ):— m fsle_gczﬁQﬁ;}dSaﬁ (6)

whereS? is a closed =const,r =const two-surface. The result is for any r beyond the outer
event horizon.
An axial Killing potential for the Kerr solution is given by
QE=Q;M*+Q,V*¥+c.c.,

@)

, (7)
ar sin<6 ir sin @
== = " (124332 2 - 24352 2
1 S (re+3ac cos<6), Q, 7R (r°+3a“ cos<6),
and one-third the divergence Q‘f:g yields the axial Killing vector
. 20| nas A o i(r’+a® sin e R 8
(o= —asin“g/n > s (Rm ). (

When the Kerr rotation parameter is set to zero, one obtains the Schwarzschild results

o8 irzsinav 6y ©
=————V*+c.c,,

(‘P) ‘/2

N ir sin @ N

k(¢)=—Tm +c.c. (10

Neither theQ,,, for Kerr nor theQ,,, for Schwarzschild satisfy the Penrose equation.
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lll. NO AXIAL PENROSE SOLUTION

We will show for the Schwarzschild solution and the Kerr solution that the Penrose equation
does not allow an axial Killing potential at finite Penrose’s equatichV 5, AW =0 for sym-
metric spinorWBC (equivalent to the antisymmetric Killing potenti@*“"), was used in linearized
theory where Penro$eshowed existence of ten independent Killing potentials, one for each
Minkowski Killing vector. In Goldberg’s generalizatidrto a fully curved metric there is no
discussion of the existence of solutions of the Penrose equation ar fiklite know that a solution
exists forQ . It is given in Eq.(4) for the Kerr solution with anti-self-dual components

Qo=0, Q;=-3R, Q,=0, (11
where
Q*"=QuU*"+Q;M**+Q,V*"+c.cC.

We also know that Penrose obtained asymptotic results for angular moméntewn axial sym-
metry Kk, at the conformal boundary he foudd=0 for Schwarzschild’s solution and=ma for
Kerr’s, so it is reasonable to expectq, for use in the PG superpotential at finite

The argument presented below assumes@hgtexists, goes through a long set of equations
which are the components of the bivector form of Penrose’s equation given in Appendix B, and
ends with no possibl® . To integrate the equations it is assumed Qgt Q,, andQ, are
independent ot and ¢, i.e., it is assumed that, Q{;=0 where ¢* is a Killing vector that
commutes with the Kerkg, andk{, . If this assumption is false, thew, Q(,;=X"". Penrose’s
equation(1) with VBQ”'BZBkV can be written as

VQur=vinQUl s+ 3klH sl 5. (12
Since the Lie and covariant derivatives commute, the nonzero bivE¢tomust satisfy
V pXHr=yiex, (13

The Kerr and Schwarzschild solutions do not admit a non2éfoat finiter.

We investigate the existence Qf, for the Schwarzschild solution since the equations are
simpler with the Kerr rotation parameter set to zero but the argument can be extended in a
straightforward manner to the Kerr solution. The null tetrad and spin coefficients given in Appen-
dix A are used. Penrose’s equati@¥) hasn® component

Lo=0=9,Qo, (14

with solutionQu=h(#); h an arbitrary function. Then® component is

1
Mozoz‘/a(076Qo_00t 0Qo), (15

with solutionQy=f(r) sin 6, f arbitrary. The two separate solutions require
Qo=¢Cq sin 6, ¢, const. (16
Equation(B2) hasl“ component
N,=0=r(r—2m)d,Q,—2mQ,, 17

with solutionQ,=(1—2m/r)h(6). Them® component is
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1
B,=0= S (9,Q,— cot 6Q,), (18

with solutionQ,=f(r) sin 6. The two solutions foQ, require

Q,=cC,y(1—2m/r)sin 6, c, const. (19

The n® component of B2) is
L,—2B;=0, (7rQ2_§Q2_?f99Q1:0- (20

Using Q, from (19) we find
Q1=c,v2(1—-3m/r)cos 0+ f(r). (21

We now have functional forms fa@,, Q;, andQ,. The Q components are further restricted by
using them® component of{B2):

M2_2N1:O,
(22
1 1 2m 1 o
oy (94Q2+cot Q) + - /| 9Q1= 1 Q1)=0.
Using Q, from (19) andQ, from (21) we obtain the equation
c,6v2m 1
>— c0sf+4,f—— f=0. (23
r r

No solution is possible unless one choosgs0. ThenQ;=c;r. The Q components are now

Q0:C0 Sin 0, Q]_:Clr, Q2:O (24)
The | component ofB4) is

No—2M;=0,

(25)
2m V2
1= —7|Qot 1~ 9sQ:1=0.

1 2m m 1
5 1- e Qo+ 2 Qo— T

Substituting(24) requiresc,=0. Comparing24) and(11) one can now see that the only solution
possible is the one foQ ;) given above.

We have proved that, for the Schwarzschild and Kerr solutions, only the timelike Killing
vectork, can have a Killing potential that satisfies the Penrose equation atfinite

IV. NULL INFINITY

We proceed to solve the Penrose equation at the boundary of Schwarzschild space—time. The
Schwarzschild solution is given in outgoing null coordinates as

0,, dxtdx’=(1—2m/r)du?+2 dudr—r2(dg®+sin 26 de?). (26)

We use the null tetrad
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|, dx*=du, n,dx*=31-2m/r)du+dr, m, dx*=—(r/v2)(dé+i sin @ do),

and spin coefficients given in E¢A2) with Kerr rotation parameteai=0. The general equations
for a conformal map are given in Appendix C. We choésel/r=z. On.7", wherez=0, the
metric is

0,, dxtdx’=—2 dudz-(d¢*+sin 26 de?). (27
Here the conformal Bondi frame is
I, dx*=du, f,dx*=—dz, m,dx*=—(1"2)(dé+i sin 6 dg),
with nonzero spin coefficients

cot @ _
2V2

B=

— .

The Penrose equation comprises eight complex equati®®)s-(B4) for QO, Ql, and@z. Three
establish finite values for th@s on the boundary:

3Q0=0, 3,Qi+38-2&)Qo=0, 3,Q,+2(8)Q;=0,
whereD = — 9y, A= dy, and on7" (3+ 2sa) n=—07 for » a spin weights scalar(we use the
original definitior? of edth with spin weight opposite to the helicity of outgoing radiakidn the

following a zero superscript denotes independence, odind @8,@2,()2) have spin weights
(1,0—1). The remaining five equations ofi* are

2,Q9=0, (283
3Q3=0, (28b
85Q3+24,Q2=0, (280)
3Q3=0, (280
26Q%+9,Q5=0. (289

The solutions are
Q0=K™ 1Yy, QF=—1udQS+f(6,¢), QJ=%u2?Q3—2udf+c™ Yy, (29

wherek™ andc™ are complex constants. Here we can go beyond Goldkerd integratg28e
since the Schwarzschild null surfaces are shear-free. The asymptotic Killing vectors are

k,=Q%+c.c., Qk,=c.c(Q%), QKD:QOZ. (30

The supertranslations of the BMS group have a full function’s worth of freedoﬁf’ir‘out at the
Schwarzschild boundarfy 6,¢) is restricted to four parameters for ordinary translationsdneO.
The solution of the Penrose equation ;) is contained above. The nonzero anti-self-dual
component of Eq(4) is Q;=—r/2 or Q;=—3. This solution coincides with the valué$'=0,
c™=0, andf(6,¢)=—1.
Now lets take the asymptotic solutions found abové2i®) and(30) and use them to construct
a Killing potential Q. Thus our candidate has the form
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0
L =(r’Qy v+ +c.c. (31

For the Schwarzschild solution we compute the divergence:

1
3 Vol =—[rQ%Im*+ |“+c.c. (32)

;
— (94+cot 9)Q°
‘/2(9 )Q",

Equating with

yields

The I*# term in (32) vanishes when the complex conjugate is added. We have constructed the
Killing potential which was already given above as E9). The anti-self-dual components are

Qo=0, Q;=0, Q,=(i/v2)r?sina. (33

Of the twelve terms entering the Penrose equatitefined in Appendix B four are nonzero for
the components of Eq33):

L,=iv2r sin 4, N,=(i/v2)(3m—r) sin 6,
M,=ir cosd, B;=(i/v2)r sin 6.

Although Q, has ther? dependence that one expects for an asymptotic solution and the angular
dependence dictated y,,, the components of EqB2), particularlyN,=0, show directly that
this Killing potential fails to satisfy the Penrose equation.

V. CONCLUSION

To find a Killing potential one can write the divergence equation relatifhignd Q*? as a
three-form relation, one-third the exterior derivative of d@akqual to the dual ok, dx*,

% Q=*(k, dx?),

and then integratéf possible. We have seen that not just any Killing potential can be used in the
PG superpotential but only one which satisfies Penrose’s equation. Altthqﬁ whose diver-
gence yielded the axial Killing vector was presented for the Kerr solution, it could not be used to
compute quasi-local angular momentum although asymptotically it yialaslt has been shown
that aQ(‘fg cannot be found for either the Kerr or Schwarzschild solutions which will satisfy the
Penrose equation in curved space and so the PG superpotential cannot be used to compute quasi-
local angular momentum.

Some interesting questions remain. What are the complete integrability conditions for the
Penrose equation? What is the physical reason that no quasi-local Killing potential for rotational
symmetry can satisfy the Penrose equation?
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APPENDIX A: NULL TETRAD AND BIVECTORS

A Newman—Penrose tetratf*(n®, m*,m?®) for the Kerr metric(3) with |* andn® as principal
null vectors is chosen as

@ 1 2 2
I %:K[(f +a%)d+Ad +ad,l,

1
@ 2 2
n é’a—i [(r*+a%)d—Ad +ad,], (A1)
1 [ i
m*g,=—=|ia sin 69;+ dy+ — de |
V2R sin

whereR=r —ia cosé, S=RR and A=r2+a%—2mr. The nonzero spin coefficients and Weyl
tensor component are

1 A ia sin 6 ia sin 6
= _1 = —! T: - L 7T: —1
PR HTT (23R Vs AR2
(A2)
. r-m = cot @ 3 E . m
Y= M 22 ’ 2‘/25! ' 2 R3
A basis of anti-self-dual bivectors is given by
urr=2mien”,  Mer=2lltprl—omlrm?l ver=2|lrml, (A3)

Their inner products arg*"V = IJ’”\7W= 2, M¥'M = l\ﬁ’”l\ﬁwz —4, and all others zero.
As a basis, they satisfy the completeness relation

Y(guPky+i i) = Y By BT — I @M A, (A4)

whereg®##’=g*gf"—ggP* and37** is the dual tensor. It is useful to list their covariant
derivatives:

V Ur'= —2UMa,+MA%h,,  az=eng+ yl 4~ amy— By,
VM~ = —2UH c+ 2V by,  bp=mng+ vlﬁ—)\mﬁ—,urﬁﬁ, (A5)
VVAT=2VAa,— MPYC,,  Ca= KNyt 7l 5= pMy—oimg.
APPENDIX B: THE PENROSE EQUATION

Equation(1), which a Killing potential must satisfy in order to be valid for use in the PG
superpotential, can be written in terms of anti self-dual bivectors with the definition

Q#"=QuU*"+Q:M#"+Q,V#"+c.c. (B1)
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Substituting the bivector expansion intb) provides equations for the componeQg,Q;,Q-,
which can be most simply written with the use of twelve terms:

Lo=(D—2€6)Qp—2kQ;, L1=DQ;—«kQy+7Qq, L,=(D+2€)Q,+27Q,,
No=(A—2y)Qp—27Q1, N;=AQ;—7Q2+vQq, Ny=(A+2y)Q,+2vQq,
Mo=(0-2B)Qp—20Q1, M;=8Q:—=0Q+uQy, M,=(5+28)Q,+2uQ,

Bo=(6—2a)Qo—2pQ;, B1=06Q;—pQy+AQo, B,=(5+2a)Q,+2\Q;.

HereD=1“V,, A=n“V,, and6=m“V,. The Penrose equation has the followldg,, M ,,, and
V,, components, respectively:
1%(3N,) +n*(L,—2B;) —m*(3B,) —m*(M,—2N,)=0, (B2)
[“(M,—2N;)+n%Bg—2L;)+m*2B;—L,)+m*(2M;—Ngy) =0, (B3)
1%(Ng—2M ;) +n%3Ly) —m*(By—2L;) —m*(3Mg)=0. (B4)
If Q*”is to be a Killing potential fok*, then its divergence must satisfy
3k“=I#(N;+M,)—n*(By+L,)—m*(B;+L,)+m*(Ng+M;)+c.c. (B5)

APPENDIX C: THE CONFORMAL PENROSE EQUATION

For asymptotically simple space—times with future null infinifj we follow Penrose and
Rindlef case(iv) to conformally map from the physical metrig,; to the unphysical metri@aﬁ:

gaﬁzﬂzgaﬁ (Cl)
with the spinor basis mapping ag=o0,, 1,=Q1,. Here2=0 defines the future null boundary

with V€ a null vector tangent to the generators/f. It follows from the map of the spinor basis
that the tetrad derivatives transform as

D=0"2D, 5=0715 A=A. (C2)
The spin coefficients conformally map as

k=073, p=0"2%p—07°DQ,

o=07"20, T=0"17-07250,

e=0"%, a=0"la—0"250,

B=0718, y=y-Q'AQ,

v=Qv, p=u+Q AQ,
A=\, 7=Q lr+Q7250.

Since the Killing potential obeys the conformal transforma@t=Q 1Q*#, it's anti-self-dual
bivector components map as
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Q=Q0, Q=0Q;, Q,=0%Q,. (C3)
The twelve terms in Appendix B which comprise the components of the Penrose equation map as
Lo=0Q 2Ly, L;=071;+Qu(0Q 260)+Q,(Q 2DQ),
L,=L,+2Q,(27180)+2Q,Q7DQ), No=Ny+2Qu(Q 1AQ)+2Q,(Q150),
N;=ON;+Q1(AQ)+Q,(5Q), N,=02N,,
Mo=Q "INy, M;=M;+Qu(Q 1AQ)+Q,(Q~15Q),
My=OM,+2Q,(A0)+2Q,(5Q), By=Q By+2Qu(Q 260Q)+2Q,(Q 2DQ),
B,=B;+0Q.(Q 150)+Q,Q"1DQ), B,=0B,.

Finally, by direct substitution of the twelve terms above into E§®2)—(B4) we find the anti-self-
dual components of the Penrose equation conformally transform as

(B2)=(B2), (B3)=0Q"1B3), (B4)=Q %B4). (C4)

This result is confirmed by the conformal maps

pakr=(~3pas (C5)

and

" — 03 \/ —0O2 Y _
UMV—Q U'u,,, MMV—Q M,uv' V#,,—QV#,,. (Co)
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