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A plane electromagnetic wave is obliquely incident upon a plasma layer of finite thickness, where
the equilibrium plasma is taken to be homogeneous and isotropic. The electric vector of the wave is
assumed polarized in the plane of incidence. The specular boundary condition for the distribution
function is employed and an exact solution of the coupled Maxwell-Vlasov equations is derived as an
expansion in normal modes, yielding coupled tranverse and longitudinal waves in the plasma region.
Temperature effects on the reflection coefficient are investigated.

I. INTRODUCTION

Recently Weston' presented a new solution for
the problem of reflection of a plane electromagnetic
wave obliquely incident upon a plasma half-space,
where the equilibrium plasma is assumed to be
homogeneous and isotropie. The electric vector of
the wave was taken to be polarized in the plane of
incidence. This is a case of special interest because
a longitudinal wave, which cannot be excited in
the other polarization case, can now penetrate into
the plasma. The plasma was treated in the electron
gas approximation and an exact solution of the
coupled Maxwell-Vlasov equations was derived
under the assumption that the electrons are spec-
ularly reflected at the boundary. The method em-
ployed consisted of expanding the solution as a
linear combination of normal modes, and as such,
represented a generalization of the well-known work
of Van Kampen® for longitudinal waves and of
Felderhof® for transverse waves. It is the purpose
of this paper to extend these results to include the
case of a plasma layer of finite thickness.

We consider the problem of reflection of a plane
electromagnetic wave incident upon a plasma slab
of thickness 2d, at a given angle «, in the case for
which the plane wave is polarized in the plane of
incidence. The field in the plasma region is rep-
resented in terms of a linear combination of normal
modes, each of which is a particular solution of the
Maxwell-Vlasov equations and is associated with
a particular value of the propagation constant in a
direction normal to the layer. The contribution
arising from the continuous portion of the spectrum
is given in terms of an integral representation con-
taining two unknown functions. To this is added
the discrete spectrum contribution which has been

1V, H. Weston, Phys. Fluids 10 (1967).
2 N. G. Van Kampen, Physica 21, 949 (1955).
3 B. U. Felderhof, Physica 29, 662 (1963).

601

shown' to couple the longitudinal and transverse
wave modes. The specular boundary condition is
employed, and the reduction leads to the same
equations that arise’ in treating the half-space
problem. The exact solutions are thus immediately
obtained and explicit expressions are given. Finally,
we give the reflection coefficient along with some
approximate evaluations in special cases. It is well
to point out that our notation and derivations rely
heavily on Ref. 1.

II. BASIC EQUATIONS

The equations appropriate for the plasma region
are the Maxwell equations

V xE = twpH,
V xH = —iweE + j, 1

——efvf dv,

and the linearized Vlasov equation

—iwf + v-Vf = % E-V.fo. 2
The electronic charge is denoted by —e, and the
unperturbed distribution function f, will be taken
to be Maxwellian

ne —v3i/p p2 2Ti
fo=gme" ", w=(“7). (3)

We have assumed a harmonic time dependence
e *“*, where, in standard fashion, w is taken to be
a complex parameter with vanishingly small positive
imaginary part. Outside the plasma region, the
Maxwell equations hold with j = 0.

The Cartesian coordinate axes are chosen in such
a way that the z axis is perpendicular to the plasma
layer, and the region containing the plasma is given
by —d < z < d. The plane wave incident obliquely
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upon the vacuum side of the lower interface z = —d
is specified by
EO = (uo/e,,)‘}(f cos & — £sin a)

-exp [thy(x sin a + z cos a)], )
H, = 4 exp [tky(z sin « + 2z cos a)],

where k, 18 the vacuum wavenumber. Thus, in the
plasma layer, the required solution has the form

E = ¢"“[E,(z), 0, E.(2)],
H = ¢“[0, H,(2), 0],

(®)

with k., = k, sin «; the distribution funection f will
display a similar z dependence. The complete solu-
tion will be represented in terms of a linear combina-
tion of normal modes, both continuous and discrete,
where each mode is a particular solution of the
coupled Maxwell-Vlasov equations and has a 2
dependence of the form e***. The unknown quan-
tities in the expansion can be determined explicitly
by imposing the specular reflection condition on the
electrons at the boundaries, that is, we require

f(v:c) vz) = j(vn —7)2) (6)

on the interfaces z = =d. This condition was
employed by Weston' in solving the corresponding
half-space problem.

II. CONTINUOUS SPECTRUM

The total field associated with the continuous
speetrum (—o < k, < ) can be expressed in
the form

B = 5 [ e —wiaw
T +wB@ du, ()
B0 = 2 [ poa
— uw(Q — u?)Bw))e™** du, (8)
6 = 22 [ waoe o ©

where k, is related to the phase veloeity uw by the
expression

= ke gr ey
k, = ” (Q w’)?, (10)
and © is the real quantity
) = w/k,. (11)

It will be observed that this representation for the
field contains waves proceeding in both directions
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along the z axis, as s appropriate for a layer of finite
thickness.

The distribution function is given by the following
relation:

fwa = [ aw >{me

+ 6w — o)1 (vt,U)} " du

+f B(){“‘

+ s — )T, u)}c”“z du, (12)

JoWv,.

u—1uv,

fo(V)v,,

where
L= Q= WD, — uv,]/Q,
= [ur, + (@ — u)%,]/Q

denote the components of velocity transverse and
parallel to the direction of propagation, respectively,
and the symbol P means that the Cauchy principle
value is to be taken. The functions T''(v,, %) and
T'(v,, w) associated with the transverse and longi-
tudinal modes remain unspecified except for the
integral relations'

(13)

f M, w) do, = 0, f 0 Ty, w) dve = 0, (14)

f v, (v, w) dv,

=N =u — ¢ @l Pf L iz' (15)
f ', w) dv,
=\ =1+ szpf r (D)L dz, (16)
nw

where w, is the plasma frequency, A, the Debye
length, and

—21/v g

Fo) =~ a7
Ty

It may further be shown, on the basis of symmetry
arguments, that I'(v,, ) and T'(v,, w) are even
functions of w.

The explicit integration over the delta functions
in (12) can be simplified by introducing new in-
dependent variables s and ¢ defined by

W, = s + (@ '—LSQ)%l, (18)
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then, upon introducing new unknown functions (u)
and ¢{(u) defined as

\b(u) = u[A(u)e"”" — A(_u)e-‘ik;d]’
¢(U) = u(gz - uz);[B(u)eik,d _ B(—u)e‘”‘“’]’

it can be shown that on the upper interface z = d,
we have

QU: fe(vz; Uz d) - fv(vzy —;; d)]

- PO e [ [ 298 |

2 2 ! u’Y(u)
+ (Q —u)itpf_nmdu}
+ sgn [(@* — O — ¢

QT = SOOI 8) + BT, 8] (20)

This equation is identical to Eq. (37) of Ref. 1.
For the lower interface z = —d, we merely replace
d by —d throughout.

IV. DISCRETE SPECTRUM

(19)

In order to consider the discrete spectrum we
must extend the domain of the variable u into the
complex plane. The propagation constant k, is
defined in terms of a function of « that is analytic
outside the cut —Q < u <  as follows:

k) = % — (21)
which implies that 0 < arg k, < = outside the cut.
As u approaches the cut from above or below, k,

takes the form

ki + i0) =~ (02 — w2y,

(22)
k(u — 10) = -’:7 (@ — u)t.
Weston' has shown that the particular values of

u corresponding to the discrete spectrum are given
by the roots u; of the equation

L(ui) = 0;

where L(u) is an even function of u given by

(23)

L(w) = A'@)[A' @) + Bru’@’ — @)Y + 8%’
(24)
with
42’ [T e
Ay =1+ % o 4 v;wzf_nv_u
Exf [(“ = )]dv, @25)
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e_,,:/,,Tn

2w23 Q
A) = u® — & + =% f
-0

Kl TO)

“Exf [(92 -=! o ] d.,  (26)

T

v— U

and

N

- Qv g2
2 2 .
U
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The longitudinal and transverse modes are therefore
coupled except when 8 = 0 which can occur either
for normal incidence (2 — ) or for the cold plasma
(vr = 0).

The total field arising from the discrete spectrum
consists of a summation over all values of %, and
may be written in the form

Bl = 5% 3 (o — 9OhIC, + 18D
il — @B, + CF)),  (28)
Bz = wzfo’“ E e ulC; — il — @)u,D,]
— HRE, — ik — PP F),  (29)
HiG) = " 3 [e*u,0, — ML, (30)

Wio€o
where, for convenience, we have denoted k,(u;)
simply as k;. Waves in both directions along the
z axis have again been included.
The distribution function for the discrete spectrum
may be written as

i) = efo(v) Z{ue

ikjz

(Caup, + D)

ule”** _ )
+ u; — 2-)7 (Eiuivt + Fivv)} ’ (31)
where
—_ y 2--— 2)3 — , 7, == —
[z(ul Q ) Vg uzvz:'/ﬂy v, 1),( vz)) (32)
v, = [up, + 1’ — O),1/Q, 5, = v,(—v,).

Defining new unknown coefficients A; and B; by
A; = Ce™® — B ™,
B; = D" — Fim i,
we find that on the upper interface z = d
W.[fC., v.; d) — '@, —0.; d)]
_s Fo(s)Fo(t) Z

(33)

& 24, — w5

+ (Q’ — S + ZzB,-(u? — )Y, (34)
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and this equation is identical to Eq. (80) of Ref. 1.
For the lower interface 2 = —d, we replace d by
—d throughout. The coefficients A4; and B; are
related by two homogeneous equations
B,A'(u;) — inBuld; =0

—imBulB; + A[A'(u,) + il — @)Y =0

(35)

whose determinant L(u;) vanishes.

V. EVALUATION OF THE UNKNOWN QUANTITIES

Since (20) and (34) are identical to those already
considered by Weston' in treating the half-space
problem, we can employ his analysis to immediately
obtain the solution. In particular, for the interface
z = d, the functions ¢¥{u) and ¢(u) in the continuous
spectrum contribution are
x"(w — i0)],

(36)

w) =2 H @K@+ ) — x¥ @ — o),

wp) = = H(@K" @ + 0) —

where x’(u) and x™® (u) are even functions of u
defined by

xw) =

x® ) =

(AW + mfBe’ — @)71/Lw),
A(w)/Lw).

In terms of these functions the discrete spectrum
coefficients are found to be

87

u;d; = = H,(d) lim (@ — u,)x" @),

UU§

(38)

Q)'B;, = — H o) lim (w — u,)x ™ ().

u—uj

w;w; —

When the expressions corresponding to the interface
z = —d are included, the solution is completely
determined and the individual quantities 4 (u), B(u),
etc. may be obtained explicitly.

Only the 2 component of the electric field is needed
to specify the reflection and transmission coefficients.
We obtain the following result for this component:

E.(2) = Ei(2) + E:(2), (39)
where
sina (po\' [* T + 10) 4+ T — 0
k@) = oni <60> —a sin (2k,d)

-{H,d) cos k.(z + d) — H,(—d) cos k.(z — d)} du,

(40)
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s lim (u — ;)T (w)
) L D

1

EX2) = sina <E£

€o

-{H,(d) cosk;(z + d) — H,(~—d) cosk;(z — d)} (41)

with the superseripts ¢ and d denoting the con-
tinuous spectrum and discrete spectrum contribu-
tions, respectively. The function T'(u) is given by

T = @ — @Y%V @) — @ - ) "W
(42)

and is an odd funetion of % in the cut plane. It will
be noted that the integrand in (40) contains likely
poles for sin [2k,(u) d] = 0. Further analysis indicates
that in the cut u plane these poles are located in the
first and third quadrants at 4 = Zwu,, where

= olkl + (wr/20)77F,  m =

1,2, . (43)

As the imaginary part of » shrinks to zero, these
poles approach the positive part of the cut from
above and the negative part of the cut from below.
This leads to an alternative representation for the
field component by means of the calculus of residues.
We omit the details which involve first representing
E(2) in terms of a contour integral around the cut,
being careful to include the contributions that arise
when the branch points w = = are encircled,
and then evaluating the contour integral as a sum
of the residues at the poles of the discrete spectrum
u; and at the remaining poles u,. When Ei(z) is
included to obtain the total field, the discrete
spectrum contribution is canceled and we are left
with

BG) = 1o (=) % (- 2 air + 0

{ H . (d) cos (z 4+ d) — H(—d) cos (z d)} ,

(44)

where the prime on the summation means that the
= 0 term is to be multiplied by % and the im-
aginary part of » has been allowed to vanish.

VI. REFLECTION COEFFICIENT

Since the current at the plasma layer boundaries
is finite, the tangential components E, and H, will
be continuous across the interfaces. The voltage
reflection coefficient, denoted by —R, can then be
derived from the formula

1—R

14+ R

S(=d)

cosa ’ (45)
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where S(—d) is the surface impedance on the lower
illuminated surface z = —d and is defined as

€o ¥

S(—d) = {—

Mo
Employing Egs. (39)—(41) and the fact that S(d) =
cos « follows from the continuity conditions, we find

E(~d)
H(-d)

(46)

S(—d) = 8, — S8, + cos )7}, (47)
where
S, = __Sin(:‘! Pl 4+ 40) + Tu — 10) du
2ri J_, sin (2k.d)
lim (u — u;)T W)
— sin Z a0 W

and S; is obtained from the immediately preceding
expression upon multiplying the integrand by
cos (2k.d) and the summand by cos (2k;d). Al-
ternatively, we may write S, in the form

- (—y

2 ;.
S, ‘EEZ k. (nr/2d) °

{ 2 (2)<u + ’I/O)

e+ Of, @)

K2+ (nr/2d)

and 8, follows by eliminating the (—)".

To investigate the effect of temperature on the
reflection coefficient we make the approximation
(vr/c) < 1, in which case 8 >~ 0 and the terms
involving this parameter can be dropped. We then
have

XVl = 10) ~ [N & B )],

(50)
x P £ 10) ~ [Nw) + ru’fFu)]
with
) = e g [“’ u). } 6D

hence, in this approximation, the solution is ef-
fectively decoupled. The subsequent analysis can
be carried out as in Ref. 1 with the result that when
the operating frequency is very close to the plasma
frequency, the quantities S, and S, can be ap-
proximated by

. 9;>~1{ ko sin” o . n}
Si~ "(1 T ') k' sin (2K'd) T f sin (2k'd)

(52)
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. 0)3 - kg « 9 1
S;~il — = =7 8in” a cot (2k'd)
iz k
k' 2w,,
+ s cot (2k d)} T2, Lsin’ o, (53)
where
2 2 EH
v=fE@—O—%mdf
r ? (54)

® w, 1wlv?
e -2[o-3) -89
¢ w 1 2w ¢
and the arguments in the square-root quantities
are to be taken as v, when the radicands become

negative. The plasma layer is opaque for the critical
frequency

[

2
Zsin’ o
¢

8|€
&

=N

[S=JEVS]

=1+ (55)

which also oecurs in the case of the plasma half-
space.” The existence of other eritical frequencies
for which the layer is opaque is manifest above.
At the plasma frequency we obtain

w 1

3v7 sinh (2k,d)

{sm

.2
Sy(es,) ~ —% coth (2k.d)
T

Sl(‘*’v) ~ =

+ 2kd coth (2k, d)} (56)

{—1— + 2k,d[coth (2k.d) — tanh (21@03)]} 67
SN «

to first order in (vy/c). Finally, we note that in the
cold plasma limit », = 0, the above results reduce
to those appropriate for a dielectric slab with index
of refraction N = (1 — w?/w’)L.

For a hot plasma such that the coupling becomes
more important, the quantities S, and S, would
have to be evaluated numerically.

VII. CONCLUSION

Exact solutions, based on the coupled Maxwell-
Vlasov equations, have been obtained for the field
generated in a plasma layer by a plane wave incident
obliquely upon the layer and polarized in the plane
of incidence. The component of electric intensity
parallel to the layer boundaries is presecribed by
(39) to (41) or by (44), from which the reflection
coefficient is derived. Coupling arises in the discrete
spectrum which is governed by a dispersion relation
(23) that cannot be factored to generate pure lon-
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gitudinal and transverse waves except in the case
of a cold plasma, or for normal incidence. This effect
becomes more important for a hot plasma; thus,
it would be of interest to extend the results to
include relativistic plasmas. The above analysis
was based on the assumption that the electrons
arriving at the interfaces were scattered specularly.
The effect of other boundary conditions should also
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be investigated in the light of the analysis presented
here.
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Experiments on Shock Formation in a Q-Device

H. K. AnpersEN, N. ’ANGgELO, P. MICHELSEN, AND P. NIELSEN

Research Establishment Risé, Roskilde, Denmark
(Received 28 July 1967; final manuscript received 24 November 1967)

Experiments on shock formation in a @Q-device are described. For equal ion and electron temper-
atures, Ty = T, Landau damping prevents shock formation. When the ratio 7./7; is made as large
as 3—4 through ion-neutral atom collisions, shock formation is observed.

I. INTRODUCTION

The propagation of ion-acoustic waves in highly
ionized plasmas of cesium and potassium has been
investigated in a Q-device." The waves are strongly
damped by Landau damping when the ion and the
electron temperatures, 7; and T, are approximately
equal. In the work of Ref. 1 waves were produced
by modulating the voltage on a grid immersed in the
plasma column, thereby varying sinusoidally in time
the plasma density in the immediate vicinity of
the grid. The density modulation by the grid
amounted in all cases only to a few per cent of its
dec value, and a linear theory” of wave propagation
was adequate in describing the experimental results.

A next step in this line of investigation is the study
of the propagation properties of either (a) large
amplitude sinusoidal density perturbations or, (b)
large density pulses which, in appropriate conditions,
might be expected to develop into sharp fronts or
“shocks.”

In the present paper we describe the results of
experiments designed primarily to investigate (b).
Preliminary results have already been presented.’

To anticipate the results of the present investiga-

TA. Y. Wong, R. W. Motley, and N. D’Angelo, Phys.
Rev. 133, A436 (1964).

2 B. D. Fried and R. W. Gould, Phys. Fluids 4, 139 (1961).

3 H. K. Andersen, N. D’Angelo, P. Michelsen, and P. Niel-
sen, Phys. Rev. Letters 19, 149 (1967).

tion, we find that: (a) in plasmas of approximately
equal ion and electron temperatures, shock forma-
tion is prevented by Landau damping which over-
comes the sharpening effect of the nonlinearities,
and (b) Landau damping is removed (and shocks
observed) when the ratio T./T; is increased to
about 3—4 by cooling the ions through ion-neutral
collisions.

The paper is organized as follows. Section II
describes the experimental arrangement. Section 111
presents the experimental results. Section IV con-
tains theoretical considerations concerning the pos-
sibility of observing shock formation. The problem
is briefly discussed from the point of view of both a
fluid picture and the collisionless Vlasov equation.
Section V presents the conclusions.

II. THE EXPERIMENTAL ARRANGEMENT

The experiments were performed in the Q-device
at the Research Establishmeat Riso. This device
is similar in counstruction to other alkali-plasma
sources described in the literature. It will suffice,
therefore, to give only a brief description of it,
indicating the novel features.

The plasma is produced by surface ionization of
cesium atoms on a hot (~2500°K) tantalum plate,
and is confined radially by a magnetic field of
intensity up to ~10000 G. The plasma column,



