
M-L. Smoes

Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109

In Appendix A, the comment following Eq. (A5) should obviously be that the period reaches a minimum (rather than a maximum) of $2\pi/a$ for $z_1 = 0$. At the end of the same Appendix, the expressions given for X_{max} and Y_{max} are not correct. Indeed, for any value of z_1,

$$y_{\text{max}}^2 = \frac{\mu_2^2}{2} \left(\frac{\mu_1^4 + 2\mu_2^2(\omega^2 - \omega^2)^{1/2} + 4a^2}{\mu_1^4 + 4a^2} \right)$$

$$x_{\text{max}}^2 = \frac{\mu_2^2}{2} \left(\frac{\mu_1^4 + 2\mu_2^2(\omega^2 - \omega^2)^{1/2} + 4a^2}{\mu_1^4 + 4a^2} \right)$$

with the upper sign for $z_1 > 0$. In terms of the model parameters E_2, E_1, and a

$$\mu^2 = E_2 + E_1$$

$$\omega = a(1 - z_1^2)^{1/2}$$

$$z_1 = (E_2 - E_1)/2a$$

In the limit $|z_1| \to 0$, $\omega \to a$, and the amplitudes are given by

$$\lim_{|z_1| \to 0} y_{\text{max}}^2 = \lim_{|z_1| \to 0} x_{\text{max}}^2 = \mu^2/2$$

Near the saddle-node transition, in the limit $|z_1| \to 1$, $\omega \to 0$ and the amplitudes are related to the parameters as

$$\lim_{|z_1| \to 1} y_{\text{max}}^2 = \mu_2^2 \left(1 + \frac{2\mu_2 a}{\mu_1^4 + 4a^2} \right)$$

$$\lim_{|z_1| \to 1} x_{\text{max}}^2 = \mu_2^2 \left(1 + \frac{2\mu_2 a}{\mu_1^4 + 4a^2} \right)$$

with the upper sign for $z_1 > 0$. The increase in amplitude with an increase in μ^2 is illustrated in Fig. 1. The waveform shows the highly relaxational character of the symmetric Bautin oscillations near the saddle-node transition ($|z_1| = 1$). The bistability which will appear at $|z_1| = 1$ is already apparent in the upper and lower plateaux of these relaxational oscillations. In the asymmetrical system, there is only one plateau and the transition is to a monostable system.\(^1\)