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In the multianode cylindrical magnetron there exist favored phase velocities of the electromagnetic wave
around the interaction space between anode and cathode. These velocities are characteristic of the resonant
system attached to the anode segments. In the oscillating magnetron the electronic space charge within the
interaction space is presumed to maintain sychronism with one of these velocities. Certain of the conditions
of synchronism which can be discussed analytically are treated in this paper. The results, although based on
restrictive assumptions, can be used in the interpretation of magnetron operation and in predicting regions of

efficient behavior.

INTRODUCTION

HE analysis of space charge distribution in the
static magnetron diode has been discussed in a
number of papers' and has admittedly only been treated
under very special assumptions. In spite of this the
results can be very useful in many practical applications
if properly handled. The resulting picture is essentially
that of a swarm of electrons moving around the cathode
having a radial extent determined by the applied dc
anode voltage and axial magnetic field.

This paper discusses a similar solution for a magnetron
in which an rf voltage is assumed present between anode
segments uniformly spaced about the magnetron anode
periphery. A voltage of this type varying in time has
been considered by Slater and others as the resultant of
a number of rf waves traveling in opposite directions
around the magnetron periphery causing the time
varying fields to exist in the space between anode and
cathode. This space is called the interaction space be-
cause it is the space common to the rf fields and the
electrons where interaction takes place. Only one type of
wave is considered of importance in the present dis-
cussion. This is a wave traveling in the same direction as
the electrons moving around the interaction space so
that interaction between the electrons and the wave is
appreciable. Waves traveling in the opposite direction
are considered as contributing only to higher order
corrections.

EQUATIONS GOVERNING SPACE CHARGE BEHAVIOR

The mathematical analysis of space charge behavior
in a magnetron is based on the force equation for an
electron in an electromagnetic field. This equation in
vector form is the following

dv/dt= —e/m(F+vXB), 1)
where e=absolute value of electronic charge, m=mass

* The material in this paper is based on work done for the
U. S. Army Signal Corps on Contract No. W36-039 sc-35561.

L L. Brillouin, Phys. Rev. 60, 385-396 (1941). J. P. Blewett and
S. Ramo, Phys. Rev. 57, 635-641 (1940). J. C. Slater, Microwave
Electronics (D. Van Nostrand Company, Inc., New York, 1950},
Chapter VIII. L. Page and N. I. Adams, Phys. Rev. 69, 492 (1946).
G. B. Collins, Microwave Magnetrons (McGraw-Hill Book Com-
pany, Inc., New York, 1948), Part II.

of electron, v=velocity of electron, F=vector value of
electric field, B=vector value of magnetic field.

The magnetron will be considered with axial align-
ment in the z-direction. In this case it is convenient to
resolve the vector quantities in Eq. (1) into components
in cylindrical coordinates. If proper account is taken of
the symmetries in the magnetron, Eq. (1) may be
written as follows:

dv dv, dw
—_—= rl(———— rw? l +01= 2v,w+r—}

dat dt dt

=—¢/m(,F.+0Fot+rrwB,—0w,.B.). (1a)

Here the quantities with subscript (1) are unit vectors.
v has been replaced by

V= rlv,-i—Olrw. (2)

7w is therefore the magnitude of the §-directed com-
ponent of velocity. w is the angular velocity of the
electron. The components F,, v., Be, B, are considered
non-existent as would be the case in an ideal magnetron.
By separation of the 7- and ¢-directed components in
Eq. (1a) we obtain the following two important equa-
tions for scalar quantities.

dv,/di—ro?= —e/m(F.+rwB.),
20w+ rdw/di= —e/m(Fs—v,.B,).

(3a)
(3b)

There are several results to be derived from these two
equations based on various assumptions which may be
used. We will consider two cases of interest. Since B is
always in the z-direction we will drop the subscript z.

THE STATIC MAGNETRON, NO rf
VOLTAGE PRESENT

This case will be discussed very briefly to give the
necessary results, since it has been treated in the
references.

We will first assume that no rf field is present ; there-
fore, Fy=0. In this case Eq. (3b) can be written

2dr/dt(wp—w)=rdw/d!. (4)

v, has been replaced by dr/dt and eB/2m has been re-
placed by w.. The equation is readily solved by separa-
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tion of variables and assuming w to be zero at the bound-
ary of the cathode 7..

w=w[1—(r2/M]. (5)

This result may be substituted back into Eq. (3a)
yielding an equation which can be solved simply only
under the restrictive assumption that

dv,/dt=0.
Now,
dv,/dt= v,/ dt+ (dv./9r)v,; - (6)
therefore, in order for dv./dt to be zero,
dv,/3t=0,

implying a steady-state condition, and
2,=0

implying that no radial current exists.

The potential distribution resulting in this case is
actually obvious from Eq. (5) and the assumptions just
stated

E—E.=1(m/2e)wr¥ 1—(r /)] (N

where E=potential at » and E =potential at r.. This
relationship states simply that the energy taken by the
electron from the electric field is equal to its kinetic
energy. Using the poisson equation the space charge
density under these conditions can be shown to be

p/e=—2m/ew}[ 1+ (r/r")] ®

where ¢,= dielectric constant of free space=1/367X107°
farad/m. The electric field is given by

F,=—0E/dr= (m/e)rw} (rt/r)—1]. 9)

It is important to realize that Egs. (7)~(9) represent
distributions within the space charge swarm only for the
special case of no radial current throughout the swarm.
Equations (7) and (9) do hold more significance for the
swarm boundary. Such a boundary must exist if the
anode potential is less than the value necessary to make
the swarm extend all the way out to the anode. The
potential is given by substituting the anode radius (r,)
into Eq. (7). [The electron must have af leas! the energy
corresponding to the angular velocity of Eq. (5) since
this result is independent of the solution of Eq. (3a).]
Weare led to the conclusion that if the swarm is bounded
within the interaction space between anode and cathode
no current is crossing the boundary, therefore Eqgs. (7)
and (9) must hold at the boundary. By the gaussian
theorem the total space charge per unit length within a
boundary at radius 7y will, therefore, be

rp=2mwe —(3E/dr)] at 7y
=(17/2)eo(e/m)Brru* (r2/ra)—1].  (10)

We must conclude that the total space charge within a
bounded swarm is independent of the potential, field
and space charge distribution within the swarm. Elec-
trons may be circulating around the cathode or stream-
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ing radially outward and inward through the swarm
provided they do not cross the boundary . If there are
radial velocities within the swarm the potential within
the swarm must be greater than that given by Eq. (7).

The purpose of this discussion is to emphasize the fact
that the relationship for the radius of the swarm bound-
ary in terms of anode potential which follows is not
dependent on the restrictive assumptions corresponding
to the existence of the distributions of Egs. (7)-(9)
throughout the swarm. It is only dependent on the
assumptions that the initial velocity and the radial
velocity are zero and that no sources of energy exist
other than the dc field.

If we consider the magnetron as a cylindrical diode
containing the space charge swarm just described and
having no gradient at the cathode then

EG—EH= - (TH/21I'€0) log(r.,/ry),

where E,=anode potential and Ey=value given by
Eq. (7) for rz. We have the complete result

e ret 7a AN
Ea=B'~’——'rH2l:2(1————)ln—+ 1———2) ] (11

8m rgt/ ry rH

CONDITIONS FOR SYNCHRONISM WITH THE rf
FIELD IN THE MAGNETRON

In the discussion of this section it is not actually
necessary for an rf field to be present. It is only neces-
sary to define the angular velocity around the interac-
tion space which corresponds to a particular rf field
which might be present.

It will be convenient to define some terms which will
simplify the following discussion and will make the
terminology the same as that generally used in dis-
cussing the scaling of magnetrons.? These definitions
also have the advantage of making most of the equa-
tions dimensionless. The presence of the rf is described
in the usual manner? The rf wave with which the
electrons interact is considered as traveling around the
interaction space between anode and cathode, with an
angular velocity given by

2xf
w,=—— radians/sec
n

(12)

where f is the frequency of the rf impressed on the
magrnetron anodes and » is the mode number, equal to
N/2 in the m-mode where N is the number of anodes.

The kinetic energy of an electron at the anode having
the angular velocity given by Eq. (12) defines a voltage
which we will call E,

Eo=(m/2e)w,’r (13)

The magnetic field which would allow this angular
velocity to exist at the anode of a non-oscillating
magnetron is defined by Eq. (5) when w is equal to wa

2 See reference 1, J. C. Slater, Chapter 13.
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and 7 set equal to 7,

2m 1
B():-'—

Wy .

e [1=(r/ra)]
In terms of these variables Eq. (7) may be written

(E—~E.,)/Ey=(B/By). (7a)

E, and B, depend only on dimensions of the mag-
netron, the frequency impressed on the magnetron
anodes and physical constants.

At a particular voltage, outer electrons in the swarm
reach the angular velocity of the rf field given by Eq.
(12). This we will call the synchronous voltage. In order
to get an idea of the radius of the space charge for which
synchronism takes place, it is convenient to rewrite
Eg. (11) in terms of the new variables as follows:

E, 7B\ fru\}( 1—(rre") 71,
() ) b
E, By Ta (1=(@2/r) ] ra
1= (r/re*)7?
+[——~———-—] ] (11a)
1—(r2/7?)
Using the definition of By we write
w B 1-(r2/r¥

wWn BO 1- (702/7a2)‘

(14)

(15)

When wo=w,
B, 1—(r2/rs®)

E_ 1- ("c2/7n2).
: T

182 E2 . eaom £oN. 17
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F16. 1. Anode voltage and space charge cloud boundary voltage
as function of radius of space charge cloud boundary for synchro-
nism of outer electrons.
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F16. 2. Magnetic field as function of radius of space charge
cloud boundary for synchronism of outer electrons. [From
Eq. (16).]

The subscript # denotes values for which the angular
velocity of the outer edge of the electron swarm reaches
synchronism with the angular velocity of the wave. The
voltage for which synchronism occurs at a given radius
is given by substitution of B,/B, from Eq. (16) into
Eq. (11). We are discussing the outer edge of the cloud

SO ry=7"y.

In—+1
1= (/7)) ra

Eu v 13(r¥/raY) 1
’ [z_ﬁﬁ ’ ] wn
Eo 1’a2

An interesting conclusion to be drawn from Egs.
(16) and (17) is that for given values of w, and 7,
and a given tube geometry there is only one set of
values for E,/Ey and B/B,, which will allow the edge
of the electron swarm to rotate in synchronism. Equa-
tions (16) and (17) are plotted in Figs. 1 and 2 for two
values of 7,/7..

By eliminating 7, between these two equations, we
may write an equation relating E,,/E, and B,/B, for
the condition that the outermost electrons in the cloud
have just reached synchronism.

Ean Bn

rc2/1,a2

Ey By (B./By)-— [1 —(r*/r.%) ]

Xiz[gf:z;—,,;ﬁ]

Bn o)™ - c2 a2 d 8
Xlog{( /Bo)—[1—(r/7.%)1} +1}. a8)
7¢/7a(Ba/Bo)}

3 See H. W. Welch, Proc. Inst. Radio Engrs. p. 1434 (December,
1950) for experimental confirmation of this expression.
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F16. 3. Anode voltages for cutoff, Hartree, and synchronous
boundaries as function of magnetic field.

SYNCHRONISM: CONDITION FOR INITIATION
OF OSCILLATION

It is convenient at this point to discuss an idealized
type of space charge behavior which is similar in princi-
ple to the case in the static magnetron corresponding to
distributions of Eqs. (7)-(9) existing throughout the
space charge swarm. It will be assumed that an rf field
is present traveling around the interaction space with an
angular velocity given by Eq. (12). At the voltage given
by Eq. (18) electrons at the outer edge of the swarm
formed by the dc fields attain this velocity. Above this
voltage the outer electrons are trying to travel faster
than the field. The field has tangential components
which may either oppose or aid the motion of the
electron, depending on the position of the electron rela-
tive to the traveling wave. The electrons which take
energy from the field will drift inward and eventually
give up their excess energy to the cathode. In regions of
opposing field the electrons will give up energy to the rf
field and be slowed to synchronous velocity. During the
process of energy absorption by the field the electrons
will drift outward from the edge of the static swarm due
to a decrease in the Lorentz force. The potential dis-
tribution outside the swarm will thus be altered by
presence of the space charge.

Let us now examine the potential distribution in a
region where electrons are assumed to be in synchronism.
This can be derived quite simply from the original force
equation if we make the initial assumption that the
angular velocity of the electrons is the synchronous
velocity w,. In this case, Eq. (3a) is written

- dv/dt—rwal= —e/m(F,+rw,.B,).
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We assume as we did before steady state with no
radial motion; i.e., all energy is kinetic energy of rota-
tion. In this case it will be convenient to make the
substitution:

w,= Be/m=2uw;. (19)
We have therefore
F,=—0E/dr=(m/e)rwn(cwn—w,)- (20)
This equation can be rewritten
d/E r We
22
or\E, 742 Wn
Integrating this becomes:
—E/Ey=[1—(w/ws)](r*/r")+C. (21)

In order to evaluate C we will make use of the as-
sumption that all energy is kinetic energy of angular
velocity. Thus as the synchronous boundary r=r,

eE,=m/2w,r,?
and at the anode
eEo=m/2wr 2.

Therefore, dividing one equation by the other, we have
atr=r,

E"/E()= 7’n2/7’a2.

This equation is plotted for comparison with Eq. (17) in
Fig. 1. Using this relationship as a boundary condition
to evaluate C, Eq. (21) becomes

E 2 ol wegrt ra?
= ____|_2__|__(___

EO 7’a2 raz Wn 7’a2 ¥a

(22)

(23)

There are two ways of expressing w./w, which are
useful in simplifying Eq. (23). These are

w. B 1
—_—— (24)
W BO 1- (ch/raz)
[from the definitions of w. in (19) and B, in (14)] and
wn/wc= %[1_ (rcz/rnz):]' (25)

The latter relationship is based on the assumption
that the solution in Eq. (5) holds out to .. Rewrite (23)

722wy r?

7a®

2

E wc( 72 ra?
Eo [OFY

702 7a We Ta

If we make the substitutions (24) and (25) for the
quantity w./w, outside the bracket and inside the
bracket, respectively, the result becomes
E B (rQ/raiz)_ (702/7'612) r?

1—(r2/r.%) ro2

This new potential distribution exists throughout the
distribution of space charge which forms outside the
static magnetron space charge cloud because of electrons

(26)

E, B,
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being slowed to synchronism. If the outermost electrons
of this cloud are just capable of reaching the anode the
magnetron will draw plate current. The electrons must
give up energy to reach this radius ; therefore, as soon as
the magnetron is capable of drawing current, it will be
able to use this energy to generate oscillations. This
assumes of course that w, corresponds to a frequency at
which the magnetron resonator will oscillate. This
condition may be imposed upon Eq. (26) and we have,
for r=r,

E./Ey=(2B/By)—1. @)

This is a well known relationship obtained in a
different way by Hartree! and defining the voltage at
which oscillations begin. The assumptions and method
used here make clear that the potential of Eq. (27) with
the distribution of Egs. (7) and (26) represent the
minimum energy of the individual electron which allows
electrons to run in circular orbits extending all the way
out to the anode and having synchronous velocity at the
anode.

If the anode potential is raised above the value given
by Eq. (27) the electrons must have more energy and
therefore radial current will exist or the synchronous
angular velocity must be increased.

Equations (7), (18), and (27) are plotted for compari-
son in Fig. 3 in dimensionless variables. It should be
noted that the synchronous voltage of Eq. (18) is
reached well below the Hartree voltage of Eq. (27).
This means that, if a radio frequency is impressed on the
anodes the synchronous space charge swarm should
start to form well below the Hartree voltage. The
synchronous voltage can be observed by measuring the
resonant wavelength of a hot magnetron as the anode
voltage is raised. When the synchronous voltage is
reached a rather abrupt increase in resonant wavelength
is observed due to the expansion of the synchronous
space charge.’

SYNCHRONOUS SPACE CHARGE

One other equation of some interest can be derived
from these relationships. This is the equation for the
space charge under the conditions of what we will
henceforth call the synchronous space charge distribu-
tion. If we apply the poisson equation to Eq. (20) the
result is

(28)

The space charge in the synchronous space charge
distribution is therefore a constant independent of the
radius and dependent only on the angular velocity of the
wave, the magnetic field and physical constants.

If the distribution in the portion of the space charge
cloud traveling at less than the synchronous velocity w,
is presumed to be the static magnetron distribution

p=—2eom/ew(os:— wn).

*D. R. Hartree, “Estimates of Electron Energies, Oscillation
Amplitudes, and Efficiencies in a Magnetron Operating under
Il‘l/lotating Space Charge Conditions,” C. V., D. Report, Ref.

ag. 11.

& Experiments of this type are discussed in reference 3.
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Fic. 4. Distribution in typical magnetron as synchronous swarm
reaches the anode for w,/wr=0.4. Note: dotted curves are
continuation of static distribution.

given by Eq. (8) ; the space charge density at the outside
edge of the static magnetron swarm and the inside edge
of the synchronous cloud are of different magnitude.
Making the substitution

wn=wr[1—(r2/r:)]

in the equation for the static magnetron space charge
distribution (8), this equation becomes

p=— 260(7}@/8)[(&32/2) - wn((—b‘c_ wn)] (S&}

at the boundary between the two distributions. Thus, at
the boundary

Pstatic 1 wcz 1

2 wawe— wy,)

(29)

Psynch

Similar algebraic manipulation with the equations for
the field and for the potential distribution will show that
these quantities are exactly equal at the boundary be-
tween the two clouds.

In order to summarize the two types of distributions
they are plotted for comparison in Fig. 4. Figure 5 is a
pictorial representation of the space charge showing the
inner static magnetron swarm and the outer synchronous
swarm. Since electrons can only move outward in
regions of decelerating rf field the outer swarm is shown
as consisting of “spokes” of space charge. This picture of
space charge spokes in the oscillating magnetron has
been presented by Hartree, Slater, and others and is
generally accepted by workers in the magnetron field.
Equations (16), (17), (18), and (28) represent relation-
ships which make possible quantitative calculation of
synchronous space charge or “spoke’” behavior.
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STATIC MAGNETRON
SPACE CHARGE

SYNCHRONOUS
SPACE CHARGE

F16. 5. Pictorial representation of space charge within
Interaction space.

INITIATION OF ANODE CURRENT; NOISE
IN MAGNETRONSS

The main purpose in presenting completely the
preceding analysis of magnetron synchronous space
charge is to make clear the nature of the assumptions
which are used and therefore the conditions under which
the analysis is true. The resulting values of voltages for
the magnetic diode cutoff [Eq. (7) for r=7,]and voltage
for initiation of oscillation [Eq. (27)] have been
rightfully criticized for not giving good agreement with
experimentally observed results. However, examination
of the assumptions shows that both of these voltages are
based on the condition that the electron has acquired
the minimum amount of kinetic energy of angular
velocity required for existence in a stable state at the
anode radius. Thus plate current must exist at higher
voltages. If current initiates at lower voltages, the
electrons must have a smaller minimum kinetic energy
and thus smaller angular velocities. If this is the case,
they must have been slowed down by some mechanism
in their transit to the anode. The only significant mecha-
nism by which the electrons can be decelerated is in a
transfer of energy from the dc field to some electro-
magnetic field. In the case of the initiation of oscillation,
it is assumed that electrons have been slowed to
synchronous angular velocities by the interaction with
the oscillatory electromagnetic field. However, it is
experimentally observed that noise voltages exist in pre-
oscillating magnetrons and in static magnetrons oper-
ating below cutoff, and it is logical to assume that the
production of these voltages is the mechanism by which
electrons give up their energy, and therefore reach the
anode at lower than predicted values of dc voltage.
Conversely, if noise is produced at a higher level than
accounted for by the cathode temperature, it is neces-
sary that anode current be drawn. This is true for the
simple reason that, if noise energy is to be produced by

8 R. L. Sproull, J. Appl. Phys. 18, 314-320 (1947) : V. Mayper,
“Noise Generation in Pre-Oscillating Magnetron,” Quarterly

Progress Report, M.LT. Research Laboratory of Electronics, 4-6
(January 15, 1948).

JR.,

AND W. G. DOW

the system, then energy must be given the system by the
power supply. The noise probably originates in the
cathode as thermal noise, etc., and is amplified by the
process of continuous interchange of energy between the
dc field and the noise field through the medium of the
electron swarm. On the basis of these ideas, it is sug-
gested that experiments designed to cast light on the
origins of noise produced by magnetrons should be made
on non-oscillating structures and correlated carefully
with the dc current drawn by the magnetron. It is also
possible that an amplifier could be constructed em-
ploying the principle of interaction between layers of
magnetron space charge traveling at different angular
velocities similar to the already constructed electron-
wave tube.”

OSCILLATION; ELECTRONIC EFFICIENCY

The definition of the voltage for initiation of oscilla-
tion given by Eq. (27) has a similarity in principle to the
magnetic diode cutoff voltage in that the electrons have
the minimum kinetic energy of angular velocity required
for their existence at the anode. It is noteworthy that
the kinetic energy of the electrons at the anode is in
general less than the energy they have acquired, the
difference being the energy supposedly delivered to a
rotating electromagnetic field with which they are
synchronous. Thus it is possible to calculate the maxi-
mum electronic efficiency which is obtainable under the
given conditions of voltage and tube geometry. If E, is
the anode voltage at which anode current is drawn,
representing energy delivered to the electron, and E, is
the voltage defined by Eq. (15), representing the kinetic
energy of the synchronous electron, then maximum
electronic efficiency is given by

.= (E/Ev—1)/E/E,. (30)

Thus for interaction efficiency greater than 80 percent,
E/E, must be greater than 5. This places certain re-
strictions on 7, and #» and determines B/B, through
Eq. (27).

A further consideration which must be included in an
exact analysis of the oscillating magnetron is the effect
of loading. The fact that an electron may exist at the
anode and thus permit oscillation to begin, does not
imply that the negative conductance which the space
charge provides will meet the conditions imposed by the
load. Thus, experimentally it is observed that voltage
for initiation of oscillation depends on the loading in
addition to the other factors. The maximum electronic
efficiency given by Eq. (30) is observed in some cases,
but can only exist under optimum load conditions. No
analysis has been presented, to our knowledge, which
predicts quantitatively the effect of loading conditions
on efficiency, although experimental data on a particular
tube enables one to make semiquantitative predictions.

" A. V. Haeff, Proc. Inst. Radio Engrs. (January, 1949).



