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the cylinder, the mean transverse displacement of a 
beam particle will be given by r '" zjJ '" zl. We 
therefore expect the beam intensity to begin falling 
off exponentially as a function of z for z ;::: RI, i.e., 
the effective penetration distance is of order RI. 

More precisely, from (52) we find for the Boltz­
mann function 

1 (Po) i R 12r 

fer, z) ~ 7rZ3 v 0 ro dro 0 dq;o 
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x {_r2 
- r~ + 2"0 cos tpo} 

exp l I 

where Po is the initial flux. In particular, the 
intensity on the axis is then given by 

P(O, z)/Fo ~ e-Il
'/", 

confirming that the exponential fall-off distance is 
z. ~ RI. 
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Using Ca!e's method for solving the one-speed transport equation with isotropic scattering, the 
Milne problem solution, the solution for a constant source in one half-space, and the Green's function 
solution are obtained for two adjacent half-spaces. These problems have been solved previously by 
other methods. Here the derivations are greatly simplified by using Case's method. 

I. INTRODUCTION 

T HE one-speed neutron transport equation has 
been solved in closed form for isotropic scatter­

ing in full-space, half-space, and two adjacent half­
space media using a number of rather cumbersome 
techniques. I-a Recently Case6 has developed a new 
method for treating the one-speed transport equation 
in which the solution of the general problem is 
written as a superposition of the singular solutions 
of the homogeneous equation. Several fuIl- and 
half-space problems have been solved using this 
method,6.7 including certain types of anisotropic 
scattering.s
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In this work Case's method is applied to three 
problems for two adjacent half-spaces with isotropic 
scattering. In Sec. II, we review the normal-mode 
solutions. In Sec. III, we consider some of the 
general features of the two-half-space problems. 
In Secs. IV, V, and VI, we solve the Milne problem, 
the problem of a uniform isotropic source in one 
half-space, and the Green's function problem, 
respectively. 

II. THE NORMAL MODES AND THE HALF-SPACE 
FUNCTIONS 

Assuming isotropic scattering, the homogeneous 
one-speed neutron transport equation for plane 
symmetry is 

a "'(x , p,) + ./.( ) C Jl ./,( ') d ' p, ox 'Y x, P, = 2" -1 'Y x, fJ p" (11.1) 

where ",(x, p,) is the angular density, x is the distance 
in units of mean free path, p, is the cosine of the 
angle between the neutron velocity and the x axis, 
and c is the average number of neutrons produced 
per collision. The solutions of Eq. (11.1) as discussed 
by Casei6 consist of two discrete modesi 

"'o",(x, p,) = ¢o",(p.)e'f:Z:/··, (11.2) 
where 

(II.3) 
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and ±vo are the two zeros of 

A(v) = 1 - ~ 11 dp./(v - p.) 
2 -I 

= 1 - cvtanh-I (l/v), 

and a set of continuum modes 

where 

cb,(p.) = !(e)P[v/(v - p.)] + X(v)o(p. - v), 

and 
X(v) = 1 - cv tanh-I v, 

(11.4) 

(II.5) 

(II.6) 

(II.7) 

and v is real and in the interval -1 ~ v ~ 1. The 
Pin Eq. (11.6) signifies the Cauchy principal value. 
Notice that A(v) has a cut from -1 to 1 in the 
complex v plane. If we define A +(v) and rev) as 
the boundary values of A(v) approaching the cut 
from above and below, respectively, we have 

A ±(v) = X(v) ± !(i1l"cv). (11.8) 

In obtaining the solution to the general half-space 
problem, Cases constructed the following function: 

X(z) = _1_ exp {.! 11 ~ arg A+(p.)}. (II.9) 
l-z 1I"0p.-Z 

Some of the properties of this function ares; 
(1) It is analytic in the complex z plane cut from 

o to +1. 
(2) It is nonvanishing, along with its boundary 

values, in the entire finite z plane. 
(3) It goes as l/z as z approaches infinity. 
(4) Its boundary values satisfy the "ratio 

condition" 

transport equation will then involve 1/I,,(x, p.) and 
1/I10±(X, p.) for x > 0; and 1/I2,(X, p.) and 1/I20±(X, p.) 
for x < O. 

A problem which is encountered in the solution 
of two-half-space problems is the expansion of a 
function 1/I'(p.) in terms of the cb,,(P.) for 0 < v < 1 
and cb2.(P.) for -1 < v < o. That is, functions 
A,(lI) and A 2(lI) are sought such that 

1/I'(p.) = f, A 2(lI)cb2.(p.) dv 

(IILl) 

The construction of this expansion has been 
discussed by Case.6 We will repeat the relevant 
parts of Case's discussion here. Let us introduce 
the following notation: 

e(p.) = {CI' 0< P. < I, 
C2, -1 < p. < OJ 

A(p.) = {A,(p.), o < p. < 1, 

A2(P.) , -1<p.<0; (III.2) 

A±(p.) = {A~(p.), o < p. < I, 
A ;(p.), -1 < p. < 0; 

X(p.) = {Xl(p.), o < p. < I, 
X2(p.) , -1 < p. < O. 

With this notation, Eq. (IILl) can be written as 
follows: 

(III.3) 

(I 1. 10) Now we introduce the function 

(5) It can be shown to satisfy the following 
identities: 

X(z) = 11 ~ ep' X~(p.) , 
o P. - z 2 A (p.) 

X(z)X(-z) = A(z)/[(1 - C)(lI~ - i)], 

X(O) = 1/[lIo(1 - e)I], 

C jO P. dp. 
X(z) = 2(1 - c) -1 (lI~ - p.2)X(p.)(p. + z) • 

(II.ll) 

(II.I2) 

(II.13) 

(II.I4) 

m. THE TWO-HALF-SPACE FUNCTIONS 

Two adjacent half-spaces may be characterized 
by the following convention. Let x = 0 denote 
the interface, and let the subscripts 1 and 2 denote 
the quantities appropriate to the right- and left-hand 
half-spaces, respectively. The solutions of the 

N() = .-Ljl c(lI)lIA(lI) d 
z 2· 2( ) v. m -1 v - Z 

(III.4) 

If A(lI) is sufficiently well behaved, N(z) has the 
following properties: 

(a) It is analytic in the complex z plane cut from 
-1 to 1. 

(b) It goes to zero at least as fast as l/z at 
infinity. 

(c) It is bounded by D,,jlz ± 11\ where D'f are 
constants and 'Y < 1, as z approaches =Fl. 
The boundary values of N(z) are 

N"'(p.) = ~ P 11 e(lI)lIA(lI) dll 
2m -I 2(lI - p.) 

± 1: c(p.)p.A(p.) • 
2 2 (IIL5) 
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Equation (IIL3) can be written in terms of A(z) and 
N(z) as follows: 

A +(p.) N+(p.) - N-(p.) = p.e(p.)!/I'(p.). 
A-(p.) 2A (p.) 

The solution of Eq. (III.6) for N(z) isG 

N(z) = -, -! - f1 'Y(p.)!/I'(p.) dp. 
2nx(z) -1 p. - Z ' 

where 

and 

(IIL6) 

(II 1.7) 

(II 1.8) 

(III.9) 

Since x(z) '" I/z2 as z approaches infinity, N(z) '" liz 
at infinity, as required, only if 

and 

f1 'Y(p.)!/I'(p.) dp. = 0, 

f1 p.'Y(p.)!/I'(p.) dp. = O. 

(IlL 10) 

Hence A (p.) may be determined from Eqs. (IIL5) 
and (III.7) for any !/I'(p.) that satisfies Eqs. (III. 10). 

Also, x(z) satisfies a number of useful identities 
similar to those for the half-space function X(z). 
The derivations of these identities are entirely 
analogous to the half-space cases, so we will omit 
the details and simply state the results. 

x(z) = f1 'Y(p.) dp. , (IlL 11) 
-1 p. - Z 

(III.I2) 

() C2 fO p.2XI (p.) dp. 
ZX z = 2(1 _ C2) -1 X2(P.)(V~2 _ p.2)(p. - z) 

+ C1 11 lX2 ( -p.) dp. ( 
2(1 - C1) 0 Xl (- P.)(V~l - l)(p. - z)' III.I4) 

IV. THE MILNE PROBLEM 

For the Milne problem, the angular density 
satisfies the following equation: 

iJI/I(x, p.) + "'(x ) 
p. ax 'Y,p. 

C 11 = t -1 !/I(x, p.') dp.', x> 0, 

C f1 = t -1 !/I(x, p.') dp.', x < 0, (IV.I) 

with the following boundary conditions: 

(1) lim !/I(x, p.) = ¢10_(p.)e+z/·" 

(i.e., neutrons are assumed to enter the system at 
plus infinity, and C1 < 1). 

(2) 

(i.e., C2 < 1). 

(3) 

lim !/I(x, p.) ='0 

(i.e., the angular density is continuous across the 
interface). 

Boundary conditions (1) and (2) require the 
following form for the expansion of !/I(x, p.): 

!/I(x, p.) = ¢lO_(p.)eZ
/

V
•

, + aO+¢lO+(p.)e-Z
/ •• 

, 

+ f A 1(v)¢lv(p.)e- z
/

p dv, x > 0; 

= -aO_¢20_(p.)ez
/

v
., 

- f1 A 2(v)¢2,(p.)e-·/ v dv, x < o. (IV.2) 

From boundary condition (3), we have 

!/I'(p.) = f1 A2(V)¢2'(P.) dv + f A1(V)CP1>(p.) dv, (IV.3) 

where 

!/I'(p.) = -¢10-(P.) - aO+¢10+(p.) - aO-¢20-(P.). (IV A) 

From the analysis of Sec. III, the solution of Eq. 
(IV.3) can be written down immediately, 

A(v) = [2/11c(II)][N+(v) - N-(v)], 

N(z) = -! - fl 'Y(p.)!/I'(p.) dp.. 
2nx(z) -1 p. - z 

(IV.5) 

The coefficients ao+ and ao- can be determined from 
Eqs. (III.IO), (III. 11), (III.I2), and (IVA), 

x( -VOl) (1102 - VOl) 
ao+ = () ( ) X VOl 1102 + VOl (IV.6) 

x( -VOl) 2C1V~1 
ao- = ) ( ) X( -V02 C2V02 V02 + VOl 

The expression for N(z) can be simplified by using 
Eqs. (IVA), (III.11), (III.I2), and (IV.6), 
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The expansion coefficient A (V) can be determined 
from Eqs. (IV.5) and (IV.7), 

ve(v) A(P) _ -.!.. CIV~I(V02 - VOI)X( -VOl) 
2 - 21!i (V~l - V2)(P02 + V) 

X [£~V) - x-~v)l 
One can show that the following identity holds 
for the x-functions: 

Hence, 

cl(l - CI)V~I(V02 - VOI)x( -VOl)XI( -v) 
(V02 + v)A~(v)Al(V)X2(-V) 

(IV.9) 

The solution of the Milne problem for the angular 
density is complete since all of the expansion 
coefficients in Eq. (IV.2) have been determined. 

The expression for the angular density at the 
interface (x = 0) can be further simplified. Notice 
that the angular density at the interface can be 
written as follows: 

1/1(0, Jl) 

= {cf>lO-(p.) + aO+cf>lO+(p.) + f(p.), 

-ao-cf>20-(p.) - g(p.), 

Jl < 0, 

Jl> 0, 

where 

fez) = £! 11 VAI(V) dv , 
2 0 v - Z 

g(z) = ~ 10 

VA2(V) dv. 
2 -1 V - Z 

(IV. 10) 

The functions fez) and g(z) have the following 
properties: 

CIa) fez) is analytic in the complex z plane cut 
from 0 to + 1 and vanishes at infinity. 

(lb) g(z) is analytic in the complex z plane cut 
from -1 to 0 and vanishes at infinity. 

(2a) fez) has a discontinuity across the cut 
given by 

(2b) g(z) has a discontinuity across the cut 
given by: 

g+(p.) - g-(p.) = 1!i[c2JlA2 (p.)J . 

One can construct functions satisfying conditions 
(1) and (2a) , and (1) and (2b), respectively. By 
Liouville's theorem, these functions are unique. 
Thus, we can writelO 

where 

fez) = T(z) - cf>IO-(Z) - ao+cf>lO + (z) , 

g(z) = R(z) - ao-cf>20-(Z) , 
(IV.ll) 

T() - (V02 - Z)CIV~IX2(Z)XI(-VOl) 
Z - (V~l - l)(V02 + VOI)XI(Z)X2(-V01) , 

(1 - C2)(V02 + Z)(V02 + V01)X2( -z)X2( -VOl) 

From Eqs. (IV.9) and (IV. 10), we can determine 
the angular density at the interface in terms of 
X functions, 

Jl < 0; (IV. 12) 

= (1 - C2)(V02 + Jl)(V02 + VOI)X2( - Jl)X2( -VOl) , 

Jl> O. 

The total density and current at the interface are 

p(O) = i: 1/1(0, Jl) dJl, 

j(O) = i: JlI/I(O, Jl) dJl. 

These integrals can be done using Eq. (III.13) 
and (III.14), 

(0) _ 2vol(1 - CI)tXl( -VOl) 
p - (P02 ~ vOl)(l - C2)1 X 2 ( -VOl) , 

j(O) = -vol[(l - cl)(l - c2)]tp(0). 

(IV. 13) 

(IV. 14) 

One further quantity of interest is the extrapolated 
end point Zo, given by 

(IV.15) 

The results of this section and many of the 
10 Note that T(z) and R(z) supply the proper discontinuity 

and f(z) and g(z) have removable singularities. 
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results in the following sections can be compared 
to Davison'sl results by recognizing the relation 
between the X function and Davison's h function, 

h+(i/p.) = (1 + p.)X(-p.)Po(1 - c)t. 

Similarly, a comparison with Chandrasekhar's3.6 
results can be made by recognizing the relation 
between the X function and Chandrasekhar's H 
function, 

H(p.) = 1/(po + p.)(1 - c)iX( - p.). 

V. THE UNIFORM SOURCE 

Consider a uniform, isotropic source in the right­
hand half-space. The transport equation is 

al/l(x, p.) + .I,(X ) 
P. ax '1', P. 

C 11 = ...! I/I(x, p.') dp.' + s, 
2 -1 

x> 0, 

The expression for N(z), 

N( ) 1 11 'Y(p.) " .. ) Z = -2 . () -- 1/1 \}Jo dp., mxz -1 p. - Z 

can be evaluated by using Eqs. (III. 11), (IIl.12), 
and (V.3), 

N(z) = 2~ [ aO+cP10+(Z) + aO-cP20-(Z) - 1 ~ cJ 
__ 1_ [ao+ClpolX(pOl) + aO-c2p02X( -p02)J . (V 5) 

2?rix(z) 2(p01 - z) 2(p02 + z) . 

The continuum expansion coefficient can be com­
puted by using Eq. (IlI.5) , 

(V.6) 

where we have used the explicit expressions for 
C 11 = 2 I/I(x, p.') dp.', 
2 -1 

x < 0, 

with the following boundary conditions: 

(V.l) ao+ and ao_ [Eq. (VA)], and Eq. (IV.S). Thus the 
solution of this problem is complete since the 
expansion coefficients in Eq. (V.2) have been 
determined. 

(1) 

(2) 

lim I/I(x, p.) = -1 s (i.e., C1 < 1), 
% __ co - Cl 

lim I/I(x, p.) = ° (i.e., C2 < 1), 

(3) 1/1(0+, p.) = 1/1(0-, p.) (continuity). 

The expansion of 1/1 (x, p.) in the normal modes, 
including the restrictions of boundary conditions (1) 
and (2), is 

.1,() S ..I. -Z/'" 
'I' x, P. = -1-- - aO+'I'lO+e 

- C1 

+ f A l(p)e-zhcPl>(p.) dp, x> 0; 

= aO_cP20_(p.)ez
/, •• 

- f1 A 2(p)e-%!vcP2.(P.) dp, x < 0. (V.2) 

Boundary condition (3) then requires that 

I/I'(p.) = f A1(p)cP1.(p.) dp + f1 Aip)cP2.(p.) dp, (V.3) 

where 

I/I'(p.) = aO-CP20-(p.) + aO+cP10+(p.) - s/(1 - C1)' 

Again, we can determine the discrete coefficients 
from Eqs. (III. 10), (IlI.11), and (IlI.12), 

/10+ = -2s/(1 - Cl)ClpOl(pOl + p02)X(pOl), 

ao- = -28/(1 - C1)C2p02(p01 + p02)X(-J>02)' 
(VA) 

There is a further simplification in the expression 
for the angular density at the interface, 

1/1(0, p.) = {S/(1 - cl) - aO+cP10+(}J.) + f(p.), p. < 0, 

aO-cP20-(p.) - g(p.), p. > 0, 

where 

fez) = £1 r pAl(p) dp , 
2 10 P - Z 

g(z) = ~ 10 
pA2(p) dp. 

2 1 P - z 

(V.7) 

These functions fez) and g(z) satisfy conditions (la), 
(lb), (2a) , and (2b) in Sec. IV, with A1(P.) and 
A2(P.) given by Eq. (V.6). Again we can construct 
unique functions satisfying these conditions, 10 

) sCl(1 - C2) 
fez = T(z) - (C1 _ c2)(1 _ cl) + aO+cP10+(Z), 

g(z) = R(z) - SCd(C2 - Cl) + aO-cP20-(Z), 

where 

and 

(V.S) 
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The angular density at the interface now can be 
determined by using these results, 

1/1(0, p,) 

8cl (1 - C2)(V02 - p,)X2(p,) 8C2 
(CI - c2)(1 - Cl)(VOI - p,)Xl(p.) - -CI---C2 ' p, < OJ 

8C2(VOI + P,)Xl(-P,) 8~ 
(Cl - C2)(V02 + p,)X2( - p,) - C-I---C2 ' 

The total density at the interface, 

p(O) = {I ",(0, p,) dp" 

p, > O. 

(V.9) 

can be found using Eqs. (III.13) and (III.14), 

p(O) = ~ [(1 - C2): - 1J. (V.lO) 
Cl - C2 (1 - CI) 

There does not appear to be a corresponding 
simplification in the expression for the current at 
the interface, since we do not have an identity 
similar to Eqs. (III.13) and (III.14) for Z2X(Z). 

VI. THE TWO-HALF-SPACE GREEN'S FUNCTION 

Consider a monodirectional plane source in the 
right-hand half-space. The transport equation 
becomes 

p,a",(x, p,; Xo, P,o) + .I,(X • x ) 
ax 'Y ,p" 0, P,o 

_ ~ i l 
.1,('. ) d ' + a(x - xo)a(p. - P,o) 

- 2 -I 'Y x, P, ,Xo, fJ.0 fJ. 21r ' 

= ~ L: ",(x, fJ.'j Xo, fJ.0) dfJ.', 

where 

x> 0, 

x < 0, (VI. 1) 

= _1_ a(p. - fJ.0) 
211"p, , 

(3) "'(0+, p,j Xo, fJ.0) = ",(0-, p,j Xo, P,o). 

A solution which conforms to boundary condition 
(1) is 

x> Xoj 

b '" t .. ) -,.1... b '" t .. ) ,.1, .. = - 0+'I'10+1Jo' e - 0-'I'10-1Jo' e 

- {I B(v)q,h(P)e-,.I, dv, 0 < x < Xoj 

= do-cP20-(p.)e+"I, •• 

+ fl D(v)cP2,(fJ.)e-"I' dVj x < o. 

Applying boundary condition (2) we have 

( + b )'" t .. ) -"./P .. + b '" t .. ) ".1 ... ao+ 0+ 'l'10+1Jo' e 0-'I'10-1Jo' e 

+ { {A(v) + B(v) }cPI,(p.)e-~·I' dv 

(V1.2) 

+ i O 

B(v)cPh(p.)e-"'·I' dv = -2
1 

a(p. - fJ.0). (V1.3) 
-I 1I"fJ. 

The cP's satisfy the following orthogonality relation: 

v ~ v', (VIA) 

where the indices v and v' refer to both the discrete 
and continuum eigenvalues. The normalization isS 

(VI. 5) 

NI(v)a(v - v') = {I fJ.cPh(p.)cPI,'(p.) dp, 

= vA~(v)A~(v) a(v - v'). 

Using Eqs. (VIA) and (VI.5) in Eq. (V1.3), we have 

+ b 
- 1- cPlo+(fJ.o)e"'·"·· 

ao+ 0+ - 2 N ' 
11" 10+ 

1 '" ()e-,.·I'" b - _'I' "'-'1:.::..0--":-'1-10:'--__ 

0- - 211" N
lO

-

(V1.6) 

Applying boundary condition (3) and the identity 

(Ct!C2)cP2,(p.) = cPtp(p.) + [(CI - C2)/C2]a(v - 1-1), 

we have 

""(p.) = { B(V)q,h(p.) dv 

+ i O 

{~B(v) + D(V)}cP2.(p.) dv, 
-I C2 

(VI.7) 
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where 

1/t'(P) = - bO+q,10+(P) - bO-q,10-(P) 

_ d..l. ( .. ) _ C2 - C1 q,l~(po)e%·I"H( - p.) . 
0-'1'20-1.1'- C2 271"N1(p) , 

H(x) = {I, x > 0; 
0, x < O. 

Equation (VI.7) is in the form of Eq. (IILI), 
and we can use the methods outlined in Sec. III 
to determine the coefficients 

B(v) , V> 0; 

(VI.8) 

£! B(v) + D(v), v < O. 
02 

Applying Eqs. (III.1O, 11, 12) and (VL6), we have 

b - -2 V02€X + (3 
0+ - CIV01X(V01)(V02 + VOl) , 

(VI. 9) 

where 
..I. C ) -%0/... ( ) 

( ) _ _ C1VOl '1'10- p.o e X -VOl 
€X Xo, p.o - 4 N 

71" 10-

+ Cl - C2 10 v2q,t>(p.0)e%0/·Xl(v) d 
471"(1 - C2) -1 Nl(v)(V~2 - V2)X2(V) V. 

Applying Eq. (IlIA), we have 

1 
N(z) = - 2ri {bO+q,lO+(Z) + bO-q,lO-(Z) + dO-q,20-(Z)} 

1 + 2'11ixCz) {bO+q,1O+(Z)X(V01) 

+ bO-q,lO-(Z)X( -POI) + dO-q,20-(Z)X( -V02)} 

1 ~ - Cl 
- 2'11ix(z) 471"(1 - c2) 

Now, using Eqs. (IIL5) and (VL6), we have 

B(v) = -{ bO+q,10+(V)X(V01) + bO-q,lO-(V)x( -VOl) 

() ( ) Cl - C2 + dO-q,20- V X -V02 + 471"(1 - C2) 

X 10 p.q,l~(p.O)e%o/"Xl(P.) d } 
-1 Nl(P)(P - V)(v~2 - p.2)X2(P) P. 

X {(V~l - v
2
)(1 - Cl)Xt ( -V)} 0 

A~(v)A~(v)X2(-V) ,V>, 

A(v) = -B(v) 

+ q,l.(PO)e%o/. /271"Nl(v) , V > O. 

(VI. 10) 

(VI. 11) 

D(v) = _£! q,1.(P.0) e%oh _ (V~2 - l)(1 - C2)X2(V) 
C2 271"Nl(v) A~(v)A2(V)Xl(V) 

X {bO+q,10+(V)X(V01) + bO-q,lO-(V)X( -1101) 

+ dO-q,20-(V)x( -V02)} 

+ (C2 - Cl)(V~2 - l)X2(1I) 
471"A ~(v)A -; (v)Xl (II) 

X p 10 
d p.q,b(PO)e"·I"X\(p.) 

-1 IJ. Nl(P)(P - V)(V~2 - l)X2(P) 

(C2 - Cl)A2(V)q,lV(P.0) %0/. 0 
- 271"C2A~(v)A-;(v)Nl(V) e , V < . 

Now with Eqs. (VL6), (VL9), and (VL11), the 
Green's function is completely determined. ll In this 
case, there does not appear to be a simplification 
at the interface corresponding to that found in the 
previous problems. 
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11 Case has obtained results for the two-half-space Green's 
function. (See Ref. 4.) 


