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The potential on the surface of a semiconductor is formulated analytically as a function of surface charge
concentration by a double integration of Poisson’s equation in one-dimensional form. All combinations of
the types of semiconductors and surface charge have been considered, as they produce accumulation, deple-
tion, or inversion layers. The variation of diffusion potential as a function of distance from the surface
towards the interior of the semiconductor is also discussed.

INTRODUCTION

ANY authors have formulated relationships be-
tween the ion concentration on semiconductor
surfaces and surface potential or the variation of diffu-
sion potential with distance for some special cases,
but the completely general double integration using
boundary conditions appropriate for an electric charge
layer on a semiconductor surface has been performed
only with the aid of numerical methods. In this paper,
the potential change at the boundary between a semi-
conductor or an insulator and a gas or vacuum phase
is formulated analytically as a function of the concen-
tration of ionized donor or acceptor centers on a solid
surface of semiinfinite extent, for all combinations of the
types of semiconductors and the ions on the surface,
and the limitations of the analytical integration are
defined.

Aigrain and Dugas,! Hauffe and Engell,> and Weisz,?
all have derived relationships between surface ion con-
centration and surface potential. Mott,* Schottky,’
and Garrett and Brattain,® have discussed relationships
between accumulation, depletion or inversion layers on
semiconductor surfaces and surface potentials. Kingston
and Neustadter,” Dousmanis and Duncan,® Mowery,?
Young,!* Macdonald,"! Seiwatz and Green,* have used
numerical integration to calculate the space charge
and diffusion potential relationships. Bohnenkamp and
Engell® have derived an analytic expression relating
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the surface ion concentration to the surface potential for
accumulation layers on semiconductors. These last
authors have tacitly assumed that the semiconductor
has a semiinfinite extension, and applied Gauss’ law
to calculate the space charge. In this paper all these
derivations are placed in context as being representative
of certain special cases, and are mentioned in the
appropriate sections.

Many persons believe that the above literature repre-
sents an exhaustive analysis of this problem. However,
careful reading of these papers shows that they deal
only with simplified special cases, or consider only sur-
face potential or only diffusion potential, or present
their results in graphical form for only selected values
of the variables. By having analytic equations relating
diffusion potential to surface ion concentration by way
of the surface potential, the graphical representations
are not required. Furthermore the analytic expressions
can be used as a basis for additional theoretical deri-
vations relating surface and bulk properties, which
could not be carried out readily using the graphical
correlations.

In this paper the variation of surface potential as
functions of bulk carrier concentration and surface ion
concentration for accumulation layers on intrinsic and
extrinsic semiconductors is presented. The variation of
diffusion potential as functions of surface potential and
bulk carrier concentration is also presented for similar
conditions.

The analytic representation of the surface potential
as functions of surface ion concentration and bulk
carrier concentration is also given for the situations
wherein depletion and inversion layers on extrinsic semi-
conductors are formed. However, the resulting equation
is rather complex and can be simplified only for certain
values of surface potential relative to the bulk diffusion
potential.

Exact expressions for the variation of the diffusion
potential beneath the surface as a function of distance
can be obtained only if the surface potential is very
small (#,<0.9), or if x is very small (x — 0) over certain
values of surface potential relative to the bulk diffusion
potential. A general solution to this problem can be
obtained only by numerical integration methods.
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MODEL

Since Poisson’s equation represents the macroscopic
variations of the average potential inside a charged
crystalline solid over distances which are large in com-
parison to atomic dimensions, this model is valid only
for those situations in which the total potential varia-
tion extends over many atomic distances. The thickness
of the space-charge region has been characterized by a
screening length, which is also known as the Debye
length for an intrinsic semiconductor. Typically, this
screening length may vary from 1077 to 105 cm. By
assuming that the dimensions parallel to the surface
are much larger than the thickness of the space-charge
region, the one-dimensional form of Poisson’s equation
can be used. This covers the majority of cases wherein
the minimum dimension of the solid particle is equal
to or greater than 10~* cn. When the surface charge is
mobile the potential beneath the surface may fluctuate
in response to the motion of the charges. If this
surface motion is two-dimensionally random then
Poisson’s equation describes the time-average potential
beneath the surface. When the surface charge is im-
mobile, then the average distance between the indi-
vidual surface charges should be no greater than the
screening length in order to use the one-dimensional
form of Poisson’s equation.

In one-dimensional form the equation is

(V/RT)LPE(x)/da*]=[4mg’p (x)/ kT 1= 2L mp(x), (1)

where gp(x) =bulk charge density, positive charges/cm?;
[o(x) is at least a sectionally continuous function of x.
Note that this includes the case wherein there is a
surface charge.] E(x)=electron energy, eV; —(1/q) E(x)=
electrostatic potential at x, volts; e=dielectric constant,
dimensionless; ¢g=unit positive charge, 4.802X 10 esu;
x=distance into the bulk region of the semiconductor;
from the surface, cm; V(x)=electrostatic potential,
statvolts; and

Ly=2m¢*/ekT (in cm), (2)

which is a length, independent of charge concentration
and dependent only on the dielectric constant of the
material and the absolute temperature. The variable
of integration can be changed by defining
V(#)=[Ecz— Eo(x) J=[Eoz— Es(x) ]=[Eiy— Ei(2) ],(3)
u="Y (x)/kT=normalized diffusion potential,

(RT) units. (4)

The sign of Y (x) and « are then taken as positive when
the surface becomes more # type. Boundary conditions
for the integration can be defined as

u=1, at x=0, (3
u=0 du/dx=0 atx=o0, 6)

and electroneutrality across the surface requires that

- / p(@)dr=F = (5 D =¥ 84%), (1)

where ¢} =net positive surface charge, esu/cm?;
Dr+=ionized donors with valence state », donors/cm?;
A% =ionized acceptors of valence state 3, acceptors/cm?.

The summation is carried out for all possible » and 8
and includes both fast and slow surface states™ and
both components of any dipole layer which may exist
on the surface. Substitution of Egs. (3) and (4) into
(1) and integration gives

du *
0_(~) -2, / p@)dx=2Ln Ty, (8)
0 0

dx

where the result from Eq. (7) has been introduced.
Thisrelationship must be combined with other equations
yet to be derived to relate surface potential to surface
charge concentration.

The bulk charge density can be defined as

p(x)=(Na*)— (N )+p(x)—n(x), ©)

where (N,)=concentration of acceptor centers in the
bulk, acceptors/cm®; (Ng*)=concentration of donor
centers in the bulk, donors/cm?; p(x)=hole concentra-
tion at x, holes/cm?; and n(x)=electron concentration
at #, electrons/cm?, If it is assumed that the semicon-
ductor is in a nondegenerate condition, the Boltzmann
statistics are applicable and all donors or acceptors
are ionized, then the hole and electron concentrations
in the space-charge region can be written as:

p(x)=p5 exp[—V(x)/kT 1= ps exp(—u)

=piexp(—us) exp(—u), (10a)
n(x)=np exp[ ¥V (x)/kT ]=np exp u
=n; exp(us) exp(u). (10b)

When #;= p; then
p(@)=p(u)= (N4*)— (Na~)—2n: sinh(up+u), (11)

where up=3% In(ns/pp)=bulk diffusion potential, dis-
placement of the Fermi level from midband position.
The variable in Eq. (1) can be changed from x to %, and
Eq. (11) introduced to give

Pu/dx?=d/dx(du/dx)=du/dx(d/du) (du/dx)
=3d/dul (du/dx)*]= ~2L,p(u)
=—2Ln[(Ni*)—(N,")—2n;sinh(up+u)]. (12)

In order to investigate all possible interrelationships
between the charge on the surface and the electrical
nature of the semiconductor, it is necessary to consider
three groups of cases which increase in mathematical
complexity. The first group of cases can be defined for
surface donors or acceptors on an intrinsic semicon-
ductor. The second group of cases can be defined for
surface donors on an n-type semiconductor, and for
surface acceptors on a p-type semiconductor. In these
two groups of cases accumulation layers are formed
underneath the semiconductor surfaces. For brevity

1 J. Bardeen, R. E. Coovert, S. R. Morrison, J. R. Schrieffer,
and R. Sun, Phys. Rev. 104, 47 (1956),
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only the second group 1is considered in detail
since the first group can be obtained as a simplified
special case of the second.

The third group of cases can be defined for surface
donors on a p-type semiconductor or for surface ac-
ceptors on an #-type semiconductor, and is subdivided
into several cases depending on whether the surface
layers are depletion layers, intrinsic, or inversion layers.

Accumulation Space-Charge Regions on
Extrinsic Semiconductors

Either an n-type semiconductor with donor centers
on the surface or a p-type semiconductor with acceptor
centers on the surface can be considered. The first
situation is presented in detail so that the results for the
other case need only be summarized.

Case 1. Accumulation Layers from Surface Donors

In the case of an n-type semiconductor it can be
assumed that the acceptor concentration in the bulk
region is negligible in comparison with the donor con-
centration. An energy band diagram for this situation
is shown in Fig. 1. Integration of Eq. (12) gives

(du/dx)2=4AL {2n; cosh (up+u)

—2n; coshug— (NaHu} (13a)

and the hyperbolic functions in this equation can be
resolved through identities to give

(du/dx)*=4L n{4n; exp(us)[sinh(u/2) ]
+ 2@,-[1— exp(—u)] sinhug— (N4H)u}. (13b)

This equation now can be used as a basis for deriving
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the surface potential and the diffusion potential
relationships.

(a) The surface potential u,. Equation (13b) can be
evaluated at u=wu, and x=0, and the significance of the
second term on the right relative to the first term can
be investigated. Differentiation shows that the second
term has its maximum influence as the surface potential
approaches zero. However, when %, is small, then
[1—exp(—~#,) J~u, and the second and third terms
cancel. When #, is large then the exponentials in the
sinh? term dominate the expression. Therefore, by
neglecting the second and third terms and taking the
square root with the negative sign, (since % must de-
crease from a positive value to zero as x increases) the
result is

(du/dx)o= —4(L ,n )} sinh (u,/2).
By combining Eq. (14) with Eq. (8) the result is
sinh(u,/2)= (Lm/us)}(3_5")/2.

For an intrinsic semiconductor #s is replaced with »n,,
and this result has been derived by Bohnenkamp and
Engell.®?

Whenever the surface ion concentration is low so that
(#,/2)<0.9, and sinh(w,/2)~(u./2) then it can be
shown from Eq. (15) that

> (Ln/n) (Lh)

and the surface potential varies linearly with the
surface ion concentration. If (#,/2) is so large that the
hyberbolic sine can be approximated by an exponential,
then

Us= ln{ (Lm,/””) (ZD+)2}
=—upt+In{(L./n) 2. (A7)

These expressions for surface potential are very similar
to those which would be derived for the intrinsic semi-
conductor, except that the surface potential on the
n-type semiconductor is reduced by an amount equal
to the Fermi diffusion potential in the bulk of the
semiconductor %s.

(b) The diffusion potential u(x). To investigate the
diffusion potential #(x) the second term in Eq. (13b)
can be neglected as before. After taking the square root
with the negative sign, the variables can be separated
in this equation and the following transformation can
be used.

2dt/sinh2&=d§/sinh¢ coshg=d{In[ tanh(¢)]}. (18)
Integration using the boundary condition at x=0 gives
tanh (u/4)~tanh (u,/4) exp[ — 2x(L.ng)¥], (19)

where 3(L..np)}=screening length, and is equal to the
Debye length for an intrinsic semiconductor. This
equation is plotted in Fig. 1 for 1-2 cm Ge at 300°K.
For intrinsic Ge the Fermi level would be at the
midband position. Now #f % is large then the sinh?

(14)

(15)

(16)
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term is dominant in Eq. (13b), which again leads
to Eq. (19). Therefore, Eq. (19) is a fair approximation
throughout the space-charge region since sinh(#/2) is
a monotonically increasing function. If #,>>4, so that
tanh (u,/4)~1, then

tanh (u/4)~exp[— 2x (L n5)?]
and the variation of the diffusion potential with distance
is obtained.

When # becomes small such that tanh(u/4)~u/4,
then

(20)

w(x)~4 exp[—2x2(Lnnp)t]. (21)

Mott and Gurney'® have derived this equation to explain
the potential barrier which exists at the interface be-
tween two solids.

Alternatively, when # is large, then the sinh in Eq.
(13b) can be expressed as an exponential, and integra-
tion using the boundary condition at x=0 gives

u(x)=22 In[exp(—u/2)+x(Lang) I (22)

Equations (19) through (22) then represent the varia-
tion of the diffusion potential with distance- using
first-order approximations.

Case 2. Accumulation Layers from Surface Acceplors

In this case the energy band diagram is shown in
Fig. 2 for 2.1-Q cm Ge at 300°K. Since acceptors on the
surface tend to make the space-charge region become
¢ type, then the surface potential must be inherently
negative in this situation. Therefore, in order to deal
with positive values of the surface potential and the

diffusion potential in the equations, primed values are

defined such that

w=—u; u'=

(23)

When these substitutions are made and >~ is sub-
stituted for X 4%, the above equations represent the
situation adequately.

’
—Us; UB = —UB.

Depletion—Inversion Space-Charge Regions on
Extrinsic Semiconductors

In this group the combinations of a p-type semi-
conductor with donor centers on the surface, and an
n-type semiconductor with acceptor centers on the
surface are included. Since the mathematical treatments
are similar for the two situations, a complete analysis
will be given only for the p-type semiconductor, and the
equations for the other combination can be obtained
as indicated previously.

Case 3. Depletion—Inversion Layers from Surface Donors

The surface donor centers introduce mobile electrons
into the space-charge region. On a p-type semiconductor

15N, F. Mott and R. W. Gurney, Electronic Processes in Ionic
Crystals (Oxford University Press, London, 1948), 2nd ed., p. 176.
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then the space-charge region at the surface must become
less p type. However, the hole neutralization can pro-
ceed to the point where the surface becomes intrinsic,
or even 7 type. These changes, of course, depend on the
bulk carrier concentration and the ionized surface
donor concentration.

A criterion for these changes can be obtained by the
fact that at the intrinsic plane, p(x)=#n(x)=#n,;. At the
intrinsic plane, the sum of the mobile charge must be
equal to zero and the particular value of diffusion
potential %; is defined, so that up’=wu,=In(ps/nz)t.
When the surface potential is equal to the intrinsic
diffusion potential, then the outermost surface is just
intrinsic. Whether there is an inversion in the space-
charge region or just a depletion of majority carriers
depends on the relationship between the bulk hole con-
centration of the p-type semiconductor and the ionized
surface donor (in this case) concentration,

A generalized expression for the surface potential as
a function of surface ion concentration can be obtained
as before. Integration with respect to # gives

(du/dx)?=4L . { (N )u
+2n.[ cosh (u— uy’)— coshuy’]}.
By using hyperbolic identities this equation can also be
written as
(du/dxy=4L{ps[exp(—u)+u—1]
+nlexp(u)—u—17]}.
When Eqs. (24) are evaluated using the boundary condi-
tion at the surface and combined with Eq. (8) the
result is
Ln(Xot=pslexp(—us)+u,—1]
+nslexp(us)—u,—1],

(24a)

(24b)

(25a)
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or

(Lw/p8) rt)?=2 exp(—us")[ (#,—1) sinhup’

+cosh (u,—up’)—exp(—uzp’)], (25b)
or
(Luw/p8)(Ca)=2 exp(—us’)[u, sinh(us’)
~+cosh(u,—~up’)—cosh(up’)]. (25¢)

The Eqgs. (24) and (25) are exact expressions relating
surface potential and surface ion concentration as
functions of the bulk diffusion potential. Equation (25)
is plotted in Fig. 3 as curves (a) and (b) for values of
g’ equal to 6 and 3, respectively. However, these
equations are too complex to be analyzed in this form,
and it is necessary to make various approximations
and simplify the situation by defining a series of six
special cases. The six cases are case 3(a) : slight depletion
layer, 4.<0.9; case 3(b): moderate depletion layer,
0.9<u,<2; case 3(c): depletion—inversion layer, 2<u,
<2up'—1; case 3(d): slight inversion layer, #,=2uz’;
case 3(e): moderate inversion layer, (2up'—1) <u,<u,,
where a critical value of surface potential #%. must be
defined; and case 3(f): strong inversion layer, u.<u,.
In the first three special cases above, case 3(a), case 3(b),
and case 3(c), the surface either remains p type or just
becomes intrinsic or »# type.

AND D. R. MASON

Case 3(a). Slight Depletion Layer, u,<0.9

When the surface potential is less than 0.9(#,<0.9),
then the exponentials in Eq. (25a) can be expanded in
series form. The result is

[ 2Ln/ (prtns) F(EGh) <0.9. (26)

The surface potential then varies linearly with surface
charge concentration. This is plotted in Fig. 3 as curve
(). In most practical cases the surface potential can
be small only when the denominator in Eq. (26) is
large, so that the minority carrier concentration #p can
be neglected, and the bulk diffusion potential up’ is at
least greater than 2.0(uz">2.0).

In order to evaluate the diffusion potential Eq. (24a)
must be simplified by expanding the exponentials and
integrating by using the boundary conditions at the
surface. The result is

u=u, exp{ —x[2L.(p5+nr) I}}. (27)

Case 3(b). Moderate Depletion Layer, 0.9<u,<2
In this case, Eqgs. (25) cannot be simplified readily

~and a graphical solution is required in order to find the

exact relationships between surface ion concentration,
surface potential, and diffusion potential.

A good approximation can be obtained from Eq.
(25a) if u5'>2, so then the np term can be neglected.
The result can be written in series form as

> (= D)r(1/nu= (Lo/ ps) (St

n=2

(28)

This is implicit in #,, but could be solved by trial and
error. In this region of u,, the denominator increases
more rapidly than the numerator and each pair of
terms is always positive.

Case 3(c). Depletion-Inversion Layer,
2<M3S (2143’_ 1)

When the surface potential u, is greater than 2,
(us>2), and up’ is correspondingly larger then Eq.
(25b) can be evaluated to give

#y=[Ln/(Na) U+ 1. (29)

This relationship is valid even if the surface becomes
intrinsic or inverted, as long as #,<(2up’'—1), and is
plotted as curve (e) in Fig. 3.

In order to find the diffusion polential in the neighbor-
hood of x=0, when u5'>2.0, then the square root with
the negative sign of Eq. (24a) reduces to

du/dx=—2[Ln(N,) Pu—11 (30)

Since Eq. (30) is applicable for the neighborhood of
x=0, it can be integrated for small values of x extending
from the surface. Therefore,

(w—1)r= (u—1)i—[L,,(N,) Jbx. 31
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Substitution of Eq. (29) into Eq. (31) with rearrange-
ment gives

u=14+[Lnps {(Xg")/p5—=}". (32)

This equation indicates that the diffusion potential is
not exactly a simply parabolic function of distance as
predicted previously by Mott* and Schottky,> and this
formulation represents a better approximation near
the surface.

For u (x) in the neighborhood of unity, as x extends
into the interior of the solid, Eq. (24) must be re-
evaluated and simplified again before performing the
integration. The significant term then is pp exp(—u),
and taking the square root with the negative sign gives

du/dx= —2(Lnpr)t exp(—u/2). (33)

The variables in Eq. (33) can be separated, and inte-
gration gives

exp(u/2)= (const)—x(Lnpz)} (34)

but the integration constant cannot be readily evalu-
ated. However, an approximation could be made by
matching slopes, ie., equating Egs. (30) and (33)
solving for a particular value of #* and, therefore, x*
from Eq. (31), and using this as a boot strap technique.

For values of x approaching infinity, such that u(x) is
very small and approaching zero, then the exponentials
in Eq. (24b) can be expanded in series form. Therefore,
taking the square root of the resulting equation with
the negative sign, as before, gives

du/dx= —[ZL,,,(?B—I—?’LB)]*’M&—[ZLmPB]’}u (35)
The variables can be separated and integration gives
u=(const) exp[ —x(2L »p5)}] (36)

but again the integration constant cannot be evaluated
readily, although the slope matching technique could
be used with Eqgs. (33) and (35). This equation has the
same general form as Eq. (27), which was obtained for
the diffusion potential under conditions of a slight de-
pletion layer. Therefore, it seems that the addition of
surface charge adds to the curvature of the diffusion po-
tential curve rather than changes its form substantially.
It can be seen that the dependency of # goes from a
complex parabolic relationship through a logarithmic
relationship to an exponential relationship.

Case 3(d). Slight Inversion Layer, v,=2ug'

This is a special case which normally would not be of
significant interest, except that the results obtained in
this case have been previously derived by previous
authors. In this case the adsorbed ion concentration
must be such that #,=2u3z’, so that the surface is in-
verted and the magnitude of the inversion is equal to
the bulk diffusion potential. When this substitution is
made into Eq. (25¢) it reduces immediately to

te=[Ln/(Na) L 220" P 37

This equation has been derived previously by Aigrain
and Dugas,! by Hauffe and Engell,? and by Weisz®
using a different model and different boundary condi-
tions. It is plotted as curve (f) in Fig. 3, where it can
be seen that the true parabolic relationship between u,
and (3_g") is strictly valid only at one point since the
exact curve crosses the simple parabolic curve with a
different slope. On the other hand the parabolic relation-
ship between surface ion concentration and (#,—1)
in Eq. (29) (curve e) is valid over a considerable
range of u,.

To find the diffusion potential the following regions
can be distinctly defined. In the neighborhood of x=0,
where u>2ug’, then Eq. (24) can be reduced to

du/dx=—2(L M)t (38)

Integration of Eq. (38) using the boundary conditions
at the surface gives

wt=ut—x(L,N,)}
=L NNMEH/ (Va)—=z]  (39)

This is the well known Mott*-Schottky® region. Garrett
and Brattain® have discussed Eq. (39), but mistakenly
state that there is not yet an inversion in the space-
charge region.

The variation of the diffusion potential farther
beneath the surface is defined in form by the relation-
ships previously derived, with appropriate changes in
the distance parameter, which cannot be precisely
defined.

Case 3(e). Moderate Inversion Layer, (Cup'— 1) <wu,<u,

In this case the surface potential %, is greater than
2ug’ but less than some critical value #,. Equation
(25a) can be evaluated at the surface using the restric-
tion that exp(#,)>>u., and, therefore, exp(—u,)<<1. It
follows directly that

(Lw/p8)(Cat)’= (w,—1)+exp(—2us"+u.). (40)

When #%, becomes sufficiently greater than 2up’ the ex-
ponential dominates the right hand side of Eq. (40) and
a critical value of surface potential, %,, can be defined
from the relationship

np exp(ue)={pp(u.—1). (41)
When { =20, the linear term accounts for less than 5%,
of the total value. In this situation, when up'=1, then
#.=6.75; when up'=2, then wu,=9.08; and when
ug'=3, then u,=11.35. Therefore, when «, is less than

4., Eq. (40) must be solved graphically or by a trial
and error.

Case 3(f). Sirong Inversion Layer, u,>u.

When the surface potential exceeds the critical value
u. defined above, then Eq. (40) becomes

2= In{(Ln/nr)(2_g")?}

=2us'+In{(Ln/p5) (Xt} (42)
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This equation is plotted in Fig. 3 as curves (c) and (d)
for ug’ equal to 6 and 3, respectively.

To find the diffusion potential under these conditions,
the square root of Eq. (24a) with the negative sign gives

du/dx=—2(L..np)* exp(u/2)
=—2(Lmpr)* exp(—us) exp(u/2). (43)

Integration from the surface of the semiconductor
into the interior gives

u=—2In{exp(—u./2)+x(Lwnp)}.

This is equal to Eq. (22) which was derived for case 1,
an accumulation layer on an #-type semiconductor.
When it is realized that now the substrate is a p-type
semiconductor, then this equation can be rearranged
to the form

u=—2 In{exp(—u./2)+x(Lapr)! exp(—uz)}.

These relationships are valid as long as #,>u., and
indicate a similarity in surface behavior between an
accumulation layer and a strong inversion layer.

(22)

(44)

Case 4. Depletion—Inversion Layers from
Surface Acceptors

As has already been observed in cases 1 and 2, there
is a symmetrical relationship between the results which
are obtained when a p-type semiconductor is replaced
with an #-type semiconductor, and surface donors are
replaced with surface acceptors. The surface potential
and bulk diffusion potential can be expressed with the
equations already derived by changing from an electron
energy reference to a hole energy reference, and making
the appropriate changes in the majority carrier and
surface ion designations.

DISCUSSION

The variation of surface potential as functions of bulk
carrier concentration and surface ion concentration
have been represented by analytic functions for accumu-
lation layers on intrinsic and extrinsic semiconductors.
The variations of diffusion potential as functions of
surface potential and bulk carrier concentration have
also been represented by analytic functions under
similar conditions.

Furthermore the analytic representation of the sur-
face potential as a function of surface ion concentration
and bulk carrier concentration for the situations wherein
depletion and inversion layers on extrinsic semicon-
ductors are formed has also been given. However, the
resulting equation is rather complex and can be simpli-
fied only for certain values of #, relative to «p’. This
was done by defining a series of special cases which
provided considerable insight into the functional rela-
tionships, and some of the relationships have already
been plotted in Fig. 3.

Figure 3 also shows that #, can be approximated by a
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linear function from #,= (uz’'—1) to u,= (2us’+1) of
the form

u,= (slope)[ (Ln/p5) (X *)]— (intercept). (45)

This linear function is found by constructing the tan-
gent to the curve defined by Eq. (25¢) at its point of
inflection. By taking the first and second derivatives of
this function, with respect to the surface ion parameter,
the point of inflection #,* for a fixed value of up’ can be
found by trial and error solution of the relationship

[sinh#p'+sinh (u,*—u ") ?=2 cosh(u.*—uz’)

X{u,* sinh(up')+cosh (u,*—up’)—cosh (up’)}. (46)

The corresponding value of [(L./ps)* (5 T* can be
computed from any form of Eq. (25) and the slope
through the inflection point then is given by

L(Lwm/pa) () I* expus’

sinh (#p")+sinh (u,*—up") )

(slope) = (47)

These results are plotted as curves (h) and (i) in
Fig. 3 for s’ equal to 6 and 3, respectively.

The variation of the diffusion potential beneath the
surface for depletion-inversion layers can be expressed
as a function of distance only if %, is very small (#,<0.9)
or if x is very small (x — 0) over certain values of u,
relative to #p". A general solution to this problem can
be obtained only by numerical integration methods.
Approximations could be made by extending the
analytic functions through the transition regions and
evaluating integration constants by matching the slopes.

In order to illustrate the minimum surface ion con-
centration for which these derivations should be ex-
pected to be valid, consider 1-Q cm p-type germanium
at room temperature. The screening length is equal to
1/[2(Lnpp)t], as obtained from Egs. (19) or (27) and
is about 5X107% cm. Therefore, since the average dis-
tance between the individual fixed surface charges
should be no greater than the screening length, the
surface ion concentration of localized ions must be
greater than 10" ions/cm? If the ions are mobile, then
the equations presented here are valid even for much
lower surface ion concentrations.

A direct experimental evaluation of the validity of
these relationships is extremely difficult if not im-
possible, and the authors know of no such definitive
direct experimental measurements. A direct substan-
tiation of these equations then is possible at the present
time only by comparing graphical results obtained by
using the equations derived herein with graphical
results published from numerical evaluation of the
integrals. Equation (19) relating the diffusion potential
to distance and surface potential for an accumulation
layer on a p-type semiconductor has been checked
against Figs. 4-8 published in the paper by Young,*
and the results agree within the precision of the pub-
lished curves. A check of Egs. (19), (26), (29), and
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(42) relating surface ion concentration, surface po-
tential, and bulk conductivity for accumulation, de-
pletion and inversion layers have been checked against
Fig. 1 of Mowery’s paper,® again giving results within
tha ability to read the published curves.

An indirect experimental check of these curves is
considerably easier to obtain.

By integrating the diffusion potential relationships
from u, to zero over an accumulation layer, the surface
conductivity can be computed. By carrying out such

an integration and comparing results with published
experimental work, satisfactory agreement is obtained,
and this work will be reported soon.!®

The work function and electron affinity of a semi-
conductor are functions of the surface ion concentration,
and these effects also will be discussed soon in a separate
publication.!”
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The periodic Schottky deviations have been obtained for photoelectric and thermionic emission in the
[111] direction from a tungsten single crystal in a dual experiment. The thermionic deviations, compared
with well-established experimental results and theory, serve as a check on the photoelectric work. The photo-
electric deviations, not previously established experimentally in detail, are compared with theory. A com-
posite theory, using Cutler-Gibbons thermionic parameters in Juenker’s photoelectric analysis, is in best

agreement with the experimental photoelectric results.

The photoelectric deviations are in fair agreement in period and phase with the thermionic deviations, the
agreement being better at the larger applied electric fields (corresponding to the earlier time of a run) tha
at the smaller field values. The photoelectric deviation amplitude is 1.7% at E*=350 (V/cm)t. :

1. INTRODUCTION

ERIODIC deviations from the photoelectric

Schottky curve!™ similar to the well-known
thermionic Schottky deviations*—7 have been predicted
but have not been established experimentally in detail
for pure metals because of difficulties peculiar to the
photoelectric experiment. Photoemitting surfaces at
room temperature are difficult to maintain free of ad-
sorbed gas, and available photocurrents are several
orders-of-magnitude smaller than thermionic currents,
as ordinarily obtained, so that their delineation from
unavoidable background currents is difficult. Juenker
et al.®? recently reported inability to detect periodic

* Based on a dissertation submitted by D. F. Stafford in partial
fulfillment of the requirements for the degree of Doctor of Philoso-
phy in the Department of Physics of Saint Louis University. The
work was supported in part by the U. S. Office of Ordnance
Research and the Research Corporation.
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photoelectric deviations for single-crystal molybdenum
and polycrystalline tantalum.

The difficulties were especially considered in the
design of the experimental research tube and periodic
Schottky deviations, both photoelectric and thermionic,
were obtained with a single-crystal tungsten emitter in
the same experimental tube under conditions as identi-
cal as possible. Thus an experimental correlation be-
tween photoelectric and thermionic Schottky deviations
for tungsten is obtained and compared with theory.

The theory of Schottky deviations involves the
calculation of field-dependent transmission coefficients
for electrons escaping over the mirror image-applied
electrostatic field potential barrier at the emitting
surface. Although the basic theory has not changed
since the original work of Guth and Mullin® the formu-
lation in terms of period, phase, and amplitude of the
deviations has been altered*!%! to achieve expressions
more suitable for analysis and comparison with experi-
ment through the use of the parameters x| and 8. The
more recent formulatiors of the theory have included
different potential barrier shapes (notably Cutler—
Gibbons?), and involve computational approximations
which vary somewhat in the several treatments.
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