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A crystal field approach is used to examine theoretically the energy levels and wavefunctions for a 
gaseous xenon hexafluoride molecule. The electronic configurations used are 5s', 5s 5p, and 5p 2 of 
hexavalent xenon. Four electronic parameters are used to explore the variation in energy with the 
amount of distortion from 0h symmetry. These are the energy difference between the xenon 5s and 
Sp orbitals, the spin-orbit coupling constant for xenon 5p, and two Slater-Condon electron repulsion 
parameters. Pure bending vibrational modes of t lu , t 2g , and t2u symmetries are examined. The mixing of 
Kenon 5s and 5p orbitals by the t 1" vibration is particularly important, leading to a possible 
pseudo-Jahn-Teller distortion from Oh symmetry. Calculations of the vibrational force constants and 
frequencies are made for the bending modes, and the results are compared with observed values for 
otherhexafluorides and related complexes. Calculations made on the coupling between t lu and t2g modes 
indicate an enhanced stabilization of the C3v structure. These studies lend support to the interpretation of 
the observed anomalous properties of the xenon hexafluoride molecule in terms of a nonrigid octahedral 
structure but n.ot to interpretations requiring thermally populated spin-triplet excited states. 

I. INTRODUCTION 

Of the known noble-gas compounds, perhaps none has 
proved as elusive in its characterization as XeFs. The 
early experimental and theoretical investigations were 
reported at the first conference devoted to noble-gas 
compounds,1 while later research on XeF 6 and related 
compounds has been reviewed by MaIm e tal. ,2 Claas
sen,3 and Hyman. 4 An important early theoretical paper 
on the xenon fluorides is that of Coulson. 5 

We begin by noting some of the properties of XeFs 
which seem particularly unusual when compared to those 
of other6 hexafluorides: 

(1) XeF 6 is a white solid at room temperature, but 
acquires a yellowish color somewhat below its melting 
point of 49.5 DC, while careful heat capacity measure
ments indicated no evidence of any phase change near 
the melting point. 7 

(2) The liquid range for XeF 6 (26 DC at 1 atm) is long
er and the vapor pressure is lower than for any other 
known hexafluoride. Its liquid has high entropy of va
porization (32.7 e. u.) and a high and rapidly rising heat 
capacity. 7 

(3) The solubility in anhydrous HF for XeF 6 is excep
tionally large for a hexafluoride. It is also substantially 
ionized in contradiction to all the other hexafluorides in
vestigated. 8 

(4) Analysis of the ir and Raman spectra of XeF 6 
based on the assumption that the gaseous molecule has 
0h symmetry, as have all the other hexafluorides, has 
been unsuccessful, indicating that XeF 6 is different from 
the other hexafluorides. 9-14 

(5) Using He-Ne laser light source with an intense 
red line at 6328 A, a virtual coincidence is f{lund be
tween the observed ir bands and Raman bands for XeF 6' 

which would be forbidden in a molecule with a center of 
symmetry. 13 

(6) Electron diffraction studies on gaseous XeF 6 re
veal large amplitudes of displacement away from 0h 

symmetry, strongly suggesting that the molecule does 
not have an 0h equilibrium geometry. However it has 
proven difficult to find an unequivocal arrangement that 
satisfies the diffraction data. 15-18 

(7) The ions isovalent with XeF 6, such as TeCl;;2, 
TeBr;;2, and SbBriiS, are known to possess definite 0h 
symmetry in the solid phase. 19--22 

At least two schools of thought exist today which at
tempt to explain these abnormalities. One is that rep
resented by Goodman,23 who concentrates on interpret
ing the ir and visible spectra14 in terms of an excited 
state Jahn-Teller distortion. It is proposed in this view 
that there are three electronic isomers for XeF 6, namely 
a spin-singlet ground state of 0h symmetry and spin
triplet excited states of D3d (oblate) and D3d (prolate) 
symmetries, with the latter two states being thermally 
accessible at room temperature. However, magnetic 
experiments have not yet been able to confirm these low
lying triplet states. 24,25 None of the photoelectron spec
troscopy work by Brundle, Jones, and Basch, 26 the 
photoionization mass spectroscopy work by Berkowitz, 
et al., 27 and the threShold electron-impact work by Be
gun and Compton28 have been able to give support to this 
interpretation. The other school is the idea of a pseudo
Jahn-Teller distortion of the ground state, an idea de-
ri ved from Gillispie's mode129 and developed by Gavin 
and Bartell~7.30.31 It is argued that if we start with the 
Gillespie model, we can consider two modifications of 
0h as being most likely. The lone pair electrons may 
be mainly concentrated in the belt or in the face of an 
octahedron. corresponding to a C 2v or C3v symmetry, 
respectively. In either case, the lone pair repulsion 
will distort the octahedral bond angles. To account for 
the negligible dipole observed in a molecular beam ex
periment,25 the molecule is thought to have rapid invert
ing structures (pseudorotation), with inversion of the 
electron pair and wide oscillations of the fluorine atoms. 
However, this predicts a far ir or microwave absorption 
which is yet to be found. 30 

We have treated the problem of XeF s in the spirit of 
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Gavin and Bartell's interpretation, but uSing a simple, 
crystal field model as a basis for quantitative calcula
tions. In this model we consider XeFs as being formed 
by six fluoride ligands surrounding a Xe(+ 6) ion with two 
electrons outside a Te(+ 6)-like core, these two elec
trons corresponding to the lone pair. We have then used 
the results of our calculations to obtain a semiquantita
tive interpretation of the anomalous properties of the 
XeFs molecule. 

II. CRYSTAL FIELD MODEL 

In our crystal field approach to the study of XeF s, we 
approximate the electronic structure of the molecule as 
that of a central ion Xe(+ 6) subjected to the electric field 
created by the six negative fluoride ions surrounding the 
Xe(+ 6) ion. We therefore first examine the states aris
ing for the Xe(+ 6) ion. These are the states for two 
electrons outside a Te(+ 6)-like closed shell core and are 
associated with the configurations 5s2, 5s5P, and 5p2. 
Configurations involving 5d and higher orbitals are not 
considered. The terms arising from the configurations 
involving only 5s and/or 5p are IS from 5s2, 3pO, and 
lpO from 5s5P, and 3p, In, and IS from 5P2, giving a 
total of 28 independent states. It is well-known that the 
atomic states in the absence of spin-orbit coupling can 
be classified according to either (E, L, S, ML , Ms) or 
(E,L,S,J,MJ ), since all J levels of a given L,S term 
are degenerate. In these states deSignation E is the en
ergy, L, S, and J the orbital, spin, and total angular 
momentum quantum numbers, with ML , Ms and M J being 
their associated magnetic quantum numbers. 

Wavefunctions for the 28 states in either basis can be 
used to calculate matrix elements of the nonrelativistic 
Hamiltonian 

Ho='E fi + 'E gil, 
i>l 

(1) 

where fi == - (1/2)V'~ - Z/r i , a one-electron operator con
taining the kinetic energy of the ith electron and the at
traction to the nucleus of atomic number Z (in this paper 
all energies are in atomic units unless otherwise stated) 
and gil is the two-electron electron-repulsion operator 
ri}. Using conventional notation32

,33 for the Slater-Con
don parameters F k and denoting the contribution from in
ner closed shells as 10, with I(nl) being the expectation 
value of fi [Eq. (1) 1 for the orbital I nl), we readily ob
tain the following term energies: 

5s2 : E(1S) =10 + 2J(5s) + Fo(5s, 5s) 

5s5p: E(3 pO) =10+/(5s) +/(5p) + Fo(5s, 5p) 

-Fl (5s ,5p) 

E(1pO) =10+/(5s) +/(5p) +Fo(5s, 5p) 

+Fl (5s,5p) ; 

5p2: E(3p) =10+ 2J(5p) + F o(5p, 5p) - 5F2(5p, 5p) 

E(ln) =10+ 2J(5p) +Fo(5p, 5p) +F2(5p, 5p) 

E(1S) =10 + 2J(5P) + Fo(5p, 5p) + 10F2(5p, 5p) . 

There is in addition a nonvanishing off-diagonal matrix 
element of Ho between the two IS terms which can be 

described as configuration interaction: 

(IS(5s 2) I HollS(5P2) = - f3 F 1(5s, 5p) . (3) 

At times it is m ore convenient to use the average energy 
of the multiplets, as when we compare theoretical cal
culations with experimental energy levels. By average 
we mean a weighted mean in which each multiplet in 
Russell-Saunders coupling, is given a weight (2L + 1) : 
x (2S + 1), equal to the number of separate wavefunctions 
compriSing this multiplet. From this definition, it is 
simple to show that the average energy of a configuration 
is given by33 

E AV = L:li(n, l)+ 1: EIJ 
i>J 

The interaction energies Eij are 

5s2 : F o(5s, 5s) , 

5s5P: F o(5s, 5p) -~ F 1(5s, 5p) , 

5p2: F 0(5p, 5p) - 2F2(5p, 5p) . 

From these, we have 

5s2 : E(1S) =E AV(5s 2) 

5s5P: E(3pO) =E Ay(5s, 5p) - ~ Fl (5s, 5p) 

E(lpO) =EAy (5s, 5p) + t Fl (5s, 5p) 

5p2: E(3p)=EAV ( 5p2)- 3F2(5p, 5p) 

E(ln) =E Ay(5p2) + 3F2(5p, 5p) 

E(IS) =E Ay ( 5p2) + 12F2(5P, 5p) • 

(4) 

(5) 

(6) 

We have thus far used the Hamiltonian in the form of 
Eq. (1); however, in a more accurate treatment of the 
problem, especially for heavy atoms, there is a spin
orbit interaction due to the interaction of the relativistic 
electric dipole moment34 of the electron with the electric 
field within the atom, thus producing the fine structure 
of the multiplets. In the present treatment, we consider 
it as a perturbation to Eq. (1). This interaction, in the 
case of a single electron in an atom can be represented35 

by 

(1'2 1 dV 
H =---l·s=~(r)l·s 

so 2 r dr ' 
(7) 

where (1' is the fine structure constant and V(r) is the 
electrostatic potential energy due to the central field. 
The energy V(r) is equal to - Z/r for a nucleus of charge 
Z when there are no other electrons present. There
fore, dV/dr is positive everywhere, giving a positive 
sign for the coupling constant ~(r). For a system of 11 

electrons, a good approximation for the spin-orbit in
teraction is 

This we must add to the Hamiltonian in Eq. (1). The 
selection rules for Hso in a Russell-Saunders basis 
i.E, S, L,J, M J ) are 

M=O, 

t:.MJ=O, 

t:.S=O, ±1 
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TABLE 1. Nonzero matrix elements of 
spin-orbit coupling. 

I i) Ij) 

3p~(5s5p) 3p~(5s5p) 

3p~(5s5p) 3p~(5s5p) 

3p~(5s5p) 3p~(5s5p) 

3P2 (5p 2) 3P2(5i) 

3P !(5p2) 3P ! (5p2) 

3Po (5p2) 3Po (5p2) 

3p~(5s5p) !P~(5s5p) 

!D2(5p2) 3P2 (5s5p) 

3Po (5p2) !So<5p2) 

aln unit of ?;5p. 

f:l.L = 0, ± 1 , and 

f:l.parity = 0 • 

(il Hsolj)a 

1/2 

-1/2 

-1 

1/2 

-1/2 

-1 

1/-12 

1/ -12 

--12 

(9) 

Next, we evaluate the matrix elements of the spin
orbit interaction. The most direct effect of spin-orbit 
interaction is to split a given term into several levels of 
different J. It can be readily shown that 

(2S+1 LJM 1 Hso 1
2S

+
1 
L JM > 

=~ A [J(J + 1) - L(L + 1) - 5(5 + 1) 1 (10) 

where A is a constant for a given particular term. The 
difference in energy between the level J and level J - 1 
is AJ. This result is the Lande interval rule, which 
states that the separation of two adjacent J states belong 
to the same L,5 is proportional to the larger value of J. 
From Eqs. (8) and (10), we have the sum rule 

6?;ni'im'imSj =AML IV1s , 
i 

where we have defined 

?;nl = {" R~, ~(r)r2dr • 
o 

(11) 

(12) 

The spin-orbit coupling constant ?;nl is positive. The 

diagonal elements of spin-orbit matrix for the Xe(+ 6) 
are readily obtained for the (E, L, 5, J, 11:] J) basis, and 
are given in Table I. 

In the scheme of basis functions we are using, there 
are mixing of states due to spin-orbit coupling. These 
must be obtained using Eq. (8), as the form L· S in Eq. 
(10) does not hold for off-diagonal elements. The re
sulting nonzero matrix elements are also given in Table 
I, while Fig. 1 indicates qualitatively the effects of elec
tron repulsion and spin-orbit coupling for the free ion. 

We now consider the effect of the crystal field36 of the 
six fluoride ions on the states of Xe(+6). First consider 
a point charge (Q) ligand at R, then the potential energy 
of an electron is 

V(r)=-Q/IR-rl (13) 

where r is the position of the electron around the nucleus 
(Fig. 2). We now use the expansion 

1 rl 
IR I = - 6 -+t F,(cosw) , 

- r ,r) 
(14) 

where w is the angle between rand Rand r < is the less
er of rand R, with r) the greater. Let us assume, as 
is customary in crystal field treatments, that 

1 1 ~ (r)' 
IR-rl = Ii: Po Ii: F,(cosw) 

And, 

rl 47T 
V(r) = Q~ R'+l 2l+ 1 

, 
6 Ylm(1)Yi'm(2) , 

m=-' 
where (1) and (2) denote angular coordinates for the 
electron and ligand, respectively. Expanding, 

(15) 

(16) 

V(r) = Q/R {1 + r· R/R2 +t[3(r· R)2 - y2R2l/R4 + ... } 

(17) 

where we use the phase convention of Condon and Short
ley32 that Ytm= (-1)mY,,_m. Since we are using only con
figurations with sand/or p electrons, terms in V(r) 
higher than 1 = 2 are not needed. If we have N ligands 

IS 
0 IS 

~=¥n 5p2 ..-
, 

10 , 
< --- -- 3p 3 p -- J 

IpO 

5S5P 
..,..-

3 pO ...-
" --

IS 

CONFIGURATION TERMS 

,-.... 

CONFIGURATION SPIN-ORBIT 
INTERACTION I $T ORDER 

Ip'0 

==;tz} -_ I 
- 0 

IS 
o 

SPIN-ORBIT 
2ND ORDER 

3pO 
J 
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FIG. 1. Diagram showing the 
first-order electrostatic first-
and second-order spin-orbit, 
and second-order electrostatic 
(configuration mixing) inter-
actions for a gaseous Xe(+ 6) 
ion. 
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z 

x 
FIG. 2. Coordinate system for a ligand L and an electron 
around a nucleus. 

with charges Qk and a distance R k , surrounding the cen
tral metal ion, with n electrons, then the total potential 
energy is a sum over ligands and electrons: 

(18) 

The geometry of the ligands is unspecified in Eq. (18). 
Since V C F is a one -electron operator and contains no 
spin-dependent terms, we only need to compute the ma
trix elements between one-electron orbitals with the 
same spin. Defining 

!(ll m 1; '2 111 2) =<Zl1n11 V(r i )1 12m2>' (19) 

We then obtain, using spherical harmonics as given by 
Condon and Shortley:32 

l(s, 0 ; s, 0) = t ilL 
k Rk 

( ) 1.>~Zk 
Is,O;P,O = ---:rr-\risP~R;Qk 

where (ri> sP = <Rsi r i I Rp) 

1 N Xk+iYk l(s,O;/),I)=- 16 <ri)SP~ R~ Qk, 

I(s,O;p,I)=-I(s,O;p, -1)*, 

(p ) t { 1 1 < 2 > 3Z~ - R~ } I ,0; P, 0 = k· Rk + 5" r i pp R~ Qk , 

where(Y7)pp=(Rplr~ IRp); (20) 

I(p,O;p,I)=-I(p,O;p, -1)*, 

( ) ~ j1 1 < 2) 3Z; - Ri } 
I p,±I;P, ±1 =~lRk - 10 Y i pp -~ Qk, 

In the above, the orbitals are denoted by Il, m 1>' mean 
ing that complex components are chosen for the p orbit
als, with X k , Y k , Zk denoting the Cartesian coordinates 
of the kth ligand, and the asterisk denoting a complex 
conjugate. 

In summary, the effective Hamiltonian for the mole
cule is 

2 (1 Z) 1 
lIto tal = 6 - -2 \17 - -:- +-

i=l } i r 12 

where 

2 

+ 6 Hri)li' Si+ VCF + Vions , 
i=l 

(21) 

is the previously undescribed electrostatic interaction 
among the Y ligands and xenon +8 core, Rjk= IRj-Rkl, 
Qj is the charge of the fluoride ligand (-1) and Z is the 
xenon core charge of + 8. We then evaluate the Hso ma
trix in the (E L 5 J ]\I] J) basis, transform to the 
IE L 5 ]\I] L ]\I] s) basis, add to it the V CF matrix in that 
basis and the Ho matrix, the latter readily evaluated in 
either basis, and finally add the diagonal matrix of Vlons 

before diagonalizing the complete 28 x 28 matrix yielding 
eigenvalues and eigenvectors in the (E L 5 M L lVI s) basis. 

Before carrying out numerical calculations, we need 
a number of electronic parameters. These are the quan· 
tities E Ay(5s, 5s), E Ay(5s,5p), and E Ay(5p, 5p), the re
pulsion parameters F 1(5s, 5p) and F 2(5p, 5p), the spin
orbit parameter ~ (5p), and the radial integrals <ri ) sP 
and <r~>pp, the latter two being defined in Eq. (20). 
Since we are only interested in relative energies we de
fine an effective energy "gap" 

f:l.Ess_sp=EAy(5s, 5p) -EAy(5s 2
) (22) 

and then eliminate a parameter by assuming that 

E Ay( 5p2) - E Ay(5s 2
) = 2f:l.Ess-sP . (23) 

A useful empirical way to obtain nearly correct in
formation on a given ion is to extrapolate from known 
properties of the ions of its isoelectronic series. We 
take the spectroscopic data37 for Cdr + 0), In(+ 1), Sn(+ 2), 
Sb(+ 3), and Te (+ 4), which are isoelectroni.c to Xe(+ 6), 
and extrapolate (Fig. 3) to obtain the energy levels 
(Table II) for Xe(+ 6). No data for 1(+ 5) were available. 

From these extrapolated results for Xe(+ 6), we obtain 

F 1(5s,5P)=17301 cm-1 =2.15 eV, 

F 2(5p, 5p) = 2560 cm-1 = 0.32 eV, 

and, 

~sP:::; 11 000 to 16000 cm-1 = 1. 4-2. 0 eV . 

Note that from these, we have 

f:l.Ess_sp=EAy(5s,5P)-EAV(5s2)=118 852 cm-1 =14.74 eV 

E Ay(5p2) - E Ay(5s2) = 245 437 cm-1 = 30. 42 eV 

which agrees well with our assumption of Eq. (23). 

It is well-known that in a complex ion term separa-
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FIG. 3. Energy levels in electron volts for gaseous Xe(+6) 
ion as extrapolated (dashed lines) from observed levels (con
nected by solid lines) for isoelectronic ions. Data are from 
Ref. 37. 

tions and spin-orbit coupling constants are both smaller 
than in the corresponding gaseous ion. 38

-42 It has been 
estimated by Walton, Mathews, and Jprgensen43 that for 
a complex ion with a d10S 2 configuration that the radial 
wavefunction is so considerably changed that the spin
orbit coupling constant in general will be decreased to 
about half and the electron repulsion parameters will be 
decreased to about a third of their corresponding values 
in the gaseous ion. A complete theory to explain and 
predict this reduction is yet to be formulated. However, 
we use these estimates as a rule of thumb, and study 
the trend of these parameters in those complexes iso
valent to XeF 6 to find a set of electronic parameters 
better suited to our study. They are listed in Table III. 

TABLE II. Energy levels for Xe(+ 6) as 
extrapolated from energy levels of iso-
electronic ions. 

Configuration Term J Energy (eV) 

(5s2) lS 0 0.0 
(5s5p) 3p O 0 12.4 

1 13.2 
2 14.4 

l p O 1 17.6 
(5p2) 3p 0 28.1 

1 29.0 
2 31.1 

lD 2 29.6 
is 0 37.8 

TABLE Ill. AESs-5P , Slater-Condon parameters and SP\~-2 
orbit coupling constants for ions and complexes of the d s sys-

tem. 

Ion/Complex f::.E 5s_5P 
a F 1

a F 2
a 1: 5p 

a Ref. 

XeIO) 39.57 2.23 0.22 0.51 44 

Xel+2) 11. 78 1.10 0.27 0.80 37 

Xel+6) 14.74 1. 91 0.32 1.7 Extrapolation 

XeFs 0.6 45 

2.4 46 

3.7 47 

4.0 0.6 14 

10.6 1. 98 48 

Tel+4) 16.10 1. 83 0.90 37 

TeClii2 3.76 0.375 0.55 49 

3.54 0.40 39 

TeBr;;2 3.25 0.41 0.4 49 

Sbl+3) 9.46 1. 627 0.82 0.67 37 

SbClii3 4.9 0.57 0.24 38, 43 

SbBrii3 3.7 0.57 43 

Snl+2) 7.8 1. 41 0.55 0.47 37 

SnClii4 3.06 0.55 50 

SnBrii4 4.27 0.56 47 

SnI2 3.4 0.60 51 

SnIt 3.7 0.40 39 

Inl+ 1) 6.1 1.14 0.24 0.29 37 

InClii5 4.9 0.53 39 

InBr;;5 4.4 0.31 39 

InIs5 4.3 0.56 39 

aAll energy parameters are listed in electron volts. 

Another parameter shown to be sensitive to the energy 
calculation is the AE5s _5P of Eq. (22). The value for 
AE5s _5P we have extrapolated for the Xe(+6) ion is about 
15 eV, which is very high for the XeFs molecule. It is 
also a general trend that in a complex ion AEnl_n'I' will 
be less than in gaseous ion, 3S,39 as is the rule of thumb 
that for a set of given ligands the AE5s _5P is rather con
stant in an isoelectronic series. 4o (Table III) We also 
list the various values of AE;;s_5P for XeFs used or im
plied by different authors. From these considerations, 
it is felt that the set of parameters (AE 5s _5P ' F 1, F 2 , ~5P) 
in electron volts which will best describe the molecule 
is around (3.5, 0.5, 0.08, 0.87), where we have ob
tained F2 by scaling with the same numerical factor as 
with Ft. However, we have also used other parameter 
sets, with f::.E 5s _5P ranging from 0.5 to 3.5 eV, Fl from 
0.3 to 1. 91 eV, F2 from 0.05 to 0.32 eV, and ~5P from 
0.87 to 1.7 eV. 

To obtain values of (r 2 )pp and (r) sP we used the only 
available high-quality xenon radial wavefunctions, name
ly those for a neutral xenon atom as calculated by the 
Gaussian basis set self-consistent field (GTO-SCF) pro
cedure. 52 Fourteen s-type Gaussians and eleven p type 
wereused in the calculation. From these we obtain 
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(r2)1/2 - (R I r21 R )1/2 pp - 5p 5P 

= 1. 64954 a. u. 

and 

= 2. 05495 a. u. 

Although obtained from a neutral atom wavefunction, 
rather than one for Xe(+ 6), we think these values are a 
useful estimate, based as they are on a function which 
is radially expanded relative to Xe(+ 6). The same radi
al functions can be used to calculate the repulsion pa
rameters, yielding an FI (5s, 5p) value of 2.23 eV and an 
F2 (5p, 5p) value of 0.22 eV (Table TIl), both roughly 
comparable to the extrapolated Xe(+ 6) values, but de
cidedly greater than the scaled-down values. 

III. SYMMETRY CONSIDERATIONS FOR XeFs 

Though the gaseous XeF 6 molecule is thought to be a 
distorted octahedron, our discussion of the symmetry of 

In general, from Eq. (25), the stabilization of the mole
cule comes from the second-order Jahn-Teller effect 
(or, pseudo-Jahn-Teller effect), as the first-order term 
vanishes except in true Jahn-Teller cases. Therefore 
we must have the term 

be important; that is 

(iI6H/6QI0)*0 for some Ii), and Ii) 
lying close to 10).56,57 

We list below the symmetry species for the different 
states of XeF 6 assuming an 0h symmetry as 

ISo-Ail 

ID2-T2g , E g 

5p2 3Pa-Tag, ElI 
3p

l
_ T

ig 

3Po-Alg 

IpO_ T lu 

3p~_ Ta., Eu 
5s5p 

3J1.- T lu 

3p~_AI. 

this molecule can begin with a consideration of it as a 
regular octahedron, then considering distortions which 
may lower the energy. With the particular model we 
are using there is no bond-stretching restoring force, 
so that we set a restriction that the six ligands (F-) are 
only to move on the surface of a sphere with radius 
R = 1. 89 A. 17 We therefore search for a pure bending 
mode which will change the geometry and stabilize the 
molecule; the stretching modes are of no particular in
terest to us here because: (1) they are, in general, 
energetically more expensive than pure bending, and 
(2) in the case of the alg mode, it does not at all change 
the molecular geometry. Thus, we want to examine the 
effects onXeF 6 viapure bending part of tl ., t2., and t21 •

53 

With the Hamiltonian as given by Eq. (21) if we distort 
the molecule away from 0h along some symmetry coor
dinate the new Hamiltonian can be written as a Taylor's 
expansion about 0h as54

-
57 

(
6H) 1/6

2
H) 2 1 (6

3
H ) 3 

H = HOh + 6Q 0h Q + '2 \6Q2 0h Q + 6" 6Q3 0h Q + ... , 
(24) 

where Q is the symmetry coordinate displacement and 

(26) 

Without spin-orbit coupling, the correspondances are 

IS-IAI&" ID_ (I Tap IE&,), 3p_ 3TI&' , 

Ipo_ITI.' and 3p o_3Tlu . 

It is easy to show by symmetry that the only excited 
state connected to the IS (lAI&,) ground state is the 
lpoeTI.) state, with this state being connected by the flu 

bending and stretching vibrations. To the extent that 
spin-orbit coupling is important, this conclusion must 
be modified to take into account additional mixings that 
are readily seen from (26) to be with 3p~ (Tlu) by flu vi
brations, 3pg(Tau) by the tau bending mode, IDa and 3Da 

(both Tag) by the tag bending mode, and IDa and 3Pa (both 
Eg) by the e g stretching mode, which we ignore. 

The symmetry coordinates Qtlu, Qt2u and Qtag we use 
are of the following forms. 
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DISTORTION ANGLE 
FIG. 4. Electronic energy in electron volts vs the tlu bending 
angle 6. for the set of electronic parameters b.E5s_SP = 3.5, 
F 1=0.5, F 2=0.08, and t sp =0.87 eV. The molecular symmetry 
is C4v except at the origin, where it is 0h' Calculations were 
made at 6.= 0', 2', 4', 8', 12', 16°, and 20°, with solid lines 
denoting nondegenerate states and dashed lines denoting doubly 
degenerate states. 

Qtzu,a 

1 
= rsYxe-F(a12 - a 13 + a15 - a16 - aZ4 + a34 - a 45 + ( 46 ) , 

Qtzu,b 
1 

= .f8 Y Xe-F(a15 - a 35 + a 45 - a56 - a 12 + a23 - a 24 + ( 26 ) , 

1 
Qf

2u
,C = J8 YXe-F(a 13 - a23 + a34 - a35 - al6 + a26 - a46 + (56) 

Qt ,a = t YX e-F(aZ6 + ass - a23 - (56), 
Zg 

Qf
2l

,b = ~. Y Xe-F(a16 + a S4 - a13 - ( 46 ) , 

Qf21'c = 1 Y X e-F(a15 + a24 - al2 - ( 45 ) , (27) 

where a ij = < F(i) -Xe-F(j). 

For Oh symmetry, the F atoms are located on the 
axes of a right-handed Cartesian coordinate system, 
with atoms 1 and 4 on ±x, 2 and 5 on ±y, and 3 and 6 
on ±Z, respectively. 

IV. POTENTIAL ENERGY CURVES FOR T1 u BENDING 

We set the conditions for the ilu mode of bending such 
that: (1)Yx e-F=1.89 X lO-B cm, and (2) a15=a35 =···=Do. 

In Fig. 4, we plot the calculated electronic energies vs. 
deformation angle 6. for a structure of symmetry C4V' 

In Table IV we list the position of the minimum and the 
lowering of the energy of the ground state for different 
parameters used for this case of C4v(tlu)' 

The flu(bending) deformation is geometrically equiva
lent to a "lone pair electrons" pushing the ligands aside 

and protruding into the coordination sphere. 17,Sl It can 
lead to C4v , C3v , and C2v symmetries (Fig. 5). We note 
that as the numerical value of the DoE5s _5P parameter de
creases, the pseudo-Jahn-Teller effect becomes more 
and more Significant (Table IV); this may be described 
as an increase in the p character of the lone pair. De
creases in the other parameters are seen (Table III) to 
have a similar effect. Note that also a maximum shift
ing of the minimum of the ground state energy curve is 
reached where the angular deformation is about 14 0 -15 0 

as we change the electronic parameters (in the case of 
C4v)' This appears to indicate a limiting effect on the 
lone pair protruding into the coordination sphere. For 
the assumed best set of parameters (3.5, O. 5, O. 08, O. 87 
eV), the ground state energy minimum occurs at 11 0 

for the deformation angle Do with a lowering of energy of 
about 0.204 eV or 1604 cm-1 for C4v symmetry; at about 
8.9 0 (0) with lowering of energy about 0.225 eV or about 
1800 cm- l for Csv symmetry; and at about 7.8 0 (a) with 
lowering of energy about 0.220 eV or about 1760 cm-! 
for CZv symmetry. (For the meaning of 6., 0, and O! see 
Fig. 5.) This is to be compared with the flu bending 
frequency v 4 of other hexafluorides6,5B: e. g., TeF6 , 

v 4 = 325 cm-t, with an estimated reduced mass for the 
flu bending vibration of 8.6 x 10-23 g-molecule-l , which 
implies (x2 )1/2 = 0.032 A or a root-mean-square angular 
displacement of about 1. 0 deg; and UF 6, v 4 = 184 cm-1 

(the softest i lu bending frequency of known regular hexa
fluorides), with an estimated reduced mass for the flu 

vibration of 9.9 x 10-23 g-molecule-t, which implies 
bending vibration of 9.9 x 10-23 g-molecule-t, which im
plies (x 2)1/2 = 0.039 A or a root-mean-square angular 
displacement of about 1.1 deg. This indicates the na
ture of the distortion of XeF 6 from 0h via i lu bending is 
not a Simple fluctuation of geometry due to vibration. 

TABLE IV. Ground state energy for various electronic paramo 
eters for t!u pure bending (C4v)' 

Position of"-
6. (E5s-5/> , Fio F 2, 1:5/», energy min 
(all in eV) (6. deg) (E-Eoh ) (eV) 

(3.5, 1. 91, 0.32, 1. 7) 0.0 
(3.5, 1. 0, 0.17, 0.87) IVery flat) 
(3.5, 0.7, 0.11, 0.87) 10.0 0.085 
(3.5, 0.5, 0.08, 0.87) 11.0 0.204 
(3.5, 0.3, 0.05, 0.87) 12.0 0.340 

(2.0, 1. 91, 0.32, 1. 7) 0.0 
(2.0, 1.91, 0.17, 0.87) 10.5 0.136 
(2.0, 0.7, 0.11, 0.87) 13.2 0.432 
(2.0, 0.5, 0.08, 0.87) 14.0 0.680 
(2.0, 0.3, 0.05, 0.87) 14.0 0.952 

(1. 0, 1. 91, 0.32, 1. 7) 4.7 0.017 
(1. 0, 1. 0, 0.17, 0.87) 12.0 0.303 
(1. 0, 0.7, 0.11, 0.87) 14.3 0.714 
(1.0, 0.5, 0.08, 0.87) 14.8 1. 088 
(1. 0, 0.3, 0.05, 0.87) 15.0 1. 461 

(0.5, 1. 91, 0.32, 1. 7) 3.0 0.007 
(0.5, 1. 0, 0.17, 0.87) 10.0 0.262 
(0.5, 0.7, 0.11, 0.87) 14.6 0.595 
(0.5, 0.5, 0.08, 0.87) 14.9 0.918 
(0.5, 0.3, 0.05, 0.87)b 14.5 1. 258 

aQtlu,i(min) = 2v2(rxe-F 1f/180)6.. 
bThe ground state in this case is 3p~ instead of ISo. 
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t 
F 

F F 

FIG. 5. Symmetries derived 
from flu bending vibration of an 
octahedral molecule. The de
formation angles Ll. for C4v , {; 

for C3v , and a and f3 for C2v 
are related in Eq. (35) for the 
case of constant flu radial 
displacement. 

In the case of C4v , when the assumed best set of pa
rameters is used, the ground state energy curve shows 
a negative force constant of about 1. 0 mdyn/ A at the 
0h origin. In the approximate form of a (one-dimen
sional) double-well vibrational potential, this energy 
curve near its minimum has a zero-point energy of : 
about 51 cm-t, with the first vibrational spacing being 
about 109 cm- l • In Fig. 6 we plot the lAu ground state 
energy curve as a function of Ll.E 5 .... 5p • Potential energy 
curves for all of the states for the C3v structures are 
not shown as they are virtually identical to Fig. 4 
when plotted on the compressed energy scale of the 
latter figure. 

Let us now construct a flu bending space with the 
spherical polar coordinates 

R - [Q2 + Q2 + Q2 ]1/2 
- t 1u' a t1u' b tlu' C 

-ll /( 2 Q2 Q2 )1/2] 8=cos Qtlu'C QtlU.a+ tlu,b+ tlu.c 

(28) 

These coordinates are useful as the movement of the 
XeF 6 molecule in the t lu vibrational space at constant R 
may be considered as a pseudorotation, passing through 
six C4v , eight Csv , and twelve C2v structures, these cor
responding to the faces, corners, and edges of a cube. 
With the assumed best set of parameters, the energies 
of the three structures relative to the 0h symmetry 
structure were previously given as - O. 204, - O. 225, 
and - O. 220 eV for C4v , Csv , and Czv , respectively. 
Thus relative to the Csv minimum the C4v energy is 0.021 
eV, while the C2v energy is 0.005 eV. In Fig. 7 we show 
the orthogonal projection of the equipotential lines from 
the (100) axis onto the [011] plane in the flu space. These 
results show that the energetically most favored paths 
are those which go through any of the C3v - C2v - Csv 

- C2v - •• '. Taking this path, if the frequency is large 
enough, and if the "rotation" is such that it goes through 
a greatest "circle" on this sphere in tlu space; then an 
average effect of "zero dipole moment" from the lone 
pair is expected for the molecule. If the reduced mass 
of XeF6 in tlu vibrational motion is estimated to be 8.7 
x 10-23 g-molecule- l , with the sphere corresponding to 
the energy minimum, i. e., R = 1. 026 A, then a rotation
al frequency of 2Be - O. 61 cm- l is to be expected. It is 
of interest to observe that the following relationship 
exists among the ground state energies of different 
symmetries: 

o 

5: 
~ -0.5 

>
C) 
IX: 
W 
Z 
l1J 

-1.0 

FIG. 6. Ground-state energy in electron volts vs flu bending 
angle Ll. (C4v symmetry) as a function of the energy parameter 
Ll.E5s-5P' this having values of (a) 3.5, (bl 2.0, (c) 1. 0, and (d) 
0.5eV. TheF 2, Flo and~parameters::treO.5, 0.013. and 
0.87 eV, respectively, in each case. 
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FIG. 7. Projection of equi
potential lines for the ground
state energy from the (100) tlu 
axis onto the [011] plane. The 
C4v structure is at an energy 
of four arbitrary units relative 
to C3v , with the C2v structure 
being at one unit relative to C3v ' 

[EO(C4v) -Eo(Csv)]/[E o(C2V) -Eo(Csv)] 

= 0.021 eV / 0.005 eV'" 4/1 . (29) 

This result does not arise from the ligand repulsion, 
which on the contrary, slightly favored the C4V structure 
by only 0.00046 eV over the C3v structure (see Fig. 8) 
but rather comes from the variation in the sp mixing as 
the angular coordinates of Eq. (28) are changed. 

The pseudorotational motion can be described as the 
motion of a particle on the surface of a sphere of fixed 
radius, but subject to a cubic potential energy. The po
tential energy V, with R of Eq. (28) held constant, can 
be written as 

(30) 

where X=QtIU.a, Y=Qtlu.b, Z=QtIU' C' or in polar coor
dinates, 

V(R, e, cp) = R 4(sin4cp sin4e + cos4cp sin4e + cos4e). 
(31) 

There are readily shownl7 to be six maxima with C4v 
symmetry and an energy of one unit, 12 saddle pOints 
with C2v symmetry and an energy of one-half unit, and 
eight minima of C3v symmetry with an energy of one
third unit. (Fig. 7) 

Therefore, 

(32) 

showing that our numerical results can be adequately 
described by Eq. (30) for the case of constant R in i lu 

bending space. 

V. PERTURBATION THEORY ANALYSIS OF s-p 
MIXING IN t1 u BENDING SPACE 

For an s orbital and a p orbital situated in a field V 
generated by n point charges of Qn = -1 for all n arbi
trarily located at Rn(Xn, Y n , Zn), we have the interaction 
matrix elements as in Eqs. (18) and (20). If we are to 
restrict ourselves to the case of pure bending, where 
the point: charges are only to move on the surface of a 
sphere of set radius [this does not imply that R of Eq. 
(30) is constant, but merely that all Xe-F bond lengths 
are held constant], it is convenient to make the follow
ing simplification and substitutions: 

Rn = 1 for aU n. 

(r) sP = a < 1 , 

(y2)p.p=b<1, 

Xn = sinen cosCPn , 

Yn = sine n sinCPn , 

(33) 

Thus, we can write the matrix elements as 

(s, 01 vis, 0) =n , 

(p, 01 vip, 0) =n + (b/5)6 (3 COS2e k -1) , 
k 

(p, 1 I vip, 1) =n - (b/10)6 (3 COS2e k -1) , 
k 

(s, 0 I vip, 0) =a/31
/
26 cosek 

k 

(s, O[ vip, 1) =a/6 1
/
2 6 sinek(cosCPk+i sinCPk) , 

k 

(p, 0 I vi p, 1) = - 3b/10(2)1/2 6 sin2ek(coscp k + i sincp) , 
k 

(p, 1 I vip, -1) = - (3b/10)6 sin2ek(cos2CPk - i sin2cpk) . 
k 

(34) 

In t1u space, if we are conSidering the sphere defined 
by constant R of Eq. (28), we have the following relation· 
ship: 

~ = (3/2)1/2 15 = 21/2 a = (3 , (35) 

or 

sin~= sin[(3/2)1/2/i] = sin(21/ 2a)= sin{3, (36) 

where ~ is the angular displacement from 0h in the case 
of C4v symmetry, -15 that in the case of Csv , and a and {3 
in the case of C2v [Fig. (6)]. Using the power series for 
the sine function, we write in general 

. 1. (ax)3(1 _ a2) (ax)5(1 _ a4) 

Slllx=~slll(ax)- a33! + a5 5! -"'+, 

(37) 

or for the above variables 

sinl5 = (2/3)1/2 sin~ + (2/3)s/2~S /12 - ... + (38) 

and 

0.02 

0.01 

~ 
t;o 
II: 
W 
Z 
W 

-0,01 

(39) 

ANGLE @ 

o· 

FIG. 8. Ground-state energy in electron volt vs t lu pseudoro
tational angle e. The dashed line shows the variation in the 
ligand-ligand repulsion energy. 
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For sufficiently small displacements, 

sinb. = (3/2)1/2 sino = 21/2 sina = sini3. (40) 

However a careful analysis requires the extra terms in 
Eqs. (38), (39). 

Now, subjecting the electrons to a field V formed by 
six point charges, we consider the following cases. 

A. Splitting of p orbital alone, assuming Eq. (40) 

1. C4v 

(p, 0 I vi p, 0) = 6 + 12b sin2b./5 , 

(p, 01 vip, 1) =6 - 6bsin2b./5, 
(41) 

all other matrix elements are zero. Setting the energy 
of the state when the symmetry is Oh to zero, then we 
have eigenvalues 

Al = + (12b/5) sin2b.. (singlet) 

A2,3) = - (6b/5) sin2b. . (doublet) 

2. C3v 

(p,0IVlp,0)=+6bsin2o/5, 

= +4bsin2b./5, 

(p, 11 vip, 1) = - 3b sin2o/5 , 

= - 2b sin2b./5 , 

(42) 

(43) 

where the approximation of Eq. (40) is used for sinb. 
and all other matrix elements are zero. Therefore, the 
eigenvalues are 

Al = + (4b/5) sin2b.. (singlet) 

A2,3 = - (2b/5) sin2b.. (doublet) 

3. C2v 

(p, 01 vip, 0) = - 6bsin2J3/5 = - 6b sin2b./5 , 

(p, 11 vip, 1) = 3b sin2 J3/5 = 3b sin2b./5 , 

(p, 11 vip, -1) = i 3b sin2 J3/5 = i 3b sin2b./5 , 

(44) 

(45) 

where no approximation is needed and all the other ma
trix elements are zero. 

The eigenvalues are 

Al = - (6b/5) sin2b. . (singlet) 

(singlet) (46) 

A3 = (6b/5) sin2b.. (singlet) 

We summarize the above results in Fig. 9. These re
sults represent the variation in the splitting of the p or
bital by the variation of the strength l = 2 term in the 
crystal field as the direction of bending in flu space is 
changed at constant R (constant magnitude of tlu bend
ing). Note that this variation arises even when Eq. (40) 
is used. The termsfrom Eqs. (38), (39) that should 
be added contribute a term in b.3 sinb., which is of the 
order of b.\ and even higher terms in b.6, all of which 
are ignored here. However for the angular variation in 
the s-p mixing, all terms O(b.4

) must be considered. 

It is interesting to note that two quantities here 
are in the ratio of 4 : 1. These are the weighted overall 
splittings b.E of the energy levels: 

[(b.E)c - (b.E)C3 V[(b.E)c - (b.E)c ]=4/1. (47) 
4v v 2v 3v 

Also, and perhaps of more significance, the ratio for the 
energies of the highest crystal field components 
is 

(48) 

B. Combined splitting of p orbitals and mixing with s 
orbitals 

1. C4v 

Let U denote the energy difference Ep -E., then 

(s, 0 I v Is, 0) = 0 , 

(s, 0 I v I p, 0) = 4a sinb./v'3 
(49) 

The energy matrix is 

s 0 0 (4a/3) sinb. 0 

P. 0 U- (6b/5) sin2b. 0 0 

Po (4a/3) sinb. 0 U + (12b/5) sin2b. 0 

p_ 0 0 0 U - (6b/5) sin2 b. 

Therefore, to second-order the mostly s ground state 
energy is 

o 
U - (3b/5) sin20 

o 
o 

2. C3v 

(8, 0 I v Is, 0) = 0 , 

(s, 0 I vip, 0) = 212 a sino 
The energy matrix is 

2/2 a sino 

o 
U + (6b/5) sin20 

o 
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f 

,_oR8,,~--um'i1-------'1+ -----I 
FIG. 9. Splitting of energy levels of a single p orbital at vari
ous symmetries due to l = 2 part of crystal field. The energy 
units are sin2ll/5 [Eq. (38)], with ligand having Rn=1 and 
Qn= -1 [Eq. (35)]. The upper level is the component which 
mixes with an s orbital by the l = 1 part of the field. 

where the threefold axis is the quantitation axis. There
fore to second order the ground state energy is 

E(Cavl = - (8a2 sin2 O/U){ 1 - (6b/5U) sin26} . (52) 

Using Eq. (38) and keeping only terms up to 0(A4
), 

(53) 

3. C2v 

An analysis similar to that for C3v and C4v can be 
made using the appropriate matrix elements in Eq. (34), 
yielding a second-order ground state energy 

E(C2v) = - 8a2/U(sinil + 2-1 /2 sini3l2 {1- (6b/5U) sin-2 /3} , 
(54) 

which after use of Eq. (39) and keeping only terms up to 
O(ll4) yields 

• (55) 

The results for all three symmetries are summarized 
in Table V. Note that again the relationship of Eq. (29) 
is satisfied. 

For small radial displacements, such that sinll = A, 
the angular barrier E(C4v) -E(C3v) is 8bll2/5U +A2/9 in 
units of 16a2 A2/3U (Table V), with A in radians. Since 
8bA2/5 is the shift in the first order energy of the upper 
p component in going from C3v to C4v [Eqs. (42) and 
(44)], the first term dominates if this shift is more than 
9 times the product of A2 and the unperturbed s-p in
terval. For our parameter choices and for angles up to 
15 0

, numerical evaluation shows that the first term in
deed dominates. 

In summary, there are two contributions to the angu
lar variation in the second-order energy of the mostly 

TABLE V. Ground state energies at different symmetries 
for (s, p) system (in units of 16a2 sin2ll/3U). 

Symmetry Ground state energ:y 

-1 + 12b sin't./5U 
-1 + 6b sin't./ 5U -t.' /12 siut. 
-1 + 4b sin't./5U -t.'/9 siut. 

8b sin't./ 5U + t.' /9 siut. 
2b sin't./ 5U + t.' /36 siut. 
o 

> 
Q.> 

>
\9 
0:: 
W 
Z 
W 

DISTORTION ANGLE 

FIG. 10. Electronic energy in electron volt vs the t2g bending 
angle 6, producing symmetry D3d except at the 0h origin. En
ergy parameters are the same as those in Fig. 5. Calculations 
were made at 6=0, ±2O, ±4', ±8', ±12', ±16', and ±20', with 
positive 6 for prolate structures and negative 6 for oblate struc
tures. The solid lines denote nondegenerate states, with 
dashed lines for doubly degenerate states. For this structure 
the ligand repulsion curve virtually coincides with the ground
state curve. 

s orbital. First, the s-p mixing matrix elements, as
sociated with the 1 = 1 part of the crystal field, are de
pendent to a small degree on the direction in t1u bending 
space, that is, on the angular variables of Eq. (28). 
This effect is small and becomes zero when Eq. (35) is 
used as an approximation to Eq. (36). Second, the en
ergy denominators in the second-order energy expres
sion vary with the direction in flU bending space due to 
a variation in the 1 = 2 part of the crystal field. Thus the 
first-order splitting of the p orbital modulates the sec
ond-order energy of the s orbital. This effect does not 
vanish with the approximation implied by Eq. (35) and 
dominates for our parameter choices. The 1 = 1 part 
of the field mixes the s orbital only with the highest 
energy p orbital for each structure in Fig. 9. Thus the 
energy denominator is greatest for Cav , resulting in a 
lower energy for the mostly s orbital. The fraction of 
p character in this orbital is also greater for C3v , 

meaning that the very open face of a Cav structure leads 
to a greater "sticking out" of the electron density. 

VI. POTENTIAL ENERGY CURVES FOR T2g AND" 
T2u BENDING 

We set the conditions for the t2g mode of bending such 
that: (1 )rxe_F = 1. 89 X 10-8 cm, and (2) ill5 = ilU = ••• = ll. 
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the t2g mode. The molecular symmetry in this case is 
D2d, with no 5 -p mixing even though the molecule lacks an 
inversion center. It is noticed that all the energy curves 
of this mode are rather flat with their minima at 0h im
plying small force constants and fluctuation of geometry 
around 0h' Also it is to be noted that in this case the 
ground state lAIK energy curve is the same as that of the 
ligand repulSion potential. For this set of parameters 
the ground state force constant is estimated to be about 
0.90 mdyn/ A, thus gives a frequency Vs = 140 cm-l. It 
is interesting to note that the frequency ratio of V5 to Vs 

is 1. 8. This is a ratio that the other regular hexafluo
rides also share. S.58 

VII. COUPLING OF T 
lu AND T2g BENDING MODES 

As discussed by Bartell and Gavin, 17 cubic and quartic 
terms are of particular importance in the potential en
ergy function for XeF s. Although quartic and higher 
terms in a single vibrational coordinate are implicitly 
considered in our treatments of the flu, tZt:' and t2u bend
ing spaces, we have so far neglected terms which in
volve the coupling of these coordinates. First consider 
the coupling of the ttu and t2K bending modes. Bartell 
and Gavin represent the interaction by the terms 

V445 =k445 (Q4x Q4~ Q5~ + Q4% Q4~ Q5~ + Q4y Q4~ Q5X) (56) 

FIG. 11. Curves as in Fig. 10, but vs the t2u bending angle and 
fl.. Parameters are as in Fig. 4. As for t2i bending the ground-
state curve coincides with the ligand repulSion curve. V4455 =k4455 [ (Q;x + Q~) Q~~ + (Q~x + Q~~) Q~~ 

We used the assumed best set of parameters (fl.E= 3.5 
eV, F z = 0.5 eV, Fl = 0.08 eV, 1; = 0.87 eV). The mo
lecular symmetry in this case is Dzh , with the results 

showing the expected Jahn-Teller splitting of the excited 
degenerate states. The ground state has its energy 
minimum at 0h' These curves are not shown, as we plot 
instead the energies for DSd(tZl.,,+ tZl.~ + tZl .,,) structures 
using the same set of parameters (Fig. 10). The re
sults show that the lowest triplet state 3TIu is approxi
mately 2.5 eV or 20000 cm-t above the ground state 
lA11 at 0h; as the molecule is distorted away from 0h 
along the D3d axis only about ± 10 0 (the prolate DSd and 
the oblate D3d ), the lowest triplet component is still 
about 2.2 eV or 17000 cm-l above the ground state. 
There is no low-lying triplet state to be found that is 
either thermally accessible to the ground state or cross
ing the ground state within even a large range of angular 
distortion. The force constant estimated from the 
ground state energy curve is about 3.0 mdyn/ A. Thus 
yields a frequency of v5 = 259 em-I. We note also that 
in this case the tAll ground state energy curve is the 
same as that of the ligand repulsion Vrw We also re
member that the experimental result of V5 for TeCIs2 

is 131 cm-l (force constants: F = 0.13 mdyn/ A, K 
= 1.18 mdyn/ A, H = O. O. 02 mdyn/ A,); and that for 
TeBr6z is 70 cm-l (force constants: F = 0.09 mdyn/ A, 
K = 0.97 mdyn/ A, H = 0.02 mdyn/ A. ).59 

We set the conditions for the t2u mode of bending such 
that: (1) rXe-F=1.89x10-8 em, and (2) 0!13=0!IZ='" 
= fl.. In Fig. 11, we plot the electronic energy results 
for the tzu mode for the same set of parameters used for 

+ (Q~~ + Q;~) Q~"l , (57) 

where the subscript 4 and 5 denote tlu and tZI bending 
coordinates, respectively, while the subscripts x,y, 
and Z denote Cartesian components. For t21 the sym
bol s x, y, z denote yz, xz, and xy, respectively. The 
above terms must be added to the terms appropriate to 
the pure flu and tZI spaces. For a C4v structure, say 
with z as the fourfold axis, Q4" = Q4~ = 0, with all com
ponents of Q5 = O. Thus 

(58) 

For a C2v structure, say with x + y = (110) as the twofold 
axiS, Q4,,=Q4y, Q4,,=Q5,,=Q5Y=0. Thus 

V445(CZV) = t k445 (Q4)tlO(Q5)IOO 
(59) 

For a C3V structure, say with x+y +z = (111) as the 
threefold axiS, Q4" = Q4~ = Q4~ and Q5" = Q5~ = Q5~' Thus 

V445 (Csul = k445(Q4)~11 (Q5)111 
(60) 

V4455(CS,,) = 2k4455(Q4)~11 (Q5)~11 . 

In Eqs. (59) and (60), the subscripts (110) and (111) de
note the appropriate directions for the bending coordi
nates; the least obvious might be (Q5)110, which is the 
same as Q5J!' The expressions for Csv are similar to 
those for C2v , but the former are larger by a factor of 
2. 

We now consider in detail the ground state energy of 
XeFa in the 2-space defined by the vibrational coordi
nates (Q4)111 and (Q5)1l1, which are shown in Fig. 12. 
The combination of these coordinates permits one triad 
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+ 

FIG. 12. An example of coupled bending modes: the tlu (C3) 

with t2g (D3d) to produce a C3v structure with one very open 
face. 

of ligands to "open up" widely without forcing the other 
triad to "close up" to the degree required by pure ttu 

bending. The ground state energies calculated using 
the same parameters as in Figs. 4, 10, and 11 are 
shown as contours in Fig. 13. There is a right-left 
symmetry but not a top-bottom symmetry, as changing 
the sign of the tZI coordinate changes the shape of the 
molecule. Points along the vertical axis thus corre
spond to those in Fig. 10. We note that whereas the 
pure ilu minimum occurs on the horizontal axis at an 
angle of 8. go, with an energy 0.23 eY = 1855 cm"l below 
that for 0h symmetry, the minimum in the 2-space oc
curs at a f tu angle of 13.6° and a tZg angle of 5.6 0 with 
an energy of 0.46 eY = 3710 cm"l below that for 0h sym
metry. Thus one triad of ligands has opened up from 
a polar angle of 63.6° for pure f tu bending to an angle 
of 73. go (for 0h the angle is 54.73°), while the other 
triad, at a polar angl e of 134. 2 ° for pure i lu , remains 
almost fixed at 133.3°. In the process, the energy dif
ference between C4V and C3v structures has increased 
from about 160 cm"l in pure tlu space to about 2015 cm"t. 

20' 

Thus a barrier results which is too high to be thermally 
surmounted at room temperature. However, as Fig. 7 
shows, the route from one C3v minimum to another need 
not pass through C4v• 

It is difficult to reach strong conclusions here, as 
cubic and quartic terms coupling the i lu bending mode 
to modes other than t2g can modify these results. 
Specifically, cubic and quartic coupling between the 
t lu bending mode and the e, stretching mode stabi-
lizes Czv and C4V structures, but not C3v, while quartic 
coupling of the ttu and tzu bending modes is important for 
C2v' Thus without performing extensive further calcula
tions little more can be said about the barriers to pseu
do rotation. 

VIII. SUMMARY 

The results of these simple crystal field calculations 
support the view that the XeF 6 molecule has a nonocta
hedral eqUilibrium structure, with distortions mostly 
along its tlu bending coordinates. It is estimated that 
for this vibration there is a negative force constant at 
the 0h symmetry of about - 1. 0 mdyn/ A and an equilib
rium structure corresponding to a nearly gO deformation 
away from 0h symmetry, producing a minimum poten
tial trough approximately 1860 cm"l deep for a Csv 
structure and with curvature of 1. 8 mdyn/ A. Using a 
one-dimensional approximation to the potential curve, 
this trough has a radial vibrational zero-point energy 
of about 51 cm"t and an energy spacing for the lower vi
brationallevels of about 109 cm"t. It should be noted 
that this minimum energy trough is not isotropic, since 
there is an energy difference of about 160 cm"t between 
C4v and Csv structures, and a difference of about 40 cm"t 
between Czv and C3v structures. The C4v , C2v , and C3v 

structures correspond to a maximum, a saddle point and 
a minimum, respectively, in the space of the two angu-

FIG. 13. Potential energy 
surface in the two-dimensional 
space of the t lu (111) and t2g 
(111) bending coordinates. 
Small open circles indicate 
geometries for which calcula
tions were made, after which 
approximate contours were 
sketched. 
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lar components of the ilu bending vibration. These ener
gy differences in pure tlu bending space correspond to 
barriers which are in the range of thermal energies. 
If the barriers are this low, the molecule can move with 
relative ease in this energy space, passing through six 
C4v , eight Cav , and twelve C zv structures. This is equiv
alent to saying that the lone pair is rapidly going through 
the faces and edges of an octahedron, or that the mole
cule is rapidly changing and inverting its structures 
along the path C3v - Czv - C3v - C2v - ••• of minimum 
hindrance. Thus, the average electric dipole moment 
for the molecule should l:1e zero. However, the C3v 

structure is further stabilized by coupling between the 
tlu and t Zg bending modes to an extent that would preclude 
pseudorotation at room temperature. Further studies 
need to be made to estimate the stabilization of the Czv 

and C4V structures by similar couplings to other modes, 
such as the t2u bending mode and the eg stretching mode. 
The pure t2g and t2u force constants are estimated to be 
3.0 and 0.9 mdyn/ A, corresponding to vibrational fre
quencies of 259 and 140 cm-1 for tzg and t2u , respectively. 

The results of this model fail to locate a low-lying 
triplet component which is thermally accessible to the 
ground state, but instead indicate that the deformation 
of XeF 6 from Oh symmetry is largely through flu bending, 
which is accompanied by a mixing of xenon 5s and 5p 
orbitals. 

Results for other Xe(+6) 'systems, including XeFa 2, 

XeOF4, XeOzF2, and Xe03, are considered in the second 
paper in this series. Finally, the important topiC of the 
intensities and band shapes for the electronic absorp
tion transitions, together with their temperature depen
denCies, is the subject of the third paper. 
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