carrier density within the dendrites which perturb the current stream lines and may either enhance or decrease (ΔR/R₀) in accordance with the considerations summarized by Beer. The temperature dependence of the magnetoresistance coefficient in a fixed magnetic field of 10 kOe is shown in Fig. 2. It may be expressed as:

\[
\frac{\partial}{\partial T} \left(\frac{\Delta R}{R_0} \right) = \frac{w}{l_d} \cdot H \cdot \frac{\partial \mu_n}{\partial T}
\]

The peak in the (ΔR/R₀) vs T curve near 300°K is an anomaly. It does not appear in the temperature dependence of bulk n-type InSb which increases monotonically with T to 100°K. It is however in qualitative agreement with the μₙ vs T dependence⁹ of single-phase InSb films which has been attributed to a combination of lattice and dislocation scattering in accordance with the model of Dexter and Seitz.¹⁰

The magnetoresistance coefficients of InSb films with an ordered dendrite structure, such as shown in Fig. 1, are the highest reported thus far in semiconductor films. Larger (ΔR/R₀) values are anticipated with an improvement (presently under way) in controlling the temperature gradients and their time derivative during the crystallization process.

ERRATA

In “Holograms with Nonpseudoscopic Real Images,” [Appl. Phys. Letters 8, 146 (1966)], F. B. Rotz and A. A. Friesem, Institute of Science and Technology, The University of Michigan, Ann Arbor, Michigan, the abstract should read as follows: (“real image” subject for second hologram; pseudoscopy = reversed relief; E).