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A gas bubble moves with constant translatory velocity in a quiescent liquid. Its shape deviates from
sphericity due to asymmetrical forces exerted upon its surface. Then the liquid pressure undergoes a step
change. It is the purpose of the study to analytically predict the time history of the bubble size, translatory
velocity, and deformation. The mechanisms involved in the acceleration of the translatory motion and
in the growth or collapse rate of the bubble are discussed.

INTRODUCTION

The translatory motion and deformation of a gas
bubble moving in a source and/or sink flow have been
investigated in Refs. 1 and 2. A brief review of the
literature®” concerned with the problems of the
deformation and translatory motion of a gas bubble is
presented in Ref. 2. From the study presented in Refs.
1 and 2, it is concluded that in a source and/or sink
flow, the combined action of the translatory motion
and the growth or collapse rate may cause the bubble
to accelerate or decelerate its translatory motion. This
conclusion has led to the conjecture that a gas bubble
moving with a constant velocity in a quiescent liquid
will be accelerated or decelerated as it grows or collapses
following a change in the liquid pressure. With the
motivation to prove the conjecture, work is undertaken
in the present paper to analyze the time history of the
velocity, size, and deformation of a gas bubble moving
in a quiescent liquid whose pressure undergoes a step
change in magnitude.

ANALYSIS

Consider a gas bubble traveling with velocity U in a
quiescent liquid. The bubble deviates from spherical
shape due to asymmetrical force exerted upon its
surface. Then a step change in the pressure of the
surrounding liquid is imposed on the system. For
convenience in analysis, the coordinate systems (r, 8, ¢)
are fixed at the center of the moving bubble 0 in Fig. 1
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with 7 measuring the radial distance, § the angle
between the radial vector, and the direction of the
bubble velocity U. Let the instantaneous surface shape
of the bubble be described by
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F16. 1. Unit normal and pressure on a bubble surface.

where R(?) is the radius of the unperturbed spherical
bubble and all other terms describe the deviation from
sphericity. P.(cosf) are Legendre polynomials and
a.’s are the time-dependent coefficients whose mag-
nitudes are determined later in the Section.

The solution of the continuity equation for incom-
pressible, irrotational fluid V2®=0 in moving coor-
dinates is

(2)

where @ is the velocity potential, the dot denotes the time derivative and C,’s are coefficients to be determined.
When the coefficients C,’s are determined by the surface condition of the perturbed bubble, Eq. (2) may be re-
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written with the neglect of the terms involving a,? as
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in which recurrence formulas for sin%f- P,” and cosf- P, have been used. .

Now the 7 component of the equation of motion for an irrotational flow in an accelerating coordinate system in
the absence of gravitational acceleration is integrated from r to infinity. With the aid of Eq. (3) and the recurrence
formulas for sin®0P,’, cos@P, and P.P,, it yields the expression for the liquid pressure distribution, from which
the pressure distribution on the bubble surface may be obtained by replacing 7 by r, as

4 (:‘) be +RR+3R—1U2— LU0y — g Uay—3iUa+ {%R&ﬁ%}%m— 1%% a— 130 [Uag—}- <U+4U 1}—‘2) az]
+ % I]JQ a3+2RU+1RU} Pt {SUal+ (1U+UR) a1+3Riy+ Ray— (‘R-f— 2—%%2)
- 13—4— [SUd3+ (4U+6U g) a;,} + i a4—{—4U2} Pyt Z {Z %% ? tni2— [—J—r;ms(Tm;rllU Omi1
+(ﬂ%§rm?ﬂ Ufe omit ot {5 '"][ - <2mJ(r":>Jr<;Z+3) <2m—1;'122m+1>
- ((272111);((;”;;-2;) - <2mﬁ(:’; ?22— 1>] +§[ e R b U""”‘]

QU2 (m—2)(m—1)m

4R (2m—3) 2m—1)

For the derivation of the governing equations for the bubble motion, size, and shape, the surface of a translating
bubble is defined as the control surface. Since the pressure acts normally on the bubble surface, its direction forms

an angle (f—@8) with the direction of bubble motion, where 3 is the angle between the normal vector n and the
radial vector r,, as shown in Fig. 1. Then the force induced by the pressure can be written as

am—2} P, me (4)

1= [ (=9 cos(o-g)aa, )

where A4 is the surface area of the bubble. The differential area on the bubble surface and cos(6—@8) may be ex-
pressed in terms involving a,’s and the Legendre polynomials. The resulting expression of Eq. (6) is then integrated
to yield

f=2aRpGRU+RU+3Rir+Rir+ (8/3) [RR+4R?
+ (poaf/0) — 2U2](a1/R) +1{ — 3Uds+[7U+13U (B/R) ] (as/8) } + (9/35) (U*/R) as).  (6)
Now, according to Newton’s second law, the equation of motion may be expressed as
J=mU=pn($)mR0)U, (1)

where m, is the mass of the gas inside the bubble, and p, is the initial density of the gas. By substituting Eqgs. (6)
into (7) to eliminate f, one obtains the expression for the motion of the bubble as

2rR%{3RU+RU~+3Rir+Rir+ (8/3) (RR4-3R* po/p—2U? a1/ R
+1[—3Udy+ (TU+13UR/R) az/8]+ (9/35) (U¥/R) a3} = p,drURY(0) /3. (8)
The force balance on the differential element of the bubble surface leads to the expression

o(1/Ri+1/Re) = pin—p () (9

& P. M. Morse, and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill Book Co., New York, 1953), Chap. 10, p. 1326.
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F1c. 2. The time history of the transla-
tory velocity and unperturbed radius of
an initially nonspherical bubble moving
in a quiescent liquid for U(0)=0.7,
R(0)y=1, R(0)=0, P,(0)=7030, and
P,=195.
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where ¢ is the surface tension, R, and R» are the principal radii of curvature of the bubble surface, and ., and
p(r,) are the pressures exerted upon the inside and outside surfaces of the bubble, respectively. It is assumed that
the gas pressure inside the bubble is uniformly distributed, and the gas is ideal and undergoes a reversible poly-
tropic process during the growth or collapse of the bubble. The sum of the curvatures up to the first-order correction
may be obtained from Eq. (1) for a perturbed bubble. By substituting Eq. (4) together with the expression for a
reversible polytropic process into Eq. (9) followed by equating all the coefficients of the P, terms to zero, the
equations for R and @, are obtained:

Coefficient of Py:

RR+312+ (po—pin) /p— U+ 20/R—3Ud1— (UR/R+U /3y 0r=0. (10)

Coefficients of P;:
Ri/2+43Rd1/2— (9/10) Uar/R— (3/10)[3Uds+ (U+4UR/R) a ]+ (27/70) U2as/ R+3RU/2+RU/2=0. (11a)
Coeflicients of Py:
Riiy/3+ Rig+ (—R/3— (54/35) U?/R+45/pR?) ay+3Udy /2
+(U/34+UR/R) ay— (3/14)[SUds+ (4U+6UR/R) as]+ U?as/R+3U%/4=0. (11b)
Coefficient of P, for n>3:
[R/ (n+1) Jan+[3/ (n+1) JRin— [ (n—1) / (n+1) 1Rau+ (9/4) (UY/R) @u[ 1~ (n+1)2(n+3) / (2n+1) (2n+3)
+n(n*—3n+1)/(2n—1) 2n+1) J+[(n—1) (n+2) /pR]sa,
+(9/4) [n(n+1) (n+2) / (2n+3) (2n+5) J(U/R) @nya—[3/2(2n+3) (3 (5n+2) U—2(n+1)2UR/R]tns1
—[3(n+1)/2(2n+3) Wanys+3{[2(n—1) /20— 1](UR/R) p1+ Udns+[1/3(2n—1) [0 2y}

+[9(n—2) (n—1)n/4(2n—3) (21— 1) {U?/R) @s_s=0. (11c)

Equation (10) is the bubble dynamics equation that
must be solved simultaneously with Eq. (11).

RESULTS AND DISCUSSION

All equations derived in the previous Section may be
made dimensionless by dividing the quantities of
length, velocity, acceleration, time, and pressure by
R(0), [o/pR(0) 1", o/p[R(0) P, {p[R(0)T/o}"?, and
o/R(0), respectively, where R(0) is the initial radius of
- the bubble. The introduction of these dimensionless

quantities does not cause any change in the form of
those equations except that p and ¢ now drop out from
the expressions. U/[o/pR(0)]"2, the dimensionless
velocity, is actually the Weber number. In the following,
we always refer to the equations and physical quantities
in dimensionless form unless indicated otherwise.
Equations (8), (10), and (11) were numerically
integrated by the Runge-Kutta method using an IBM
7090 digital computer. From the experimental study, it
is disclosed that sufficiently accurate results may be
obtained by retaining the first 12 ¢,’s in the computer
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Fic. 3. The time history of the surface shape of an initially
nonspherical bubble moving in a quiescent liquid for U/ (0) =0.7,

R(0) =1, B(0) =0, Pe(0) =7030 and Po,=195.

program. Therefore, together with equation (8), a
total of fourteen simultaneous equations were solved
for U, R and a1 to a1. The initial deformation of bubbles
from the spherical shape as they travel with a constant
velocity in a liquid may be calculated from the steady-
state terms of Eqgs. (10) and (11). The initial equilib-
rium pressure of gas within the bubble $:(0) can be
evaluated from Eq. (10) which yields

Pin(0) = p,(0)— U?/4+2/R.

H-C YEH AND W-J YANG

Numerical calculations were performed for a gas
bubble moving with a constant velocity U(0)=0.7 in
the quiescent water at 77°F (water density=0.997
g/cm3, surface tension for water—air system=71.97
dyn/cm). In general, U/(0) has to be selected so that
the a,’s are within the validity of the perturbation
technique. For the present case, U(0) or equivalently
the Weber number is less than 1.23, the stability
criterion for a bubble in steady translatory motion.
The initial conditions correspond to x(0)=0, R(0)=1,
R(0)=0, a;(0)=0114031, a4(0)=0.004934, as(0)=
—0.000167 and a,(0)=0 for n=1, 3, 5, 7-12. Then a
sudden change in the system pressure was imposed on
the system, either a step increase from p.,(0) =195 or
3515 to $,=7030 (p,=7030 corresponds to one
atmospheric pressure, p,=195, corresponds to vapor
pressure), or a step decrease from p.(0)=7030 to
$.=195. y=1 case, corresponding to an isothermal
process of gas inside the bubble, is considered. Results
are presented graphically in Figs. 2-6.

Figures 2 and 3 show the history of the translatory
velocity, size and shape of the bubble for the case in
which the system pressure undergoes a step change from
£,,(0) =7030 to p,=195. It is seen from these Figures
that as the bubble grows, its translatory motion is
slowed down, while its shape remains almost unchanged.

Figures 4 and 5 are the results for the case where the
system pressure undergoes a step change from p.,(0) =
195 to $,,(0) =7030. Figure 4 shows that as the collapse
is accelerated, the translatory velocity increases
abruptly. In the course of collapsing, the bubble shape
gradually becomes more and more spherical. However,
in the later stage of collapse, the translatory acceleration
and rate of the collapse of the bubble become large.
Consequently, ¢,’s begin to increase and finally become
very large abruptly. This indicates the threshold of
instability in bubble shape. As shown in Fig. 5, an
indentation is seen on the bubble surface. Its location
depends upon U(0) and the change in the system
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Fic. 5. The time history of the surface shape of an initially
nonspherical bubble moving in a quiescent liquid for U (0) =0.7,

R(0) =1, R(0) =0, P (0) =195, and Ps="7030.

pressure. Figure 6 shows the time history of the transla-
tory velocity and size of the bubble for the case where
the system pressure undergoes a step change from
P (0) =3515 to p,=7030. It is interesting to note that
the translatory velocity increases to a maximum as the
collapse rate approaches zero and the bubble starts to
rebound. During the course of the collapse, the bubble
shape becomes more and more spherical followed by
indentation in the direction normal to its translating
motion. It is our expectation that after the bubble
rebounds and grows to a maximum size, it will follow a
collapsing course again.

The mechanism related to the change in the bubble
velocity and the rate of growth or collapse may be
disclosed from the equations

#(=U)=—3UR/R (12)
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and

R=UYAR— 383/ Rt (pu—po) [R~2/R  (13)
obtained from Egs. (8) and (10), respectively, by
neglecting the a,’s.

Equation (12) indicates that its translatory motion is
decelerated as a bubble grows and wice versa. This
explains the U-R relationship illustrated in Figs. 2 and
4. When Eq. (12) is integrated, it yields

U=U(0)[R(0)/R}. (14)
Equation (13) shows that the acceleration of the
bubble surface displacement is induced by the forces
due to U?/4R, —32R?*/ R, (pin—p)/R, and —2/R2,
In the initial stage of bubble collapse shown in Fig. 6,
the negative pressure force (pim—p.)/R is a domi-
nating factor: but as the bubble travels down stream,
Eq. (12) indicates that its translatory motion is further
accelerated as the collapse continues. It can be seen from
Eq. (14) that for an isothermal process, the gas pressure
inside the bubble p;, is linearly proportional to the
translatory velocity U. Hence, as the translatory
bubble is accelerated following the bubble collapse, the
absolute magnitude of the dominating term (p:n— ) /R
decreases. Eventually, the right-hand side of Eq. (13)
becomes zero and then changes to positive; and conse-
quently, the collapse rate is slowed down to zero
followed by rebound. As the bubble starts to rebound,
the right side of Eq. (12) changes from a positive
quantity to a negative one, indicating the deceleration
of the bubble motion.

CONCLUSION

When a gas bubble is in translatory motion in a
liquid following a sudden change in the system pressure,
the bubble may be accelerated or decelerated as the
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result of the interaction between the translatory
velocity and the rate of growth or collapse. In general,
a moving bubble grows and maintains a stable surface
shape when the liquid is subjected to a step decrease in
pressure. However, if the pressure change is a step
increase, then under certain conditions dependent upon

JOURNAL OF APPLIED PHYSICS
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the initial conditions and p,—$,(0), a bubble may
collapse and rebound. During the process of collapse,
the bubble shape becomes spherical in the earlier period
of time, and then becomes irregular as the rate of
collapse and translatory acceleration of the bubble
increases.
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Pressure and Temperature Dependence of the Acoustic Velocities
in Polymethylmethacrylate

James R. Asav,* DoNALD L. LAMBERSON, AND ARTHUR H. GUENTHER
Air Force Weapons Laboratory, Kirtland AFB, Albuquerque. New Mexico 87117
(Received 26 August 1968)

The acoustic velocities in polymethylmethacrylate have been measured with an ultrasonic pulse-echo
technique as functions of frequency, temperature, and pressure. At atmospheric pressure, data on the
velocities and attenuation coefficients were obtained for the temperature range of 22°~75°C in the frequency
range of 6-30 MHz. For the measurements of velocity and attenuation as a function of frequency, the
complex adiabatic bulk modulus was calculated at room temperature and atmospheric pressure for the
above frequencies. At temperatures of 25°, 40°, 55°, and 75°C, the pressure dependence of the longitudinal
and shear velocity was determined to 150 kpsi at a frequency of 6 MHz. It was found that the measured
velocities under increasing pressure conditions were generally lower than those of decreasing pressure
by about 0.5%, for the longitudinal measurements and about 19, for the shear measurements. However,
measurements of the velocities at atmospheric pressure after the specimens had been exposed to 150 kpsi
were usually within 0.19, of the initial values. A discussion is presented which compares the continuity of
the present data with equation of state determinations in PMMA at elevated pressures.

INTRODUCTION

The high-pressure equation of state of solids, as
determined through ultrasonic techniques, has received
considerable interest in recent years, primarily because
of the accuracy with which acoustic velocities can be
determined. In principle, the determination of the
pressure and temperature dependence of the acoustic
velocities in elastic solids allows a direct determination
of the PVT surface over the ranges for which the data
are obtained. Anderson® has significantly extended this
technique by showing how the pressure dependence of
the velocities can be used to define the quantities
appearing in a semiempirical equation of state initially
proposed by Murnaghan.? Providing the material does
not exhibit phase changes over the region of interest,
Anderson shows that the Murnaghan equation thus
obtained can be used to estimate the pressure-volume
relation to pressures one or two orders of magnitude
higher than the range over which the ultrasonic data
were obtained. This approach has been applied to a

* Submitted in partial fulfillment for the degree of Master of
Science at the University of New Mexico.
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number of materials,'® with the remarkable result that
the equation of state as estimated from ultrasonic
pressure measurements over the range of about 3-10
kbars typically agrees to within a few percent of the
equation of state as obtained by standard compress-
ibility techniques to ~100 kbars or dynamic evalu-
ations to greater than 1000 kbars.

This method has not previously been applied to
polymeric materials, mainly because of the scarcity of
accurate pressure measurements of the acoustic
velocities in plastics. In addition, polymers generally
exhibit frequency dependent elastic moduli* and
volume creep under hydrostatic pressure® so that the
volume is a function of time as well as pressure.

Another problem specifically dealing with plastics
is that the elastic moduli generally are not linear
functions of either pressure or temperature. This
complicates the definition of an equation of state, since,

3]. R. Asay, S. R. Urzendowski, and A. H. Guenther, Ultra-
sonic and Thermal Studies of Selecied Plastics, Laminated Mate-
rials ond Metals (Tech. Rept. No. AFWL-TR-67-91, Kirtland
AFB, New Mexico, 1968).

4R. S. Marvin and J. E. McKinney, Physical Acoustics (Aca-
demic Press, Inc., New York, 1965), Vol. II, Pt. B, Chap. 9.

§ W, N. Findley, R. M. Reed, and P. Stern, J. Appl. Mech. 34,
895 (1967).



