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improved boundary conditions for the time-dependent Schrédinger eguation

R. K. Mains and G. |. Haddad
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An improved boundary condition treatment for the time-dependent Schrédinger equation
applied to resonant-tunneling dicde simulation has been developed. This treatment is half-
implieit, or centered in time, and allows larger time steps than the previous explicit treatment.
The method does not complicate the time-dependent calculation since the resulting matrix is

still tridiagonal.

Realistic guantum transport modeling of semiconduc-
tor devices using the time-dependent Schridinger equation
requires the formulation of open-system boundary condi-
tions. Typically time-dependent Schrodinger calculations'”
have avoided the boundary condition probiem by terminat-
ing the simulation before disturbances reach the boundaries,
which precludes the establishment of a steady-state solution.
A method of extracting ouigoing waves has been used for a
quantumn MESFET calculation,” however, details of the
boundary condition method were not given.

Previously a method has been presented for applying
open-system boundary conditions to the time-dependent
Schrodinger equation for resonant-tunneling diode model-
ing.* This method is purely explicit and limited to a maxi-
mum time step of (1-2) X 107 5. En this communication, a
half-implicit treatment is presented which allows time steps
of 5% 107 ¢ 5 or larger.

From Ref. 4, the wave functicn at the LHS (x,) for
waves incident from the left is expressed as

Wi(xy) = Ae™™ 4 B(xy)e™ o, (1)
where 4 is constant with x and 8({x) istaken to be linear. The
boundary update for this case is:

i Fik dB(xq) o
m*  Jx

where superscript f refers to quantities at ¢ + A¢. In the pre-

vious treatment,* 08 (%,)/dx in Eq. (2) was evaluated at the

Pxe) mPlxg)e A “Han (2
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present time £. A better method is the following:
OBxy) 1 K 3B (x,) ) N (&B(xo) ) } o
ox 2 x /. 3% Jivar
Values of B(x) ars obtained as follows:
B(xy) = (¢, — Ae"*)e™,
B(xo + Ax) = (3/5‘;2 —_ Agik(Xc + Ax))eik(xo+Ax)s
Bl(xy) = (1 — ATy,
Bf(xO + Ax) = ﬁﬁé e A Tt + Ax))egk(x“_'_ Ax)’

where 1, is the lefimost wave-function value. Equation (3)
becomes, in finite-difference form:

OB (xy) _I (B(xe + Ax) — B{xg)

(4)

Ix 2 Ax
H — Bt
+B (xy+ Ax) — B (xo)\;. (5)
hx /

Substituting Egs. (5) 2nd (4) into Eq. (2) vields the
following equation involving future values of ¢ at the left-

hand boundary:
#khe ) ( — fkAr ‘}
r 1 ik, ezkAx — b ,
4 ( + Im*Ax ¢ ¥ Im*Ax !
(6)
where
- Hk A ; { fikhr
b, = — {ELC /R v~-:kx<,> . skAx)
1=% (e b +¢'(\2m*m )
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kAt
Zm*Ax
Since Eq. (6} involves only the first two values of the wave
function at ¢ + At, the tridiagonal property of the matrix is
preserved.
Roache” has given a tridiagonal matrix solution routine.
In his notation, Eq. (&) may be expressed as a Robbin’s
condition in the following form:

¥ + o[ (W] — v{)/Ax] =q,, (8)
where

LD (1 — ez:‘km«:) (4 +Af). (7)

_ ( — kAt /2m*)e™ o~

1+ (BkAL/2m*Ax) (e TR — gikiry

- b,

14 (BkAt/2m*Ax) (e e — eeny |
For waves incident from the left, the wave functions at

the RHS outflow boundary (x,,, ) are of the form*:

’l/](xmax )= C(xmax )eik‘—’xmsx,

and the boundary update is given by

By

U§] (%)

(10}

7 ; ac .
%&J(xmax ) Zi/l(xmax )e - ‘EOA‘/ﬁ — -é—k—o- ____Ef_’_“fi’_‘_}_, elk"xmaXAt‘

m* ax
(i
Values of C are determined from
Clxpe ) = dne” ikuxm“’
ClXppaxy — Bx) = B o~ o Uimas Ax)’
ﬂpN 1 (12)

Cl X an ) = e~ o)

Cf(xmx — Ax) — i/l}{;l— le”" Ko (Xpmax — &)

H4

where N represents the last value of ¢ on the RHS. The
guantity dC /dx is evaluated as follows:

- /e L -V
(13)

dx 2 Jx 9x
Substituting Egs. (12} and (13) into Eg. {11) yields the
following RHS outflow boundary eguation:

P s (:ﬁ‘ﬂéi e“"““) + 9% (1 + -—ﬁ’iﬁi) = by, (14)

2m*Ax Zm*Ax
where
FikoAte™oA= ( ~ikarm koAt )
= e~ o —_—— )
N Py Un_1 + Uy Py

(15)

Again, since Eq. (14) involves only the last two ¢/ values,
the tridiagonal property is preserved.

In Roache’s notation,’ this is expressed as a Robbin’s
condition:

Yo +eu [ W — 91 )/8x] =gy, (16)
where
Pas = (Flo ot /2m® et otx
" 1 + (ﬁkQAi/zm*Ax)(l p— eikch) ?
b
Im i (an

- 1 + (ﬁkQAt /Zm*Ax)(j — eik<)Ax) '
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In a similar manner, boundary eguations have been de-
rived for waves incident from the right; only the results are
given here. In this case, the outflow boundary equation at x,

is
o (1 fikyht > Ly 5( fikoAt _ik,m) —b,

2m*Ax 2m*Ax
(18)
where
: #k At #ik At
b = ( — iEbt /R (9} )___ O ikyAx .
i=diie + Im*Ax 2m*hx ¢ &
(19)
In Roache’s notation:
o= (Fikoiat /2m* Yo — Hbx
' 4 (BikAt /2m*Ax) (e R 1y
bl -
= . 20
h 14 (BkAt 2m*Ax) (e ®A 1) (20)
The inflow boundary equation at x_,, is
fikAr ; Ak At
o ()2 ) o
Vs 2m*Ax mH 2m*Ax "
()
where
— BEAE _ ax A i fikAi )
= e _ e —_—
¥ om*Ax U 1_?_&\ + 2m*Ax Yy
ﬁkAt ikx, R i
&M A + ATy (e FEEE 1), 22
T AR {4 +A47)( 3 (22}
In Roache’s notation:
Dy = ( — BkAr /2m*ye = *o*
ML 4 (kA /2m*Ax) (e Y1)
b
Gae ad (23)

1+ (BkAL/2m*Ax) (e =" — 1)
Figure [ shows the switching transients that result when

the bias voltage is instantaneously switched from the peak
current to the valley current value {solid curve}, and in the
opposite direction (dashed curve) for a 28 A barrier—45 A
well GaAs—Ga, , Aly ; As device at room temperature (inci-
dent waves from the cathode contact only were included in

5

OSA tm

.0 b - N 3.
0.0 G.1 0.2 0.3 0.4
Time (psec)

Current Density (1

FIG. 1. Turnoff (solid curve) and turnon {dashed curve) transients fora 28
A barrier—45 A well GaAs-Ga,, Al ; As device at room temperature,
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this calculation). The effective masses used in the calcula-
tion were m*=00%n, inside the barriers and
m* = 0.067m, outside. The barrier height was 0.246 eV. In
the turncff transient, the initial oscillations are due to the
electron distribution in the well reflecting between the bar-
riers. The calculations of Fig. 1 utilize the boundary condi-
tion treatment described in this communication, and & time
step of 5X 107 1% s was used with no sign of instability in the
results. Larger time steps were also successfully tried for this
calculation. For this device, the maximum aliowabie fime
step is limited by the time scale of processes occurring during
the switching transient rather than pumerical instability.
Time steps greater than 107 '° s are possible but details of the
switching transients are lost. Thus, time step Hmitations of

this method are expected to be a function of device structure
and biasing conditions.

This work was supported by the US Army Research
Office under the URI program, Contract No. DAALQ3-27-
X-0007.
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The effect of interface roughness and island scattering on resonant

tunneling time
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The effect of interface roughness and island scattering on resonant tunneling time in double-
barrier structures is investigated theoretically. The scattering process degrades the resonant
tunneling peak current, broadens the resonance, and hence shortens the resonant tunneling
time. For thin barrier structures, the tunneling time enhancement due to the scattering is
relatively small, while the resonance width is dominated by the scattering for thick barrier

samples.

The major driving force for studying the resonant tun-
neling phenomenon comes from the possibility of high-speed
device applications."”? There have been many publications
dealing with the issue of the ultimate response time of reso-
nant tunneling in double-barrier structures.*™ Inelastic scat-
tering (e.g., by phonons) broadens the resonance,” although
the relative importance of inelastic scattering is not clear
vet.” Epitaxial-growth-related interface roughnesses and is-
lands are unavoidable in samples grown by today’s advanced
technologies such as molecular-beam epitaxy.® We have
studied interface roughness and island effects on tunneling
probabilities and tunneling currents in guantum well struc-
tures theoretically.” We have shown that interface rough-
nesses and islands reduce and broaden the resonant trans-
mission, degrade the peak current, and increase the vailey
current.’ In this communication, we cousider the effect of
interface roughnesses and islands on the resonani tunnefing
time.

The physical interpretation of tunneling times is still an
open question.’® We employ the formalism by Pollak and
Miller.!! A complex time for scattering process involving in-
state i to out-state j is defined as

Ty

.z O 5
= "“l‘ﬁ‘gg(lnsy), (1)
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where 5'is the scattering matrix. For resonant scattering, the
matrix element S is related to a Breit-Wigner-like form:
Sy :Sgeié“"‘“’“”‘& —, {2)
’ (E—E,) +1iFy
where the amplitude S¢ is real, §; is a real phase and is
assumed to have a weak (nonresonance)} dependence on en-
ergy E, £, is the resonant energy, and I'; is the resonant
width. We concentrate on the tunneling time at the maxi-
mum transmission £ = E,, i.e., the on-resonance tunneling
time in which case the imaginary part of 7, vanishes (J |5,/
JE = Q at E = E,} and the real part is the well-known time
delay (or phase time):

I ..
4 = Re(r,) = #200, (3)

oE
where ¢, is the phase shift defined by S, = |§ |exp(ig;).
For double-barrier resonant tunneling structures the above
time delay is  the  lomgest  because 7§
=#l,/[T} + (E — E;)*Y, and we take this time A/ as
the intrinsic ultimate limit of the device response time.™* It
should be pointed out that such a definition of the ultimate
response is only an estimate. A time-dependent approach
should be employed to determine the device frequency re-
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