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The macroscopic stability of an ignited ELMO Bumpy Torus (EBT) reactor is investigated by
studying the effects of the alpha particles generated by the deuterium—tritium (D-T) fusion
reaction on the background interchange mode, the interacting interchange mode, and the high-
frequency compressional Alfvén and coupled modes. A fluid description is used for the
background plasma while a kinetic treatment is utilized for the hot-electron species and the alpha
particles. It is shown that the alphas tend to mildly destabilize the interacting interchange while
stabilizing the background interchange because of their sizable Larmor radii. The destabilization
is most pronounced when the beta of the alpha particles is highest, i.e., at birth, and recovery of
stabilization takes place as these particles slow down toward thermalization. It is also shown that
the alphas completely stabilize the high-frequency modes, so that it can safely be concluded that
fusion alphas present no detrimental effects on the stability of an EBT reactor that possesses an
appropriate hot-electron ring for macroscopic stability.

l. INTRODUCTION

The ELMO Bumpy Torus (EBT) device has been ad-
vanced as a possible fusion reactor because of a unique com-
bination of toroidal and mirror plasma confinement proper-
ties. Its reactor potential, however, depends critically on its
ability to support a high beta (ratio of plasma pressure to
magnetic field pressure) since the power density of such a
reactor is proportional to this quantity. The maximum
achievable beta is determined by the macroscopic stability of
the system, and many papers have recently been written ad-
dressing this question.'~” The major element in the magneto-
hydrodynamics (MHD) stability of EBT is the ring of hot
electrons which provides a magnetic well for the stabiliza-
tion of the interchange mode of the background plasma,
even though this hot species could give rise to other instabili-
ties such as the interacting interchange®’ mode. In order to
provide the needed magnetic well the hot electrons must
have sufficiently high energies, which raises the question
concerning radiative losses® as well as proper relativistic
treatment of their dynamics, especially in conjunction with
the stability question. It has been shown® that sensitivity of
the results to relativistic effects goes hand in hand with the
model used (e.g., slab, local, etc.) in describing the system,
and that relativistic effects can be ignored if the “deep well”
approximation is invoked.

For an EBT reactor buring a deuterium-tritium (D-T)
mixture, the question imediately arises as to the effect of the
reaction product, namely the alpha particle, on the stability
of the system. These particles are born at a very high energy
(~3.5 MeV) and slow down rather quickly to energies com-
parable to those of the background ions. At birth the distri-
bution function of the alphas can be taken to be a delta func-
tion in energy, and as they begin to slow down on the target
plasma their distribution begins to spread, eventually assum-
ing a shape that can be approximated by a Maxwellian in
speed. Once they are totally thermalized their distribution
will be no different from the background ions at a compara-

1132 Phys. Fluids 28 (4), April 1985

0031-9171/85/041132-07$01.90

ble temperature, and as a result the so-called “thermal al-
phas” will present no new effects and will not be addressed in

this analysis. Rather, the focal point of this paper will be a
study of the effect of the “fast alphas” on the macroscopic
stability of an ignited EBT plasma. Specifically, we will exa-
mine the stability of low- (e.g., background and interacting
interchange) and high- (Alfvén) frequency modes in the pres-
ence of these high-energy particles and establish their effect
relative to an unignited system. In so doing, one can in prin-
ciple also assess the effect of externally injected energetic
particles, e.g., neutral beam heating on the stability of the
system. The analysis shows that alpha particles tend to de-
stabilize the interacting interchange mode while modestly
stabilizing the background interchange and that the destabi-
lization is more pronounced at short (compared to the alpha
gyroradius) wave length oscillations. Moreover, the largest
destabilizing effect seems to occur at the instant of birth of
these particles when their beta is largest, and recovery to-
ward the original stability boundary takes place as the alphas
slow down. At high frequency when an unignited plasma
shows instabilities associated with coupling to the Alfvén
waves, the presence of alphas seems to provide total stabili-
zation.

Il. BASIC EQUATIONS AND ANALYSIS

We begin by examining the dynamics of alpha particles
generated by the (D-T) reaction. For a 50%—50% mixture of
(D-T) the rate of production of alphas particles is given by
(n2/4){ov), where n, is the ion density, ¢ is the fusion reac-
tion cross section, and (ov) is the reaction rate. At birth
these particles are born at 3.5 MeV energy and could be
represented by a delta function distribution function. If we
assume that they are isotropic then a function like
S« ~6(* — v2) would be appropriate. If, on the other hand,
we wish to simulate a distribution that is more appropriate
for a mirror-confined plasma, then we could employ
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Sfa~6@ —vl,),8(wf — vf,), where the thermal velocities
are expressible in temperatures T, and T}, perpendicular
and parallel to the magnetic field, respectively.

Soon after their birth the alpha particles slow down on
the background plasma. In this paper we shall ignore the
interaction of the alphas with the hot electrons and also ig-
nore the interaction of the fast alphas with those that have
already thermalized, or simply the “thermal” alphas. At en-
ergies sufficiently higher than the average energy of the
background plasma the slowing down power can be written

ale
T (eE+ ) )
dt JE
where C; and C, are constants that depend, among other
things, on the masses of the interacting particles and the
background electron temperature. The first term in Eq. (1)
reflects the slowing down on the plasma electrons, while the
second represents the interaction with the ions. In order to
deduce an expression for the velocity (or the energy) distribu-
tion of the fast alphas, we consider an energy interval AF.
The alphas enter this AE by slowing down from above and
exit by slowing down from below; they can also escape be-
cause of confinement considerations characterized by a con-
finement time 7{E ). If we call the number of alphas per unit
energy n,(E ), then assuming a steady-state situation we can
write

d
—[n.(E)JAE ] =0, 2
Z[n(EE] @)
which upon expansion yields a differential equation of the
form
on,(E)(dE dE\ | na(E)
(ZE) +nier () + 0. @
dt \dt T(E)

This equation can be readily integrated to give

Eo
E)=n,(E _—
aE) = Ra(Eo) epr (T(E \dE /dr)
(0/0E )(dE /dt )) JE }
dE /dt ’
where Ey(~ 3.5 MeV) is the birth energy of the alpha parti-

4)

cles. At E = Ey, n,(E) = n,(E,), given by
(ni/4){ov)
o (Eo) = ———y (5)
(dE /dt )g,
which when combined with Eqgs. (4) and (1) yields
2
2/4
n(E)= (n;/4){ov)
C.E+ C/E

JE dE ) B

Eo
X exp(f .
E (C,E+ C/EE)
In a reactor grade plasma it is expected that the slowing
down time be much smaller than the confinement time, so if
we let 7— oo in the above expression, it becomes

(n;/4){(ov) vE
Cl E?? + E3? ?

n,(E)= (7)

where
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E¥*=C,/C,.

It should be noted at this time that the assumption of perfect
confinement for the alphas represents an extreme case so far
as the stability is concerned since all the alpha particles are
assumed to participate in the wave—particle interaction that
underlies the instability. Moreover, the distribution function
given by (7), except for minor angular effects, has been used
to study the role of alphas in tandem mirrors.!!

We turn now to the derivation of the dispersion equa-
tion for the modes of interest, and in this regard a standard
procedure is followed. It has been pointed out>!? that at
frequencies well below the drift frequency of the hot elec-
trons the interchange modes dominate and as the frequen-
cies approach the curvature drift frequency the compres-
sional Alfvén waves and the coupled modes begin to come
into play. Studies of these modes have been carried out either
in the “slab” model’'* where the magnetic field curvature is
simulated by a gravitational force, or in the “local” model*in
which curvature effects enter in a natural way. We shall use
the latter in this analysis and derive the necessary equations
from the basic equations, namely the quasineutrality and
quasistatic conditions given by

qun =0; njszijd3u,

B! +4xP =0, P1j=ﬁzz-Jvf_fijd3v, (8)

where g is the charge of the jth species, n; is the perturbed
density of the jth species, p| is the perturbed pressure per-
pendicular to the magnetic field, f; is the perturbed distribu-
tion function and B | is the perturbed axial magnetic field.
The equilibrium magnetic field is taken to be

B = By(1 + ex)z, 9)
where € ! is assumed to be larger than the particles gyrora-
dii so that their trajectories can be expanded about the guid-
ing center x, . With the perturbed fields expressed in terms of

the scalar and vector potentials @, A, the linearized Vlasov
equation can be solved for f] to give

F 1
— 19,
h=a5a9+3 ax,

. @ afo ky aﬂ,)J" ( _v-A)dt,
+lqm( BH w2 9x ¢ c ’
(10)

where the integral is over the unperturbed particle orbits,
and £2 is the gyrofrequency. In writing this result, perturba-
tions at frequency @ of the plane wave type have been uti-
lized, and an equilibrium distribution function f; as a func-
tion of the constants of motion x,, H = (1/2)mv* has also
been used. In a straightforward but lengthy manner the inte-
gral in Eq. (10) can be carried out, and the result becomes

Jo kv, /02 )Jme'Tm —n)o

f1=q%¢+%D(¢Z

JH o wp —w — nil
lv J ’ 1(m — n)@
= (11)
e @p — @ — n2)’
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where
kyvf( B. ) k vﬁ
wD - m ZA + R + Rc’
k
oH o dx,
o=1+§8, —B))
47 '=|InVn|

Here R, is the radius of curvature, J, is the ordinary Bessel
function, and B, is the total beta.

For low-frequency modes it is reasonable to take
LD gy Dpg> 12, Where w,, =k,T,/mAL2, is the dia-
magnetic drift frequency, and the other frequencies as de-
fined earlier, and in so doing the perturbed distribution func-
tion for the alpha particles can be put in the form

qa 9a Jz v Ax JO",
+Tw‘a.f0a (¢7 - — >
(13)

T, c
A similar approximation is invoked for the hot electrons,
while for the core species which are taken to be relatively
cold the approximation w»w,., @p. is adopted; this in turn
yields for these species

Sia

Oa

D pa @ pa

1
2

3k lpc
16

+ iv.le klpcvl

c D,

by

q q 1-—
Jin = —'7’.‘f6h¢+'7,Lf6h[¢(

ol

J.ph HUW
@op

)
s 23]

It is evident that in obtaining these results the small argu-
ment expansion of the Bessel functions has been utilized.
The velocity integrals shown in Eq. (8) can now be carried
out and the resulting equations can be expressed in a matrix

form as
(D,s - wifz)Dc.)( @ ) o
D, D,, BB | -

which in turn gives rise to the dispersion relation

Des‘Dem +w1/2)D<2:t =0! (15)
where D,, represents the electrostatic term, D,,, the electro-
magnetic term, and D, the cross product term. For low-
frequency modes Eq. (15) is quadratic in o, i.e., it can be
expressed as

aw® + bw + ¢ =0,

4 fods v, A, kp,v,

c Uy

9. g kip: ("1 )’] for which the stability condition is given in the usual form
c = = + 1 —_—_— — y gl 4
4 T, Foc? 7. [¢ [ 2 \p, ie., b2 — d4ac>0 with
J
a=k2p,? ﬂ’."__yi[l_.wth(l_kzpi)]_'_“”m ( Rc )
2 ny T, @p \ 2 ny; 24
) k%0 R
+ﬁp;,,l[k2p,? "°"[1— (1_ Ph )]+2_(1- : )]
2 No; @ ph N, 24
x[ikng_l fﬂh_fﬂ(i_3 kz”i) 2M0e 12], (16)
4 Ny @Wpy \2 16 ng;
n k?p?
b= (o, —am)(l —;") P 00 — B)
N,
N, Bi. _ - 7 Nop 20, 7 Rg,
X +—D;! ,-—a),.[-—kz,?—-—— 1—-——"‘—(1——k2 ?)]—{-——1
( Ry, ) 2 @, o) 4 P Ro; Dpp 16 P ng;
2n0a( R, R, )]( nOeT,)
L1+ ,
no; A no: T, (17)
—_— nOeTe k2p12 —— ( nOeTe) iB _1[ — ( nOeT'e):l2
C=(wy —Opop|l + —— | ——0,.0pn|1+ +=D_ i —@pi)| 1 s 1
(@ i ) D( +no,T) 5 Pwi®p 2T, 5 (@ i) +"01T1 (18)
Doy =1+pB+B.+8 Cun(1 22)+£31R1 19)
om P T o \2 16 24 °F (
-
In these expressions we have introduced the following terms: 7= J‘ Jilkov, /2o, 43
Ui 1= moa ’
@p; = |op d v, Bp = f —wp,; d’v, (20)
L R . Il 50 fou s
and the following integrals which pertain to the alpha parti IL=—- | —/——*d (21)
cles: Dpa
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with the drift velomty op defined in Eq. (12). The beta of the
alpha particles can be expressed in terms of the ion beta since
the ratio of their densities is fixed and the alpha temperature
is chosen consistent with the assumptions made.

In the high-frequency regime where the frequency of
the oscillation can be comparable to the ion gyrofrequency,
ie., w S 42, €12, the quasistatic condition employed in deriv-
ing the previous dispersion relation will no longer be valid;
instead, the perpendicular form of Ampere’s law and the
quasineutrality condition constitute the basic equations, i.e.,

qunj’ =0,
]

Moreover, the difference between the actual position of the
particle and its guiding center position takes on added im-
portance in the high-frequency regime, so that in this case
the perturbed distribution function for a species s becomes

g (bXVfo,)
.fls = ——j,:'f;)x¢+c—Bos.Al +qst
(¢z '2l _ ile.l JnJ;t )
a@p, — @ — nid, ¢ Top —o—nld,
kxb-VlnnoS

X ( 14+n pE; ) {23)
In order to make the analysis tractable we retain only the
n =0, 4+ 1 terms in this expression for all the species. Once
again we assume that w»wpg, o, for the cold species but
keep the full frequency range for the alphas and the hot elec-
trons. With the aid of Eqs. (22) the matrix equation for the

(22) perturbed fields assumes the usual form, namely,
K4, = -5 qu k,v, sin(@ + I, d%, (D,s —B./2D, ( 9 ) o ”
9 p. b, Nae)=% >
where the angles are defined appropriately in velocity space. but with the new elements given by
|
D = (_’_’_o;_ ”Oe)(w.i —‘50.') + (ﬂ-l' nOeTe\(w*i — @ p; )@ p; _ﬁ bin.? _ﬁgf_ DDy ;
*“ \N N ® N ' NT,) w? N 0>°-022 N o*—0°?
Ron Ti w*h_abh) 4”0(17-'1[ w—wta‘RcI: ( wta) ( (O
—_— + 1 —| 1 1— 7, 1 = ||}, 2
N T,,( © — By, NT, | + 0, A s+ A2, ot +b,,na ? 25)
p =l B e M @u® +@L(“’*“’~h)_4"w 1 R o-o,
* N &*—022 N N b(0*—023) N\o—op, N kp, 4 o,
w {24 w 17 .
X[Is+(1— ;) )19+(1+b ;2 )Ilo], (26)
o 0(l —3b) ny 0,0 Bu (@ —ay,
D,...=1+B.~+Bc+ﬂ,-(*’—— —— )+——‘
Y — 022  ny 262027 2 \@w—ap,
@ (0—5 ) m, 2 Ba O — Wyq Rc Dya Dya
o K v s G s R G S (5 G
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NO ALPHAS
SLOWING DOWN VS. MAXWELLIAN 0.20 ——— 4
1.0 i
0.16 | :
5 0.8 ol UNSTABLE kp=02 {
é 0.6 &
E 0'4 Slowing Down 0'08 KPI\="° 1
7 I
O 0.2 0.04 / STABLE
0.0 ‘ 0.00 R ——
00 05 10 15 20 25 3.0 35 cc 02 04 08 08 1.0
ENERGY Bn

FIG. 1. Comparison of slowing down and Maxwellian distributions.
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FIG. 2. Stability boundary in the absence of alphas.
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DELTA IN SPEED Ta = 3.5 MEV
0.20 ———

T T T T T

0.16 |
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0.12 1

0.08 /—Kp.—os j
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B

FIG. 3. The effect of newly born alphas on stability.

In these expressions the average drift frequency @, has al-
ready been defined in Eq. (20), while the quantity b; is de-
fined by

b,=k2T,/m 2, (28)
and the integrals I through 7, pertaining to the alpha parti-
cle are given by

Jilk,v /2, dv, dy,

@ — Wy,

I,=¢[ fu

Soad v, dvy dy,

I Joad Fv, dv, dy,
0 —wy, +2, !

Ig= .
s=¢ o —wp, + 12,

18 =§ffoaJo-]évi dvl dv" ) 19 =§ anJlffvf dvl dv” ,
@ — WDpy @ — Dpy "I"-Qa
(29)
L& SoadiJ (V1 dv, dy,  L—¢ o 503 dv, dv",
@ — Dpy ——.Qa @ — Dpy
I,=¢ Joa (J;)zvi dv, dU” , Ip=£ an(J“zUi dv, dv||

®— @p, + {2, ©—wp, — 2,

E=2r[ -4 /R )o,.].

MAXWELLIAN T, = 600 KEV
0.20 — T T

0.16

UNSTABLE

012}

0.08 b

0.04 |

0.00

FIG. 4. Stability boundary in the presence of alphas.
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MAXWELLIAN T, = 100 KEV
0.20 ————————+—7— T

UNSTABLE

FIG. 5. Stability regions for alpha temperature at ten times the ion tempera-
ture.

Since in the high-frequency case the dispersion relation is not
quadratic in w, though algebraic, the solution is obtained by
plotting w/£2; vs 3;, and an instability would occur when
two real roots merge to form a double root.” That informa-
tion is then utilized in plotting the stability boundary for the
various conditions to be discussed below.

lil. DISCUSSION OF RESULTS

As we noted earlier, the slowing down distribution
function for the fast alphas represented by Eq. (7) does not
lend itself readily to the needed analytical manipulations and
as a result we replace it with the Maxwellian shown in Fig. 1.
An alpha particle temperature of about 600 keV allowed for
the good agreement displayed in the figure and for compara-
ble first and second moments of both distributions. In order
to provide a comparison with the stability results in the ab-
sence of alphas, we include Fig. 2 which shows the stability
boundary for the background and interacting interchange
modes obtained by several authors.!>!? These results were
obtained from the dispersion equation (15) when the low-
frequency approximation was indeed invoked and a hot-
electron temperature of 7), = 2.5 MeV was used. At the in-
stant of birth the alpha particles are assumed to have a delta

DELTA Ta = 600 KEV

0.20 T T T T T
o mmememmeeeee kpe =05
0.16 Wpa = (2
UNSTABLE === --- kpa =24
0.12 |
R 0,08 |
0.04 STABLE 1
0.00 L 1 ] L i 1 i
0.0 0.4 0.6 0.8 1.0

FIG. 6. Stability domain for a peaked distribution of hot alphas.
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NO ALPHAS Tn = 5 MEV
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0.12 : UNSTABLE ]
i _
0.08 | ]

0.04

i

0.00 ) I L L 1 -
0.0 0.2 0.4 0.6 0.8 1.0

B

FIG. 7. Stability boundary as obtained in the “exact” calculation.

function distribution in speed corresponding to T, of 3.5
MeV, and the stability boundary in this case is shown in Fig.
3. We note immediately the destabilizing effect of the alphas
on the interacting interchange mode with the concomitant
stabilizing effect on the background interchange as reflected
by the reduction in the hot-electron beta (8, ). Recovery of
some of the stability of these modes is obtained when the
alphas slow down, and this is vividly illustrated in Fig. 4
which gives the stability boundary for Maxwellian alphas at
T, ~600 keV. In all of these results the background plasma
was assumed to have a temperature of 10 keV. Further re-
covery of stability is achieved as the alphas slow down
further. This is depicted in Fig. 5 where T, is taken to be 100
keV. It should be noted that in choosing this temperature no
attempt was made to satisfy the steady-state condition in-
voked in arriving at the slowing down distribution and its
concomitant Maxwellian; rather, the view is adopted that a
Maxwellian distribution at 600 keV has slowed down to a
temperature of 100 keV and the resulting stability boundary
has changed from that in Fig. 4 to that in Fig. 5. On this basis
complete recovery of the original stable regime is in principle
achievable if the alphas are allowed to totally thermalize
with the background ions, but this analysis does not include
this case since Eq. (7) breaks down in this limit. Itis clear that
so long as the alphas remain reasonably hot relative to the
background plasma, they will have a net destabilizing effect

NO ALPHAS Tn = 10 MEV

T T

0.20 T

0.16 | 1

UNSTABLE

0.04

0.00

FIG. 8. Stability domain for two values of the coupling parameter.
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NO ALPHAS Ty = 20 MEV
0.20 ——————————+——

UNSTABLE

0.04 | STABLE

0.00 . - .
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Region of stability for a very hot electron ring in the absence of
alphas.

since they act much like the hot electrons in destabilizing the
interacting interchange. Figure 6 is included to provide a
simulation for a neutral beam heated EBT since the alphasin
this instance were taken to have delta function distributions
in both the perpendicular and parallel energies.

The results shown in the figures mentioned are some-
what inaccurate since they are based on a quadratic equation
in @ which one obtains when the low-frequency approxima-
tion is invoked. If such an approximation were not made and
the frequency was allowed to assume its value up to and
including the ion gyrofrequency, then the “exact” value for
the stability boundary would be obtained and the results
might be significantly different from those of the low-fre-
quency approximation. Similar observations were noted in
Ref. 7. For example, in the absence of alphas the exact treat-
ment shows that no stable region exists when T, = 2.5 MeV
and comparable conditions to those of Fig. 2 are used. When
T, is increased to 5 MeV, a small stable region appears as
demonstrated in Fig. 7, which in turn would also be smaller
had the full coupling condition between the wave and the
drifts, i.e., k,/k, = 1, been used as was done in the case of
Fig. 2. This trend can be seen in Fig. 8 where the stability
boundary for two values of the coupling parameter is shown.
Moreover, it can be seen from Figs. 7, 8, and 9 that the stabil-

NO ALPHAS Th = 20 MEV
0.20 ——————— :

L ——

0.16
UNSTABLE

0.12 t J

STABLE

0.04

0.00 .

FIG. 10. Stability boundary for the high-frequency Alfvén waves.
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To = 600 KEV Tn = 10 MEV
0.20 —— 77—

0.16 ]

I UNSTABLE
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o
o
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0.00
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 11. The effect of fast alphas on stability for 7, = 10 MeV.

ity region is enhanced when the hot-electron temperature is
increased from 5 to 20 MeV. The latter value of T, is chosen
in order to make T, /T; equal to 2000 and thus provide for
comparison with other works"’ even though such a tem-
perature may not be desirable from a reactor standpoint.®
Comparison of Figs. 9 and 10 reveals that if all other param-
eters are kept the same and only the coupling parameter is
increased from 0.5 to 0.7, a new unstable region (island) ap-
pears which is associated with the high-frequency Alfvén
waves.

When the effects of alpha are included in the exact
treatment, it can be seen from Figs. 8 and 11 on one hand,
and Figs. 9 and 12 on the other, that the alphas tend to be
slightly destabilizing of the (low-frequency) interacting in-
terchange (as reflected in the region near small values of 5,,)
while stabilizing of the high-frequency modes. In fact, the
presence of alphas completely stabilizes the Alfvén mode, as
can be seen from Figs. 10, 12, and 13, where also the coupling
parameter was increased from 0.5 to its full value of unity in
order to dramatize the most unstable case.

IV. CONCLUSIONS

The stability of an ignited EBT reactor burning a mix-
ture of deuterium and tritium was examined by assessing the
effects of the alpha particles generated by such a fuel on the

Ta = 600 KEV Thn = 20 MEV
0.20 p——-—

UNSTABLE

FIG. 12. The effect of alphas at a higher electron ring temperature.
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To = 600 KEV Tx = 20 MEV
0.20 T

T T T T

=

Y - 1.0

0.16 L 1

UNSTABLE i
012 | E

0.04 | STABLE

0.00 !
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 13. Stabilization of Alfvén waves by the alpha particles.

stability of the background interchange modes, the interact-
ing interchange modes, and the high-frequency compres-
sional Alfvén and coupled modes. It is shown that in the
absence of alphas a certain minimum value of the hot-elec-
tron temperature is required for stability. It is also shown
that the alpha particles tend to stabilize the background in-
terchange mode (through its sizable finite Larmor radius)
while mildly destabilizing the interacting interchange mode.
In addition, the alphas tend to completely stabilize the high-
frequency Alfvén and coupled modes. The most pronounced
destabilization by the alphas comes about when their energy
is highest (at or near birth energy of 3.5 MeV), but significant
recovery of stability is obtained as these particles slow down
towards thermalization. In short, there appear to be no ser-
ious detrimental effects on stability that would arise from the
presence of alpha particles in an EBT reactor that contains a
hot-electron ring appropriately chosen to provide macro-
scopic stability.
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