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The inhibition of instability of a viscous fluid contained in a circular cylinder and heated from
below by an electric current is investigated. Previous results indicate that, for a thermally noncon-
ducting wall, the critical Rayleigh number is 452.1 for symmetric convection, and 67.9 for the first
(and ecritical) mode of unsymmetric convection. It has been found in this investigation that unsym-
metric convections can be delayed or completely inhibited by an electric current, whereas symmetric
convection is not at all affected. This indicates a very interesting physical situation at Rayleigh
number 452.1, for an electric current just strong enough to inhibit unsymmetric convection. If the
current is slightly increased, only symmetric motion will oceur. If it is slightly decreased, unsym-
metrie convection, being more unstable, will prevail. Thus the physically significant solution of a
differential system may have a sudden change of behavior at certain critical values of its parameters.

I. INTRODUCTION

LTHOUGH it is well known that the presence

of a magnetic field often inhibits the onset of
hydrodynamic instability, the great variation of the
effectiveness of the inhibition with the mode of
instability has not been widely recognized. The
purpose of this paper is to present a striking example
showing the great difference in the effectiveness of a
circular magnetic field in inhibiting different modes
of instability of a viscous fluid heated from below.
The fluid is contained in a circular cylinder, and in
its quiescent state has an adverse linear temperature
gradient. At sufficiently large Rayleigh numbers,
convection will occur, with the incipient Rayleigh
number varying widely for different modes of con-
vection.! If an electric current is allowed to pass
longitudinally through the fluid, a circular magnetic
field is created, and it can be expected that this field
will inhibit or delay any hydrodynamic instability
that would otherwise occur. It turns out that,
although it does inhibit or delay all unsymmetric
modes of convection with different degrees of effec-
tiveness, it does not affect axisymmetric convection
at all. Since the fluid is most unstable for the first
unsymmetric mode, the interesting situation arises
that, for the Rayleigh number 452.1 (critical for
axisymmetric convection), at a certain critical value
of this current axisymmetric convection and the
first mode of unsymmetric convection can start
simultaneously, and that for a current stronger than
the critical one only axisymmetric convection can
occur, whereas for a current weaker than the critical
one the first mode of unsymmetric convection will
prevail. Thus, this paper presents an example of

1 C.-8. Yih, “Thermal instability of viscous fluids,”” Quart.
Appl. Math. (to be published).

how the behavior of the physically significant
solution of a differential system can change abruptly
at certain critical values of the parameters of the
system.

II. GOVERNING EQUATIONS

Specifically, one considers a viscous fluid con-
tained in a cylinder of radius b and with a mean
temperature decreasing linearly with the vertical
distance. If cylindrical coordinates (r, 8, z) are used,
and if z is used to denote the vertical distance along
the axis of the cylinder, the mean-temperature
distribution considered is

T.=T,+ 82, (1)

in which T, is the temperature at the level from
which z is measured, and 8 is the temperature
gradient, assumed to be negative. The mean density
is then

pm = poll — afz), 2

in which p, is the density at z = 0, and « is the co-
efficient of volume expansion. The hydrostatic
pressure distribution is given by

apm/ dz = (3)

with ¢ denoting the gravitational acceleration. As
shown by Hales,” Taylor,® and Yih," for a given fluid
and a given geometry the fluid configuration is
unstable for a sufficiently large adverse temperature
gradient. It is the express purpose of this paper to
show the manner in which a longitudinal electric
current through the fluid inhibits or delays the

- gPO(l - aBZ) 2

2 A. L. Hales, Monthly Notices Roy. Astron. Soc., Geophys.
Suppl. 4, 122 (1937).

#8ir Geoffrey Taylor, Proc. Phys. Soc. (London) B67,
857 (1954).
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thermal instability that would otherwise occur.

If the density of the electric current is denoted by
Jo, the strength of the circular magnetic field is given
in cylindrical coordinates by

H, = 2rj,r, 4)

since the curl of the magnetic field is equal to 4w
times the current density. In order to proceed with
the analysis, it is necessary to present the equations
of motion and the equations of magnetic diffusion
in eylindrical coordinates. Although these equations
are known, it seems that they have never been
systematically derived before. In the following
paragraph, the well-known vector forms of these
equations in Cartesian coordinates will be given
first, which will then be written in general coordinates
in a tensorially correct form. The desired equations
in cylindrical coordinates then follow in a straight-
forward manner.

The vector equation of motion is, in Cartesian
coordinates,
p—g—: = —grad (p_”' + é’—:; |H|2)

&)

pHH

+ pg + Vv + div

in which v is the velocity vector, r is the time, g is
the gravitational acceleration, p is the magnetic
permeability, H is the (solenoidal) magnetic field
strength, D/Dr signifies substantial derivative, and
the other symbols have their usual meanings. The
“diffusion equation’” for the vector H is

H _ ol (v x H) + 1V'H, ©
in which % is the magnetic diffusivity. In general
coordinates z°, with 4’ and u, denoting the contra-
variant and the covariant velocity vector, and H*
and H,; the contravariant and the covariant mag-
netic field vector, Egs. (5) and (6) assume the forms
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7

Dz
ia D 8 I IHV)
. D [ (Du Du )]
Ba ¥ Wy
+g DY’ g Da” + Dz*
+ * e ZEIL

4 Dz’

CHIA-SHUN YIH

§_I_I_=Ha_Di_.

« DH'
u* =
ar Dxa

Dz*

Dx’ I:'r;g Dz’ + Dz*

In these equations ¢° is the contravariant vector for
the gravitational acceleration, ¢ is the velocity
dilatation, A has the usual meaning, ¢’/ is the
contravariant fundamental tensor (or metric) for
the coordinates, D/Dx’ signifies covariant differ-
entiation, and the summation convention has been
used. The last term in Eq. (7) corresponds to that
in (5) because the divergence of the magnetic field
is zero.

In cylindrical coordinates (r, 8, 2),

®
+ ¢

gn = gll = (33 = 933 = 1,

go2 = 1%,
g =r7 g, =0 for 1#j.
With (u, v, w) and (H., H,, H,) denoting the physical
components of the velocity and the magnetic field

strength, the equations of motion are, with g acting
in the direction opposite to that of z,

(D_u_’f)__éx
Dr r/

2 9
+pV(V2u-—:,iz—;§5-v) 9
L ;DH,__HQZ)
+41r Dr r /'’
Dy uv)___l__al
(Dr+ o roe
29
+’”’(V2”_ st a%) (10)
N iDHa HTHg)
+47r( 7'+ r !
Dw 3 u DH,
P D= —m eV LR D
in which (with D/Dr redefined)
2
X =P )\0,_{_#2[;11!,
" (12)
D—_—-— JE— -
Dr-oar T Y +7'60+ oz’
»_ & 10 18 &
V=t ratrwta (13)
O _pyg o, Hoo 9.
5-;=H'6r+ r 60+H’az (19



HYDRODYNAMIC INSTABILITY

The equations of magnetic diffusion are

DH, _ Du 2 _H.:__?_Q_Iﬁ)
o= etdvr - -2, o
DH, . vH, Dv | Huu
Dr T Tt
(16)
oy 2 9H, )
+ ‘*?(V H, 2 + ?’2 EY
DI _ vy o a7)
The equation for thermal diffusion is
2L~ wr, (18)

with V? given by (13) for cylindrical coordinates
and x denoting thermal diffusivity. The equations
of continuity are

3(?‘:'&) + % + a(?”w) =0, (19)
a(TH,) @_Iiﬁ B(THz) —
"o tae t e =0 20

With the disturbances in temperature, pressure,
and density denoted, respectively, by 7", 9, and p/,
and the disturbance in the magnetic field denoted
by (h., hs, h.), one has

T = Tm+T’; P=Pm+}0'y p = pm-—{»p', (21)
H = (h,, 2njor + hy, h,). (22)

If Egs. (2), (21), and (22) are substituted into (9)
to (20), and if all quadratic and higher order terms
involving « (assumed small) and all disturbance
quantities are dropped, then since the mean quanti-
ties satisfy the equations separately, the equations
to the first order are

du u 2 dv
tene-22)
at Y (23)
3h
+ Q(é() ) ’
v 1dq ( 2 au)
- = —=== 4 Pr V v — + 2
at r 08 of (24)
+ Q(ah" + 2h )
_Z _
at + Pr Vw PrRe-!-an, (25)
h, _ o o by _ 3 oh)
ot = o7 + (V TP Fee ) (26)
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b o 2y 2 (g, 2O @)
ahz ow n 2
at - 0 + X V hz7 (28)
9 4w=ve (29)
ar
A | 0 o0, (30)
arh,) | 8hy , 8(rh,) _
ar + EY) + 9 0, 31)

in which all distances (r and z) are now measured in
terms of b, all velocities in terms of x/b, all A’s in
terms of jb, V? is now dimensionless, and

20°(p" — NO0") + wjorhe

. 2
t = rx/b", qg= W
(r and h, dimensional),
42
Pr (Prandtl number) =y/x, Q = L?"Z, ,
2p0K
4 ’
R (Rayleigh number} = — 9o’ , 0 = T,
VK B8b

II1. AXISYMMETRIC CONVECTION

For axisymmetric convection all physical quanti-
ties are independent of 6, and from the forms of
Egs. (24) and (26) to (28) the quantities v and the
ks will eventually be damped out. The equation
governing the diffusion of k. is, for axisymmetry,
identical with that for heat conduction in solids.
Now if h, is zero at infinity or if it is zero at large
radial distanees but is periodic longitudinally, con-
duction through several media (the fluid in the
cylinder, the wall, the fluid or air outside of the
cylinder) must reduce it to zero everywhere beeause
there are no internal sources, as indicated by Eq.
(28) for axisymmetry. As for k, and k,, the equations
governing their diffusion are the same as that for the
swirling velocity of a viscous fluid moving axisym-
metrically. True, there are three media, and the
value of 5/x varies from medium to medium, but if
h, and hs are zero at infinity or if they vanish at
large r but are periodic in 2z, the eventual vanishing
of h, and h; is evident from the physical point of
view. If h, is zero, then for axisymmetry equation
(24) is the equation for axisymmetric swirling motion
of a viscous fluid in the absence of a magnetic field,
with the boundary condition that v is zero at r = 1.,
If v is zero at large absolute values of z or if it is
periodic in 2, again it must vanish everywhere
eventually.
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The mathematical substantiation of the foregoing
physical arguments is simple. Since the case of h, is
similar to that of k,, the case of h, is simpler than
that of &,, and the vanishing of » follows from that
of h, for axisymmetry, a mathematical proof of the
vanishing of h, only will suffice. If the outer radius
of the cylinder in terms of the inner radius b is ¢ (so
that the wall thickness is bc — b), the quantity »/x
for 1 < r < ¢ will be denoted by (5/«),, and that
for ¢ < r will be denoted by (n/k),. For periodicity
in 2, the region to be considered is, with ! as the
dimensionless period in the z direction,

0<Lr, 0<z2<1.

For h, vanishing at all points at infinity, the entire
space is the region under consideration. Since the
demonstration is quite the same, only the periodic
case will be presented. For axisymmetry, Eq. (26)
is, with @ = 2/l as the wave number and D for
a/or,

oh,

oh, _ (oo _ﬁz>:2< 1 z)
at—K(Vh, 3 p DrDr a‘)h.. (32

Multiplying Eq. (32) by «rh,/n and integrating for
the fluid in the cylinder, one has

2 goe [ (1 L)
atz,,_fo . Drh,) de

(33)
1 1
— f f [1 (Drh.)* + ah] dr dz,
o Jo r
in which
P { 1
I, = —f f rh,? dr dz.
nJo Jo
Similarly,
1 ¢
gill - f (h,lprh,) dz
0 r 1 (34)
4 ¢
_ f f [} (Drh,)’ + a:'hﬁ] dr dz,
0 1
f4 @
—:—tlz - f <h % Drh,) dz
0 ¢ (35)

1 ©
_ f f B» (Drh,)? + ath] dr dz,
0 c

in which
14 ]
I, = (5> f f rh,? dr dz,
N/ w 0 1

7 @
I, = (5) f f rh,? dr dz.
/0 Jo ¢
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Since h, is zero at r = 0 and at r = «, addition of
Eqgs. (33) to (35) yields, if A, # 0,

gz (I, + I, + I,) = negative definite,

Since the I's are positive definite for h, # 0, this
equation means that A, must eventually vanish.
Similarly, », ks, and h, must eventually vanish.
From Eqgs. (23) to (31) it can then be concluded
that a longitudinal electric current does not affect
at all the stability of a fluid heated from below with
respect to axisymmetric convection. This is perhaps
not surprising, because, loosely speaking, the
magnetic lines are not ‘“cut”’—only enveloped—by
the motion of the fluid.

The Rayleigh number R for axisymmetric con-
vection in the absence of a magnetic field was first
found by Hales” to be 452.1. Hales’ numerical results
indicate that this critical Rayleigh number corre-
sponds to zero wave number of the disturbance—a
fact later analytically proved by Yih.'

IV. CONVECTION WITH ZERO WAVE NUMBER

Although only for axisymmetric conveection has it
been proved that the most unstable disturbance is
that with zero wave number, the same situation can
be assumed to prevail in other modes of convection.
In fact, Taylor® has tacitly assumed this situation to
be true for the first mode of unsymmetric convec-
tion, and has found what is truly the critical Rayleigh
number—67.9. The critical Rayleigh number for
the second mode of unsymmetric convection,
assumed to correspond to zero wave number, was
found by Yih' to be 329.1. It seems reasonable to
assume that the critical Rayleigh numbers for the
various modes will still correspond to zero wave
number even in the presence of a circular magnetic
field created by the electric current, and to in-
vestigate the stability of the fluid in this field for
zero wave number.

For zero wave number all physical quantities are
independent of z. Furthermore, v and v can be
assumed to be zero. Since Eq. (31) becomes

dhs/30 = —a(rh,)/or,

Eq. (26) can be written in terms of h, alone, and by
the method of Sec. II it can be shown mathe-
matically that A, must eventually vanish. Then
Eq. (27) becomes the same as that for axisymmetric
convection and the result of Sec. III shows that &,
must also vanish. However, A, will not vanish because
w now depends on 8. The governing equations are
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then Eqs. (25), (28), and (29), with d¢/9z equal to
zero in (25).
The boundary condition for the flow is that

(36)

The thermal boundary condition is, if the wall is a
poor* heat conductor,

30/dr = 0 at r = 1.

w=0 at r=1.

37)

If the boundary is a much better conductor of
electricity than the fluid, then the 6 component of
electric field strength along the wall must be zero,
so that in the fluid

jﬂ = O:
or, since
o _ ok _ _oh,
=% T o T Tar

(38)
dh,/or = 0 at r = 1.

The case of a thermally insulated wall which is a
good conductor (circumferentially) of electricity may
seem to be artificial. But it can be realized by a thin
shell of copper in the inside of a glass tube, for
instance. The wall will be insulated (thermally or
electrically) radially but not circumferentially. If
the boundary is a poor conductor of electricity as
well as of heat, then at the wall

10h,  Ohy

=22 S

e " e T

or, since 0h,y/9z is zero for zero wave number and
unsymmetric convection is expressly under con-
sideration,

h,=0 at r=1.

With the substitutions (n =
(w, 0, h,) = [W() cosnd, {(r) cosnb, hir) sinnb], (40)
Egs. (25), (28), and (29) become (with D = d/dr),

under the assumption of the so-called marginal
stability,

(39)

integer)

1 z) _ nQ
QMD—ﬁW—m—Hm (41)
2
1 (1 DrD — @i)h = 2mW, (42)
K \r T
1 z) _
<r DrD—"5)f =W, (43)

* The linear temperature gradient may be maintained by
a wall which is an excellent heat conductor with an imposed
linear temperature distribution, but this is a rather artificial
case. We do not wish to discuss this case though it can be
treated readily enough.
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The boundary conditions are either
W =0, Df =0, Dh =0 (44)
(wall perfect electricity conductor) at r = 1,
or
W =0, Df =0, h=0 (45)

1.

(wall poor conductor) at r

It is understood that at » = 0, W, f, and A must not
be singular.

For the first set of boundary conditions, one can
simply take

b= 2mnkf , (46)
n
and the differential system then becomes
1 n’ .
;DrD—;gW:(R—nQ)f, (47)
2
(rl DrD— %)f - W, (48)
with boundary conditions
W=Df=0 at r=1 (49)
and
442
@ =Th (50)
Po¥7

Now the system consisting of Eqs. (47)-(49) has
been solved for n = 0 by Hales,” for n = 1 by
Taylor,” and for n = 0, 1, and 2 by Yih.' The
results are, mutatis mutandzs,

R = 452.1 for n =0,
R—- @ =679
R —4Q’ = 329.1 for n = 2.

for n =1,

From these results it can be seen that n = 2 cannot
be a critical case. Whether n = 0 or n = 1 is the
critical case now depends on @’. If @’ is larger than
384.2, any instability that occurs must necessarily
be axisymmetric. If @' is less than 384.2, unsym-
metric convection (n = 1) will set in first, before
any axisymmetric convection is possible. There is
thus a sudden change of fluid behavior at R = 452.1
and @’ equal to 384.2, at which the two modes of
convection (n = 0 or 1) can set in simultaneously—
a most interesting situation. A plot of the critical
Rayleigh number against @’ is shown in Fig. 1.

The most realistic case is the one in which the wall
of the cylinder is insulated both thermally and
electrically, so that the boundary conditions are



130
600 ]
500 — R-452) T
400 J
R R=0Q - 679\ | <
300 !
| o
200 .l !
o L1 |
LT |
0 100 200 300 400 500 600
q

Fig. 1. Variation of critical Rayleigh number with ', the
wall being a perfect conductor of electricity.

given by Eqgs. (45). Substituting Eqgs. (42) and
(43) in (41), we have

LW — SW =0 (51)
with

S=R-n¢Q, L,=

= =

Dr D — (B’ /¥%).

The solution of (51) that satisfies the condition
W = 0 atr = 1 and is nonsingular at r = 0 is

W = Ai[J,G8HT (St — J(SHT.GESH)]. (52)

This expression for W can be substituted in Eq.
(42), which can then be solved for h. The solution
satisfying the condition h = Q atr = 1is

_ _47rnx 34 - 1
h = ——— S8 A"[J,(28)J.(8%) (53)
+ J(SHJ.GS) — 2J.(8HT.(GS8Hr").
500 T T
T R=4521
400
300 o (54)>
/
R 7
200
//
100 l
0 400 800 1200 Q@ 1600 2000 2400

Fi1c. 2. Variation of critical Rayleigh number with €, the
wall being a poor conduector.
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Equations (562) and (53) can then be substituted in
(41) to find f. If one now demands that the resulting
expression for f satisfy Df = 0 at r = 1, and that
the solution be not identically zero, one arrives at
the secular equation (after utilizing some known
relationships of the Bessel functions and their
derivatives),

2n(8 — 2R)J.(8HJ.(28h)
+ SR[J,-1(SHJ.GSY)
+ iJ . (18HJ(SH] = 0.

This equation is solved numerically for the most
important case of n = 1. The procedure is as follows.
Assuming S, one can solve (54) for R straight-
forwardly, and then compute @' from S and R. The
resulting €’ is plotted against R and the relation-
ship between @’ and R for zero wave number is
given approximately in Table I. At R equal to

(54)

TaeLE I. Relationship between ¢’ and R for zero wave
number.

Q" 0 104 208 303 412 480 558 749 1132 1290 1465 1762
R 67.9 99 127 153 181 197 217 261 343 375 410 466

452.1, @' is equal to 1682. This is the transition (or
critical) value for @' at which axisymmetric and
unsymmetric (n = 1) convections can set in simul-
taneously, and above which only axisymmetric
convection is physically possible. A plot of the
critical Rayleigh number against @' for an elec-
trically and thermally insulated boundary is shown
in Fig. 2.

V. CONCLUSION

The foregoing investigation shows clearly that a
longitudinal electric current favors axisymmetric
convection, with clear-cut laws of favoritism, and
that the physically significant solution of a differ-
ential system may change its behavior abruptly at
certain critical values of its parameters.
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