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It has been shown recently that in order for real-time correlation functions obtained from centroid
molecular dynamic$CMD) simulations to be directly related, without further approximations, to
the corresponding quantum correlation functions, one of the operators should be linear in the
position and/or momentufidang and Voth, J. Chem. Phyld., 2357(1999]. Standard reaction rate
theory relates the rate constant to the flux—Heaviside or the flux—flux correlation functions, which
involve two nonlinear operators and therefore cannot be calculated via CMD without further
approximations. We present an alternative, and completely equivalent, reaction rate theory which is
based on the position—flux correlation function. The new formalism opens the door to more
rigorously using CMD for the calculation of quantum reaction rate constants in general many-body
systems. The new method is tested on a system consisting of a double-well potential bilinearly
coupled to a harmonic bath. The results obtained via CMD are found to be in good agreement with
the numerically exact results for a wide range of frictions and temperature200@ American
Institute of Physics.[DOI: 10.1063/1.1412870

I. INTRODUCTION chain is known as itgentroid The structure of PI-QTST is
similar to that of classical TS except that the classical
The effect of dissipative environments on barrier crossposition is replaced by the centroid of the corresponding
ing rates has been a central concern of theoretical chemistghain.
for many decades.Until quite recently, most computations Attempts to go beyond QTST were based mostly on an
of reaction rates in condensed matter were based on classiGtpression independently derived by Yamambtand by
mechanics. Classical calculations are rather accurate at higlliller and co-workers>*® which relates the reaction rate
temperature. However, significant quantum corrections to thgonstant with the equilibrium flux autocorrelation function.
classical rate emerge at intermediate temperatures. At evelakri and co-workers have presented a numerical procedure
lower temperatures, below a characteristic crossover tenfor evaluating the quantum flux autocorrelation function, and
perature, quantum tunneling becomes the dominant mech@ence the exact quantum rate constant, for a reaction that
nism and the rate becomes weakly dependent on temperggkes place along a well-defined reaction coordinate, in a
ture. Quantum effects play a particularly important role whenarmonic batt?-*® This methodology is based on the influ-
light particles such as protons and electrons are involved. lgnce functional formalism of quantum dissipative
general, the quantum reaction rate is enhanced relative to thfnamicsi®2! and involves the evaluation of real-time
classical rate, due to tunneling and zero-point energy effect§eynman path integrafsThe restriction to a harmonic bath
The coupling to a dissipative environment is generally foundyrises from the fact that, in this case, the influence functional
to diminish this quantum enhancement, and causes other igan pe evaluated analytically. Such an analytical solution is
teresting effects such as the “Kramers turnover.” not available when the bath is anharmonic. Unfortunately,
Several attempts to evaluate solution-phase quantum rene numerical calculation of real-time path integrals is noto-
action rate constants have been made. Early attempts orig,ii—ous|y difficult due to the infamous sign problem, although
nated from efforts to develop a “quantum transition statejecent attempts based on semiclassical approximations are
theory” (QTST). Of these, one of the the most successful isquite promising:8-22-26
Path-integral-QTST(PI-QTST),*~® which is based on the An alternative approach is based on analytical continua-
centroid concept:”® This concept comes from the path- tion of imaginary time flux autocorrelation functiofs:2?
integral formulation of quantum mechanit¥)according to  |maginary-time path integrals can be calculated numerically
which the equilibrium thermodynamics of a quantum particleg,, relatively complex systems, by performing Monte Carlo
is analogous to that of a classical cyclic chain of beads cong; molecular dynamics simulations on the corresponding
nected by harmonic spring$**The center of mass of such a ¢|5ssical chaingPIMC and PIMD, respectively:'2 How-
ever, difficulties arise due to the fact that transforming from
dElectronic mail: eitan@umich.edu imaginary time to real time is numerically unstable. Never-
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theless, Berne and co-workers have recently shown that N (p1)2 N (p1)2
some of these difficulties may be resolved, at least at inter- H= Y, 2—(;7+V(>‘<(1),...,>‘<(N))EE 2—(77+V(>2).
mediate temperatures, by using a maximum entropy =1 m (=1 2m
proceduré®=3228 and by incorporating knowledge on the @
short-time dynamicd®?° It still remains to be seen if this Here, as in the rest of this paper, we use boldface letters for
approach will also be applicable under low temperature conyectors and letters capped with a “hat,” ey, for operators.
ditions, and in the case of more anharmonic systems. g=xW,... 5Ny and p=(pD,...,pMN)) are the vector op-

In the present paper, we introduce a new and rather diferators that represent the Cartesian coordinates and conjugate
ferent approach to the calculation of quantum reaction ratgnomenta, andm(®} are the corresponding masses. Canoni-

constants. Like PI-QTST, it is based on the centroid concepkal equilibrium is described by the following normalized
However, it avoids any kind of TST-like approximations, and density operator:

explicitly accounts for dynamical effects within the frame- .

work of centroid molecular dynamic€CMD). CMD is an p=e Pz, 2
approximate method for calculating real-time quantum cor- .

relation functionS:*~It is based on the hypothesis that the Where Z=Tr(e”#"). The equilibrium expectation value of
centroid follows classical-like dynamics, and that quantuman observabled, is given by

effects can be incorporated by modifying the initial sampling . .

and the force fields, as well as by representing dynamical {(A)=Tr(pA). ()

observables by suitably defined “centroid symbols.” In the CMD is based on an alternative representation of Egs.

last few years, CMD has been shown to be useful and COMm) and (3) in terms of a classical-like phase-space
putationally feasible for realistic, complex, many-body Sys'descriptiorﬁg"‘o

tems(see, e.g., Refs. 41-h0

The main obstacle that stands in the way of calculating ~ 1 dx.dpe
reaction rate constants via CMD has to do with the following <A>E<Ac>czzf f Wpc(xc: PJAXePe),  (4)
fact: In order for real-time correlation functions obtained ) N) ) N
from CMD simulations to be directly related to the corre- Where Xc=(x¢”,...xc"’) and pc=(p;’,....n¢") are
sponding quantum correlation functions, one of the operatorglassical-like coordinates and momenta, and
must be linear in the position and/or momenttiiThe flux dx.dp
autocorrelation function does not satisfy this criterion, due to ZEJ f e pe(XePe).- (5
the nonlinear nature of the flux operator. As a result, previous (2a)
attempts to use CMD for calculating the flux autocorrelationas is well known, the transformation between the quantum
function had to involve additional approximations whose Va‘operatorsﬁ andA. and the corresponding phase-space func-
lidity is not always clea?>***!In contrast, the new method s pe(XePd) and A (XopJ), is not unique. For example
presented below avoids any approximations other than thosg \}Vigcne; and Husimi transforms providé wo such dis-
which are intrinsic to CMD?4 This is made possible by incqy different phase-space representatithishe centroid
starting with a different, yet completely equivalent, expres-tormajism is based on yet another choice of such a phase-
sion for the reaction rate constant, which involves anothegpace representation. In this case, the classical-like phase-

correlation function that is linear in the position and as Sucrbpace probability density is given by the following “centroid
can be calculated directly via CMD. probability density:”

The remainder of this paper is organized in the following
way: A short overview of CMD for a many-body system is N (piny?
given in Sec. II. The new method for calculating reaction rate  Pc(Xe:Pe) = pe(Xc)€X —,3;1 S | (6)
constants is then discussed in Sec. Ill, while the method is
tested on a system consisting of a double-well potential biwhere
linearly coupled to a harmonic bath in Sec. IV, where a com- N 2 B2\ 12
parison to the exact results is also made. The main conclu Pc(xc):iﬂl ( ) fX(O)X(Bh)DX( -y

) . ) ) X
sions of this work are summarized in Sec. V. m® ¢

Bh
—(ﬁh)‘lfo drx(7) exp{— S[x(7) ]/}

Il. CENTROID MOLECULAR DYNAMICS (CMD) N 2mBh? 12/ m(p \ P2
o I {55 o)
In this section, we give a short overview of CMD, in the P 151 B
context of a many-body system, with emphasis on results 1P
that are important and useful for the present study. The dis- Xf dx - J dxp(g( Xo— — >, Xk)
cussion follows Refs. 38 and 39, where further details may Pi=1
be found. Xexpg{ —S[Xy, ... Xpll}, )

Consider a general quantum system withdegrees of
freedom whose quantum mechanical Hamiltonian operator isith
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CMD is a method for calculating real-time equilibrium

7 S[X( 7)]=lim - S[XL---, Pl correlation functions in many-body quantum systems. Start-
pef ing with the initial state X.,p.), the dynamics of a centroid
1 (ph Ny observablesA., is exactly given by’
:%f dT{Z Em<'>[>'<<'>(r)]Z+V(x(T)) , A A
0 = Ac(t;Xe,Pe) = Tr{ 8c(t;Xc, Pe) A, (15
8
where,
and . A
- Bo(ti%e,po) =€~ M5 (x, po) €'Y, (16)
! = L 02 (xO_ x) 2 , , : »
7 SIXe . xp] =B iZl kgl 7 MY wp(Xi —Xict 1) In particular, the dynamics of the centroid positions and mo-
menta are governed by the following classical-like equations
1P of motion:
ERLUE ©)
P k= (')(t)
_ - ) xO(t) = (17)
In EQ. (9), Xp41=X; and w,=P/(Bh)*. dt
Two important points should be noted with respect to
Fas. (09 L o0t =10tx,). (18)

(1) pc(Xo) is given by an imaginary time path integral over dt

all possible cyclic paths, and is proportional to the prOb'Here,fC(tzO;xc)EfC(xC) is the centroid symbol of the force,

ability density of finding a classical system consisting Ofwhich can be shown to satisfy the following rather remark-
N cyclic chains with their centers of maghe centroids able identity?®

atx®M,... xN e, atx=x..

(2) Unlike other phase-space representations of the canoni- ) =TH 3.(x VNV = — Vo Vo (x 19
cal quantum density operatop.(X.p.) assumes a (Xe) = TH e(XePIL = V(R I} Vem(X0)- (19
classical-like form. This is made clear by defining a cen-

) . It should be emphasized that despite the classical-like ap-
troid potential V¢ (Xo), such that ) phastz b card P

pearance of Eqs(17) and (18), the dynamics obtained by
po(xg) =6 Flemxd (10) exactly solving them is fully quantum mechanidaf. Eq.
Cc c/ .
(16)].
CMD is based on the followingpproximationfor the

[It is important.to note thawv/ (X, is generallé;@different quantum dynamics of the centroid symbal,, of any dy-
than the centroid symbol of the potential operatd) namical observabla.:4°

The corresponding transformation betweAnand its

centroid symbolA., which ensures the validity of E¢4), is At Xe P~ A X(1),p()]. (20)
given by*
A A In particular, applying this approximation to the centroid
Ac(Xe,Pe) = TH{ 8¢(Xe, ) AL, (11)  symbol of the force yields
where 3.(x.,po), which has been denoted tig@iasi-density fd t;Xe Pl =f X(1), Pc(t) ], (21

operator, and whose trace is equal to 1, is given by ] ) ) )
which gives the equations of motion, Eq&l7)—(18), a

?(Xe:Pe) closed classical-like structure. The approximation in @6)
(%P’ (12 becomes exact in one, or all, of three cagds:when the
time goes to zerof2) in the classical limit; and3) in har-
with monic systems. However, a variety of examples has demon-
strated that this approximation is in fact useful for a wide
. Ao\N o PO range of realistic systems, especially for short times. The
(X pc):(ﬁ) ﬁmdgﬁmd’?elé(x Xt (PP M strength of the CMD approximation comes from the fact that
(13) it reduces quantum dynamics into classical dynamics on the
centroid potential surface, which can be obtained from com-
[=Y,..... Ny, p=(5Y,....»"™")]. In practice, it is putationally feasible imaginary-time path-integral simula-
convenient to use the path integral representatiop(gf, p.) tions. Furthermore, at long times, CMD reproduces the exact
in order to find the centroid symbol of a given quantumequilibrium centroid distribution, and hence the exact regres-
observablé? In particular, the centroid position and momen- sion behavior limit:®
tum can be shown to coincide with the centroid symbols of  The relationship between correlation functions directly
the position and momentum operatdt4? calculated from CMD simulations and the corresponding
quantum equilibrium correlation functions is based on the
Xe=TrH{ 8c(Xe: PR}, Pe=Tr{d.(Xe:Po) P} (14)  following identity35

3C(XC1pC) =
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~ ~ of reaction rate constants via linear-response theory. The sec-
Bf d\ e (F=NHge M tion closes with a discussion of how reaction rate constants
can be calculated directly from CMD simulations, without
dx. dp. additional approximations to the correlation functions.
J J (27h) N Pc XCvpc)Xc 0c(XePe)- (22

) i . A. Phenomenology
Multiplying Eq. (22) by eHUiBe IR \whereB is any op- W will or simplici imolecul _
erator, and tracing over the result, leads to the following e will focus, for simplicity, on a unimolecular reaction,
identity: such as isomerization, that takes place in solution, along a

predefined reaction coordinate. The total Hamiltonian is

dxcdp iven b
JJ(Z Cﬁ):‘ Pc(Xe P XBe(t;Xe, Po) = C)If;bo(t) (23 g Y

"2 N ()2
~_ b7 (P
where A=Zmt 2y Vo) +V(Q+WQs).
o 27
Kubo — (B- )\)HA —\A eiHUA B o= iHUA
(t)= f oA Trie” Be ; Here,§', p, andm are the reaction coordinate, conjugate
1 (s momentum, and corresponding mass, respectively;
:EI d\(X(0)B(t+iAN)) 4 =(QW,... 0Ny P=PW, .. PN and{M®} are the co-
0

ordinates, conjugate momenta, and masses of the bath de-
is the exact quantum Kubo-transformed correlation grees of freedom, respectively;(3'), V(Q) andW(9,8")
function>® Note that the following definition of the “regu- are the potential energies of the bare reaction coordinate, the
lar” quantum correlation function was utilized in the last bath, and their interaction, respectively. It is assumed here

equality of Eq.(24): that Vo(3') has the shape of a double well, and that the
o 1 . barrier top is located &' =s*. It is convenient to redefine
Cas(t)=(A(0)B(t))= ZTr{e‘ﬂHAe'H”hBe"H”h}. the reaction coordinate such that its origin coincides with the
(25) position of the barrier top. Hence, a new reaction coordinate,
s, is defined
Applying the CMD approximation, Eq.(20), to ;4
B.(t;Xepo) in Eq. (23), leads to the following approximate S=S =Sh (28)
expression for this quantum correlation function: and the Hamiltonian in Eq(27) is rewritten in terms of it
Kubo dxcdpc B2 N p2
f f (27h) N pc(xc!pc)xc C[Xc(t) pc(t)] ﬂ 2pm+|2 —P(*5+VO(S)+V(Q)+W(Q 3). (29)

(26)

An important point is that Eq23) still holds if X andx, are ~ Here, Vo(8")=V,(8' —s"), W(Q,8)=wW(Q,& —s"). It
substituted byp and p., respectively, or by a linear combi- should be noted that the barrier top is now located=a0.
nation of these two operators, but does not hold for other Let Pr andPp be the mole fractions of the reactarst
types of nonlinear operators. Hence, the relationship between 0) and the products>0), respectivelyPr and Pp may
correlation functions that are calculated from CMD and thebe expressed as quantum expectation values
corresponding quantum correlation functions is only well es- 1D A
tablished when one of the operators is lineakiand/orp. Pp=1-Pr=(n(8)=(h), 30

Several attempts have been made to extend the applicathere h=h(3) is the Heaviside function operator:
bility of CMD to correlation functions involving two nonlin-  (s|h(3)|s’)=&(s—s’) for s>0, and zero otherwise.
ear operator®>**°:54|n practice, all of these approaches  The concept of the reaction rate constant is based on the
involved additional approximations. In this paper we pursueollowing phenomenology:
an alternative approach, where instead of trying to change .
the CMD formalism so that it can be used for directly calcu- PP~ ~Pr=~ krpPp+tkprPr, (3D
lating correlation functions with two nonlinear operators, weor equivalently
express the desired quantity in terms of a correlation function :
which has the form of that in Eq24). This approach is OP i =—kéP;. (32
demonstrated in the following section for the case of theqere, i=P or R, k=kpg+tkgp, oP;=P,—PFf, P&l

reaction rate constant. =kpr/k, and Pg=kgp/k (it should be noted that the mole
fractionsPR? and P34 are sometimes denoted By andxp).

IIl. REACTION RATE THEORY Relaxatiqn processes are generally chara.cteri.zed. by
many relaxation times, not one. In order for reaction kinetics

In this section we discuss the quantum theory of reactiorio be described by a single rate constant, the effective barrier

rate constants. We start by defining the phenomenologicanergy,E,, has to be high, i.eg #Eb<1. This is indeed the

kinetics upon which the concept of the reaction rate constantase in many problems of chemical interest, and it results in

is based. This is followed by a discussion on the calculatiorone relaxation time which is much longer than the rest, and
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with vanishingly small amplitudes of the other, faster, e—,eﬁ

decays°>~>" Under these circumstances, the above phenom-  5(0)=

enology becomes valid after a short transient time during

which the reaction does not make a significant progte®. _ e AL N RN /A A
The reaction rate constant can be obtained from the fol\—Nhere Z=Te 7], SAM)=A(1)~(Aleq:  (Aleq

B A
Z {1—ffod)\6A(—lh)\)], (36)

lowing expression: =Trle PHAY/Z, andA(r)=€"""Ae 7" We may now
. propagatep(t) in the usual wayp(t)=e """ 5(0)eHV",
k~ke =~ Pi(t)/ 5P;(0). (33)  which leads to
The approximation in Eq(33) is justified as long ag efﬁl:i B A
<1/k. We expeck to be explicitly time dependent during an p(t)= Z [1—ff dA 5A(—ih)\—t)]. (37)
initial transient period, &:t<t,(<1/k), following which it 0

will reach the “plateau region,” where it acquires a fixed
value®”®8 This fixed value corresponds to the actual phe
nomenological reaction rate constant. Thus,

The expectation value of any observate, at a later time
“can then be obtained as follows:

. ~ B " .
k= limk(t), (34 (6B(1))=Tr{ p(t)6B]= —ff dA(SA(0)SB(t+i%iN))
t*?tp 0
i - Kubo
with k(t)=— 5P;(t)/8P;(0). =—fBC4 51, (38)
whereC};}iboé(t) is a quantum Kubo-transformed correlation

function[cf. Eq. (24)].
In the case of reaction kinetics, the observed quantity is
the instantaneous mole fraction of the product. This dictates

Direct evaluation of the reaction rate constant from Eq.thaté:h(g) in Eq. (38). However, we are left with almost
(33) would require explicit nonequilibrium quantum dynami- complete freedom regarding the choice of the actual pertur-
cal simulations. Such simulations are generally not fea&blgaﬂon,'&_ The standard linear response expression for the

in condensed phase systems, due to the exponential scalifgyction rate constant corresponds to one particular

of the computational effort with the number of degrees of , . 1462 A hra . oA
freedom®® In fact, Eq.(33) is not very useful even if we choice, ™™ namelyA=h(s). In this case, one substitutés

assume that the dynamics is governed by classical mechar?—B:h(g) in Eq. (38), to obtain

ics. This is because barrier crossing processes follow rare (5ﬁ(t))z—fﬂCK9b°A(t) (39)
event statistics, and prohibitively long classical molecular oh, oh
dynamics simulations would be required if good statistics on; can be shown thatsh(t) commutes with e—,eﬁ at

barrier crossing events is to be obtained. t># .631516684Thys as long at,>% 3, we may substitute
Linear response theory provides an alternative route fo Kubo

. . : fhe Kubo-transformed correlation functic@’: ~(t), by the
calculating reaction rate constants, which help overcome . . o oh,oh”
both of the above difficulties. This approach is useful when'egular correlation functiorC s, 5i(t) [cf. Eq.(29)]:
the kinetic_s is exponential at .aII. time scales of prgctical in- <5ﬁ(t)): —BC . n(1). (40)
terest and if the rate constant is indeed a constant in the sense
that it is independent of the initial state. Under such circum-Exchanging the Kubo-transformed correlation function for a
stances, the conditions under which the reaction rate constafggular correlation function would usually be a welcomed
is actually evaluated becomes a matter of conveniéh®. simplification. However, it should be noted that this is not so
Choosing the initial state in the vicinity of thermal equilib- in the case of CMD, which yields correlation functions that
rium then allows us to take advantage of linear responsére already in the Kubo-transformed form.
theory?*®3 In this subsection we briefly review, for com- Proceeding with the above choice &f=h(3), and sub-
pleteness, the general formulation of linear response theorgtitutingt=0 in Eq. (40), we obtain
followed by a more specialized adaptation to the case of . . . .
barrier crossing kinetics. (8h)(0)=—fB((8h)?)eq=—FB(h)eq(1—()eg)

Consider a quantum system with the total Hamiltonian — — fBPEIPEd (41)
~ ~ A . . PFR -
H+fA att<0 andH att=0. Here,f is a scalar coefficient,

andA may be any perturbation that can shift the system frorﬁo‘ssu{nit,ng efxpotr)ent?al ginggcs'thijz)’ Ionz finds that the
the equilibrium state ™ #"/Tr(e #H). At t=0, the system is correlation function in Eq(39) should also decay exponen-

B. Linear response theory and the standard reactive
flux method

assumed to be in thermal equilibrium with respect to thetIally
perturbed Hamiltonian (P ) Ca D) . "
p(0)=e PHTTA T e AHTTAY (35) (shy(0) PEIPE

In the linear response limit, E§35) may be replaced by its The first equality in Eq(42) is based on Eqg40) and (41),
expansion to first order in powers 6 while the second equality is based on E(#0) and (32).



9214 J. Chem. Phys., Vol. 115, No. 20, 22 November 2001 Geva, Shi, and Voth

V(s)+s V(s) The second and third expressions for the reaction rate
constant in Eq(43) are potentially useful in practice, due to
their ability to circumvent the problem of rare event statis-
tics. The very inefficient sampling over all the initial states
that do not make it to the barrier top is avoided by the spatial

> delta function in the flux operator, E¢44), which biases the
sampling to initial positions at the barrier top.

t<0 t>0 C. Reaction rate constants from CMD

o . . . ) As discussed in Sec. I, using CMD to directly calculate
FIG. 1. A schematic view of the “regression experiment.” &0, the . . .
system is assumed to be equilibrated with respect to the potential enerdy correlation f!“m(_:t'on Presemly fequ'res that at least one of
along the reaction coordinate, which is perturbed, and the perturbation is the operators is linear in the coordinates and/or momenta. In
assumed to be linear is The perturbation is removed &0, following  the case of calculating reaction rate constants, one of the two

which the system is allowed to relax to the equilibrium state with respect tooperators is already dictated by the underlying physical ob-
its natural potentialyy(s). The sought-after reaction rate constant governs

the relaxation of the reactant and product populations towards their newervation, nar‘je')B: h(8). However, the choice of the sec-
equilibrium values and is independent of the initial perturbation. ond operatorA, which corresponds to the perturbation, is
essentially unconstrained in the linear response approxima-
tion. Obviously, the standard choice Af=h(3), a nonlinear
operator, is not convenient if CMD is to be used, for the
reasons mentioned earlier. However, we can always replace
it by a more convenient choice, namely= 8§, without any

loss of generalityThis choice will then lead to an expression

Substituting Eq(42) into Eq.(33) yields the following set of
equivalent expressions for the reaction rate constafft:

d
PpIPRk=— ¢ Chn(D)

t
= Cii(tp) = fo"drC&a(r).

t=t

P (43) for the rate constant in terms of a Kubo-transformed corre-
lation function that can be obtained directly from CMD.
where In particular, following a procedure similar to that in
d i 1 Sec. Il B, only this time withthe perturbation linear in the

Gin= 7 [ALh(®)]=5-[pa(3)+ 5(3)P] (44 reaction coordinatei.e.,A=3, leads to the following expres-

. . i o sion for the reaction rate constant:
is the flux operator. In deriving the first equality in E¢3),

the correlation functior€ s sn(t) was substituted b€y 7(t) Cquo(t )

since they have the same time derivative. The second equal- | _ _ sF \'P (45)
. . . PP P 65 Kubo .

ity in Eq. (43) is based on the identit§€Az(t) = — CAa(1). Cs a0

The third equality in Eq.(43) is based on the identity

T e PHFh]=0.16% The expressions in Eq43) are of  With the help of Eq(23), Eq. (45) can now be put in terms
course well knowt~1884and widely used. of the centroid formalism

__ JdseJdpeSdQcfdPepe(Sc,Pes Qe Pe)ScFe(tp;Se,Pe s Qe Po)
fdscfd P dQcf dPcpc(Sc s Pe Qe Po) 8Scohc(Sc ,Pe, Qe Po)

(46)

The choice of the perturbatio&=§ in this approach to causes a relaxation, or regression, of the reactant and product
calculate the reaction rate constant has a straightforwargopulations to their equilibrium proportions with respect to
physical interpretation, which may not be obvious from thethe unperturbed potential. Upon application of linear re-
resulting expressions in Eq$45) and (46). More specifi- Sponse theory, an alternative expression to the reaction rate
cally, a linear perturbation applied along the reaction coordiconstant is obtained, namely E@5). When visualized in
nate shifts the relative proportions of reactant to productthis fashion, the choice of a perturbation linear in the reac-
This can be seen schematically in Fig. 1, where a symmetrition coordinate in some ways seems more natural than the
double well along the reaction coordinate with a barrier  choice A=h(3) made in the more conventional treatment
top ats=0, becomes an asymmetric double well when thecf. Eqgs.(39)—(43)].
perturbationfA=f3 is applied att<0 [cf. Eq. (35)]. The The evaluation of the centroid symbols of the Heaviside
perturbation is switched off at>0, and the double well and flux operators is straightforward, although rather tedious.
reverts to its unperturbed symmetric form. This, in turn, The final results are as follows:
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Pe(Se,Pe Qe =THLOK(S: e Qo] PERe) >=0f Dsmf DQ(7)
pe (S¢.Qo) CeT s(0)=s(ph) Q(0)=Q(Bh)

N pce(Sc, Qo) “n

B
X (hﬁ)‘ljo d78(s(7))

Fe(Se,Pe» Qo Po) =Tr 8(S¢ ,Pe » Qe PO F]
& P(,:(Scch)

8 SC—(ﬁB)_lfOBthS(T)

Bh
~ M pe(5..00) (48) 8 Qc—(hB) fo drQ(7)
Xexp{—S[s(7),Q(7)]/A}
where
limMP) | d d dQq. - [ d
plinm()f Sy f spf Q1 f Qp
10 12
clSes c:C D D — __
pelSe. Qo) L(O)=S(ﬁﬁ) S(T)fQ(0)=Q(Bﬁ) Q) x Pk; 5(3")HS° Pkgl Sk}
Bh p
X O SC—(ﬁﬁ)*lfo drs(7) Qc_égl Qk}
X S QC_(Bh)flf'BthQ(T) XEXM_S(S]_ ..... SPin ..... Qp)/ﬁ}, (51)
0 with
xexp{—S[s(7),Q(7)]/h}
_S[S(T) Q 'T)]— ||m 8[51 ..... Sp,Ql ..... Qp]
=i ol
P[anP)fdsl | as. [ dor- [ aq, :
12 12 =+ [T arl Gmistor
X 6 S°_52 SkF[Qc——E Qk} o 2
k=1 Pi=1 N
X exp{—S(Sq,...,5p,Q1,....Qp) A}, (49 +i21EM(i)[Q(i)(T)]ZJFVo(S(T))
+V(Q(T))+W(S(T).Q(T))}. (52
p;r(schc):C Ds(7 f DQ(7)
s(0)=s(p#) Q(0)=Q(Bh)

1 Po(1
gs[sl ----- Sp, Q1.+, QP]:,BKZl [Emwlzj(sk_skJrl)z

B
X (Bﬁ)flfo d7h(s(7))

N

z ZM(I) Z(Q(I) (ki-a—l)z

I SC—(,Bﬁ)flf:ﬁdTS(T)

1
+ E[VO(Sk)+V(Qk)

8 0t [ " drarn
0

xexp{—S[s(7),Q(7)]/h} +W(Skak)]]- (53
=limMP) | ds;--- [ dsp | dQq--- | dQ 2y N 2\ ) 12
om 1 f Pf 1 f P o [(Zwﬁﬁ )H (2:\;,?? )
12 19 - (54)
X EE h(sy) || SC_EE Sy mp \N o pmOp P2
! ! MP)= C[(z 2)11 2)] :
wphe)i=1 \ 27 Bh

X 0|

1 P
Q°_5k21 Qk The discrete path-integral versions of the functions
pe(se,Qd andpl(s.,Qy) are equivalent to configurational

Xexp—S(Sy,---,5p,Q1,-.-,.Qp) /i }, (500  partition functions of a system consisting Nf+1 chains,
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whose centroids are fixed as,(Q(",...,QY). In the case top (the symmetry of the chain renders the actual identity of
of pg (s¢,Qo), the statistical weight for a given configuration the bead attached to the barrier top unimpojtant

is proportional ta>}_,h(s,)/P, i.e., the fraction of the beads It should be emphasized that E@6) gives the exact

in the s chain that lie to the right of the barrier top#0). In  quantum reaction rate constant. The CMD approximation is
the case op.(s.,Q.), the statistical weight for a given con- nextintroduced in order to treat the time evolution of the flux
figuration is proportional t&F_,8(s,)/P, i.e., the fraction . _

of the beads in thes chain ihét lie at the barrier tops( Fe(tSe,Pe; Qo) =Fel Se(1),e(1), Qcl(1)] (55
=0). Alternatively, p/(s.,Q.) can be associated with the [note thatF., Eq.(48), is independent oP.]. The centroid
partition function ofN+1 chains with fixed centroidand  position—flux correlation function can now be approximated
with one of the beads in the chain attached to the barrier in the following way:

SCFC(I;SC ’ pC !QC)

—_——

TN o2 a2 1
ubo (PC ) pC
(2wh)N+1ZC§gb (I)ZJ dscf dpcf dch dP; eXF’[—B_E W—’_ﬁ—’_vcm(SC:Qc)-

[N (i)y2 2 ]
(Pc)”  pe
%f dSchchdch ch eXp|_:8 le_"ﬁ'*'vcm(sm(gc) ]SCFC(SC(t)vpC(t)lQC(t))
[ N (i)y2 2 i
(Pe¢’)” e
:f dscfdpcfdch dP, eXF{_B ;lm(i)_"_ﬁ"_vcm(sca(?c) ]Sc(_t)Fc(chpchc)-

(56)

where the second equality is based on the approximation if35y.and the third equality is based on the time reversibility
of CMD correlation functions. Substituting EG8) in the last equality of Eq(56), and utilizing Eq.(10), leads to our final
result

5 (PO)? B
=1 2M ! 2m

(2 2G50~ [ as, [ dp. [ do.| chpg<sc,Qc)exp{ -5 ]Sc(—t)%- )
Thus, the task of calculatin@?ébo(t) is transformed into the evaluation of a classical-like correlation between the reaction
coordinate centroid momenturp., at the initial time, and the backwards-in-time propagated reaction coordinate centroid
position,s.(—t), with the initial (unnormalized distribution of centroid positions given kp/(s.,Q.) [cf. Eq.(51)]. Placing
the flux at theinitial time is crucial for overcoming rare event statistics. In the classical lifitreduces tgpd(s)/m and
hencep/(s:,Qc)/pc(Sc,Qc)— 8(Sc), such that only trajectories that start @t=0 are sampled. Quantum delocalization
manifests itself by broadening this delta function, and the degree of broadening will depend on the typical delocalization of the
s chain when one of its beads is attached at the barrier top position.

The above discussion leads to the following approximate expression for the reaction rate constant:

(P2 pl
fdscfdpcfdchchPc,;(scan),eXF{_B 2iN=1W(T)_+ﬁ ’Sc(_tp)pc/m
- GUN 0

Jds.Jdp.SdQ.SdP;pc(s, vQc)eXV{ -B ’ 0Scohc(sc, Qo)

N
HaM0  om

The denominator in Eq58) can be calculated via equilib- tion rate constant, Eq58), to the PI-QTST reaction rate
rium PIMD or PIMC simulations. The correlation function in constant=® The most general form of the latter is given by
the numerator of Eq58) can be calculated in two stepq)

sampling of the initial centroid positiongs.(0),Q4(0)}, PEIP ke orer= Kopt fdchdsc5(Sc)pc(sc'Qc),

and momenta,{p.(0),P,(0)}, via a PIMD or PIMC 2mph  [dQcfds; pe(Sc,Qc)

simulation'**?with the constrains; =0 (the cyclic symme- (59)

try renders the actual label of the constrained bead physicallyhere Kopt IS the classical Grote—Hynes transmission coeffi-
meaningless (2) propagating the sampled centroid positionscient at the variationally optimized barrier frequency. Like
and momenta via a constraint-free CMD simulation. The cor£q. (58), it involves constrained sampling. However, the ac-
relation function can then be obtained by averaging over aual constraints are differens;=0 in the case of Eq(58)
large number of trajectories that start at different, randomlyands.=0 in the case of Eq59). It should also be noted that
sampled, initial states. Eq. (58) was derived directly from the CMD formalism, and

It is interesting to contrast the above CMD-based reacis therefore expected to include dynamical effects, such as
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TABLE I. The parameters for the DW1 modét,=a?/4a, is the barrier B, Discretization of the bath

height; w,=\2a; /m is the barrier frequencyw,=v2w, is the well fre- . . .
quency. The parameters are given in units of ¢ém In order to perform the simulations, the continuous bath

spectral density of Eq(62) had to be discretizet:?5%To

Ep @b @o @e this end, it is convenient to work with the mass-weighted
2085 500 707 500 coordinates and momenta of the bath modé§W

= MDQ0Y and {PW=pW)/MT}, respectively, such
that

82
the Kramers turnover, which PI-QTST cannot account for.  — p—+V0(§)+2
The relationship between PI-QTST and CMD was the sub- Mo i
ject of a recent paper by Jang and Vbffhese authors found o 5
that deriving PI-QTST from CMD requires additional ap- o cWs
proximations beyond these pertinent to CMD and PST. !

MO ((1))2
Hence, despite the fact that both of these approximate meth- . . .
e'létins form makes it clear that each bath mode is characterized

them to give the exact same results. by two, rather than three, parametess? andc/\MT,
Next, a density number of bath modeéw), is chosen. In the
actual simulations presented belgWw) < J(w)/w. The fre-

quencies of the discrete bath modgs'’}, are obtained as
IV. APPLICATION TO A DOUBLE WELL BILINEARLY follows:

COUPLED TO A HARMONIC BATH

=2
s 1

TN () IV
+

X . (63

o

In this section, the new method described above is used | dowp(w)=j, j=12,..N, (64)
to calculate reaction rate constants in the case of a symmetric
double-well potential bilinearly coupled to a harmonic bath.with N large enough such thaby>w.. The values of
It should be emphasized that the method is by no meankc’/\MU} are then obtained frohh
limited to such systems, and can easily accommodate anhar- €2 2 3
monic environments, nonlinear coupling, and multidimen- EVIONS S (I (65)
sional reactive potential surfaces. However, the availability ™ plo)
of numerically exact quantum rate constants for a wide rang€or the simulations reported here, convergence was achieved
of temperatures and frictions in the case of the harmoniat N=100-150.
batht’ provides an opportunity for testing the accuracy of the

new method.
A. The model C. Classical dynamics simulations
Following Topaler and Makri/ we consider a double The new methodology for calculating reaction rate con-
well bilinearly coupled to a bath of harmonic oscillators. Thestants was first tested in the classical limit. The results are
total Hamiltonian operator is given by presented in terms of the transmission coefficient
a2 5())2 — TST
~ P (PU)s 1 k= Kpr/Kpg (66)
= v.(a+ + M@ ()2
_ g )2 1 (8(s)ph(p))
R cWs
i) _ TsT_— A2 =/F A7
x| Q Mm(wiji)2> } (60) kPR m <1—h(S)> (67)

The potential along the bare reaction coordinatg(s), is is the classical TST reactant-to-product reaction rate constant
taken to be of the form of a symmetric double well, ({...) corresponds to averaging over the classical many-body
_ 2 4 Boltzmann distribution The classical reactant-to-product re-
Vo(s)=—2;5"+a,s" (61 action rate constant in the case of a symmetrical double well
It should be noted tha¥y(s) is defined such that the barrier is given by
top is positioned a$=0, as required. The spectral density of kel 1 (A(—)pa(s))
the bath is assumed to be ohmic, with an exponential cutoff (¢l _-— = Y& 7% 27/
()2 PR™ 2 2m  (ShSA)
Jw)= gE ﬁ(((:ﬂ_(ﬁ S(w—oWV)=nwe @/, (62)  InEq.(68), A can be any perturbation that distorts the equi-
J @ librium reactant and product populations. Substituting Egs.
p pop g Eq
where 7 is the friction coefficient(in the limit w.—«). m (67) and (68) into Eq. (66), and using the fact that the
was taken to be the mass of a proton, and the values of th@ouble-well potential is symmetric, we obtain

(68)

parameters definingVy(s) and J(w) were taken to al _
be the same as in the DW1 model of Makri and Topdler KCI:kTLSRT: A [ 1 (A(=1)ps(s)) 69)
(cf. Table ). Kpr 8m(SsAsh) (8(s))
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25 D. CMD simulation techniques
1.5 [ n/(Mmw,)=0.05 Performing a CMD simulation of a system consisting of
I“} N+1 degrees of freedom would generally involve PIMD or
0-5 6w ] PIMC simulations involvingN+ 1 coupled chains, each con-
05 ‘ ‘ sisting of P beads. However, in our case, we can take advan-
0 50 100 150 200 tage of the fact that harmonic degrees of freedom can be
2 ‘ averaged analytically. In particular, when evaluating the cen-
_ - n/(mm,)=0.50 troid dlstr|but|on,gc(sc,Qc), one can analytically average
= NN R ] over theN harmonic bath modes. This leads to the following
Cu IRCRAR result5®
v
o]
0 ‘ =
0 20 40 60 80 100 pc(Sc, Qo) =A(P)
1 | S ()( (1))2
X - + 2, MY (oY
n(me,)=2.80 exp) — B| Ver(Sc) le > MO (1)
0.5 = ,
e i Vs 2
0 s ‘ ‘ X QC — W s (70)
0 20 40 60 80
m,t where
FIG. 2. The approach of the classical transmission coefficient to itsexq_ﬂ\/ (S )]
asymptotic value. The plots were obtained for DW1 at 200 K. The upper e e
panel corresponds to low frictiaiibelow the Kramers crossoyethe middle
panel corresponds to intermediate fricti@round the Kramers crossoyer = f d'él- .. f d‘ép 5(’§1— sc)
and the lower panel corresponds to high fricti@bove the Kramers cross-
over. The different lines correspond to different choices of the perturbation, p 1
A: A=h lid line), A=s (circles, A=s® (dashed li o
(s) (solid line) s (circles s°® (dashed ling Xexp{ —B{Z E[mﬂﬁ‘*‘ﬂk’?(ﬂk)ﬁﬁ
k=2
1 P
I . . + = V[sk(34,....8 , 71
The equilibrium averagésAsh) was calculated via Nose Pkgl [5(351 p)] ] 7D
Hoover chain classical MD simulations, using the VV-3 al-
gorithm of Jang and Voffi (Nose-Hoover chains of length and
four were attached to each of the degrees of freedom AP
The term{A(—1)pd&(s))/{5(s)) was evaluated from a (P)
s;ep?rgte tsimglagc.)n, b);havebratghing o(\j/er many traject?rlgs :hat 27#2B8] mP P/21'_\‘[ 2mh2B| MOPp |\ PP
started ats=0. Since the bath modes are uncoupledsa = —
St ats= P m |\ 2mBR2 i MO | 27842
=0, their initial states could be randomly sampled from the
phase-space Gaussian Boltzmann distributions of the indi- N P PP
vidual harmonic oscillators. The sampled initial states were x[1 \ /W' (72
i=1k=2 Y BMY(Qi+ o))

then propagated backwards in time by the velocity-Verlet

algorithm (without Nose-Hoover ther_mosta}s . Here,{3,} and{Q,} are the coordinates and frequencies of
The approach of the classical time-dependent transmlsthe normal modes of the chain

sion coefficient to its asymptotic value is shown in Fig. 2 for

different choices of the perturbatiod. As can be clearly

P
seen, different choices oA—A=h(s) (solid line, A=s ”skziz Ugs, Up=1, Up=—(-1),
(circles, andA=s® (dashed ling—lead to exactly the same P=
asymptotic value, and hence the same reaction rate constant. op
Different choices ofA may differ, however, in how long it 0,=0, Qp=—r, (73
takes to reach the plateau. The choiceAoth(s) is the Bh

quickest due to its insensitivity to oscillations within the re-
actant and product wells. The signature of these oscillations
is clearly seen in the low friction behavior a&“'(t) when

A=s and s®. Increasing the friction leads to damping of
these oscillations, and the time it takes to reach the plateau
becomes independent of the choice/of We were able to
reproduce the classical rate constants and demonstrate the
equivalence of different choices éf across the rather wide
range of temperatures and frictions considered by Makri anénd %(z) is the Laplace transform of the classical dynamical
Topaler’ friction kernel

Uy zn-2= 2 co§2m(k—1)(n—1)/P]

Uy an-1= — V2 sif2mm(k—1)(n—1)/P]

P
Qgn-1=Qzn-2= 55 V21 - co827(n=1)/P)]

(n=2,3,..,P/2),
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N (c)2 7 affects thes chain is via the coupling term between the cen-
nz2)=>, T o2 23 (o2 (74)  troids of the bath modegQ(’}, and the centroid of the
= (0'")e 27+ (') . cc ) . .
chain,s.. The corresponding interaction potential takes al-
most the exact same form as the classical interaction poten-
Equationg70) and(71) reveal that our system is equiva- tial, except for the fact that the classical positions are re-
lent to that consisting of a classical chain whose beads anglaced by the corresponding centroid positions. Similar
positioned at{s,,...,Sp}, coupled toN classical-like bath expressions can be obtained fol(s.,Qo) and p (s¢,Qo)
modes whose coordinates are given®’,....Q". The by adding the corresponding constraints to Et).
n-dependent terms correspond to bath-induced shifts to the The calculation of the reaction rate constant from CMD,
frequencies of the springs that connect the beads. Increasirity. (58), was carried out via two separate simulations. The
the friction makes these springs stiffer, thereby diminishingfirst simulation was designed for calculating the denomina-
guantum delocalization. The second way in which the bathor, which in this case can be put in the following form:

Jds.SdpcSdQcSdP: pe(Sc,Pe, Qe Pe) dhe(Sc, Qo) 85
JdscSdpcSdQcSdP: pc(Sc,Pc, Qe Po)

1 fdél_,_fdépefE[EEZ21/2[mQE+Qk9;(Qk)]§§+ UPER_ VIS Gy, .o, ISP h[5(3y,... 5p)]

75
P [d%, - [ dp @ AlSken LM Qi QIS+ 1P S VIs(y .- 3p)]] 79

To this end, we performed non-Boltzmann samgithgver the independent Gaussian distribution of the normal mode coor-
dinates{S,,...;3p}, and averaged over the term that couples them. Sihce0,S;=s, was sampled from-L to L with
equal probability, and the value &f was increased until we reached convergence.

The second simulation was designed for calculating the numerator it68q.

Jds.SdpcSdQcSdP: pc(Se,Pe Qe Pe) 3c(—t)Fe(Se,pe,Qc)
Jdsc/dpcSdQcSdP: pc(Sc,Pc, Qe Po)
_ fdscfdQcp(,:(Sc uQc)) ( fdscfdpcfdchchp(,:(sc 1Pc+ Qe Po)Sc(—t)pe/m
fdscfdQcPc(sc ,Qc) Jds fd pcfdchchpé(Sc 1Pc Qe Po)

(76)

The first factor on the right-hand side was calculated via

non-Boltzmann sampling over the Gaussian distribution of — 0.047
the independent normal modes, as described above, either 3l 300K ——————— 0.942
with or without constraining one of the beads¢s¢0. Thee =~  —— 2.825

second factor required the appropriate initial sampling of the
centroid of the constrained chais,, which can be conve-
niently performed in the normal mode representation. The
bath modes centroid$Q{}, for a given value ok, were 2}
sampled from the shifted Gaussian distribution,
e A2MP(WN2QM—cMse MBI (WM)22  Eacp sampled initial
configuration was then propagated in time via a CMD simu-
lation. The dependence of the centroid forcesgmvas tabu-
lated beforehand, and the numerical effort involved in run-
ning a CMD simulation was therefore essentially the same as
that of running a classical MD simulation.

The constrained centroid distributiop,(s.), deserves
special attention. At high temperatures, this distribution is
very narrow and localized at the barrier top. Its broadening s (/)A
as the temperature is lowered is a reflection of quantum de- ¢
localization. This behavior is demonstrated in Figs. 3—5. AtF/G: 3. The initial constrained centroid distributipf(s,) (normalized, for
the relatively high temperature of 300 f. Fig. 3, the DW1 at 300 K. The distribution is shown for various valueszg{mwy,)

= - ) ’ ) ) (see the legendlsThe classical potential along the reaction coordinate is
distribution is found to be unimodal and fairly localized also shown for reference.

P, (S.)

O n
-1.6 -0.8 0.8 1.6
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200K _______ 882; %O =———-u Exact
* Pl % o----0 PI-QTST
TaX —— CMD

- Classical

1.5

p.(8,)

FIG. 4. Same as Fig. 2 except= 200 K. n/(mcob)

FIG. 6. The transmission coefficient as a function of friction, for DW1 at

300 K. Shown are the exact, CMD, PI-QTST, and classical results.
around the barrier top. As expected, increasing the friction
further localizes the distribution. A somewhat different pic-
ture emerges at 200 Kcf. Fig. 4). At high frictions, the
distribution is wider than at 300 K, but still unimodal and
localized around the barrier top. However, the distribution
becomes bimodal at low frictions. This is because lowerin
the temperature and/or friction leads to more extende
chains. One of the beads has to be attached to the barrier t
but the rest of the beads seek regions of lower potential e
ergy which are downhill on both sides of the barrier. AS a5 in the close vicinity of the barrier top, is gradually
result, the corresponding centroid distribution acquires 3ncreased until convergence is reached. The valué at
syr_‘nmetric,_wit_h respect to the barrier top, bimodal stru_cturewhich convergence is attained increases when the tempera-
This behavior is further enhanced at 100 K, whefésc) IS e is further decreased, due to quantum delocalization,

thereby rendering even the above-mentioned sampling

method inefficient below 100 K. The development of meth-
3 ‘ ods to enhance the efficiency of the sampling at such very
low temperatures will be the subject of future research.

seen to consist of two, clearly separated peaks on both sides
of the barrier(cf. Fig. 5.
The above-mentioned behavior @f(s.) can lead to in-
efficient sampling at low temperatures, since the most likely
tarting centroid positions will have a low likelihood for
rossing the barrier. In order to enhance the efficiency, we
erformed the sampling at 100 K with two infinitely high
eflecting walls whers, is equal—L or L. Starting with the

E. Results of CMD simulations

Using the simulation techniques described above, we
were able to calculate reaction rate constants for DWI at
=100, 200, and 300 K, for a wide range of frictions. The
results of these calculations are presented in Figs. 6-8,
alongside the numerically exact results, the results obtained
from classical MD simulations, and the results from PI-
QTST. The following observations can be made based on
these plots:

P.(s,)

(1) The most important observation is that CMD cap-
tures most of the quantum enhancement to the reaction rate.
Thus, the CMD approximation is seen to work well and lead
/ to quantitative predictions in situations where classical me-
‘16 -08 0 08 16 chanics Tails. _

s /A (2) The CMD rate constant, Eq58), provides a lower
bound to the exact results. This is a manifestation of the fact
FIG. 5. Same as Fig. 2 except=100 K. that CMD approximates the quantum dynamics, and there-
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5 ‘ quantum coherences for long times. These coherences are
== Exact dephased by the bath at higher frictions, thereby improving
o---o PI-QTST the quality of CMD. j’his means that the present CMD-based
4 ??)b | method for computing rate constants will be applicable to
I —— CMD many condensed phase systems for which the high friction
Q\\ - Classical region is the relevant one.

(5) The reaction rate constants obtained from CMD co-
incide with these obtained from PI-QTST at high frictions.
At intermediate frictions, the predictions of PI-QTST are
slightly better, which is likely to be accidental. PI-QTST,
being a TST method, fails to capture the the turnover behav-
ior at the low friction, energy diffusion regime. On the other
hand, CMD, being a dynamical method, does capture the
turnover behavior. These results indicate that CMD and PI-

T . QTST are distinctly different methods, despite the fact that
j' “"“\-\\R‘_‘ they are both based on the centroid concept, with CMD a
A T more general theoretical framework which includes dynami-
0 ‘ cal effects.
0 1 2 3
n/(Ma,) V. CONCLUSIONS

FIG. 7. The transmission coefficient as a function of friction, for DW1 at Anew method for calculating quantum reaction rate con-
200 K. Shown are the exact, CMD, PI-QTST, and classical results. stants has been presented in this work. The new method is
based on the following two elements:

fore misses some of the quantum enhancement. It should be (1) Linear-response theory, either classical or quantum-
emphasized, however, that the deviations from the exact rénechanical, leads to a family of expressions for the reaction
sults are usually rather small. rate constant. In all of these expressions, the rate constant is

(3) CMD improves as the temperature increases. Th&iven in terms of a correlation function of the flux and a
relative weight of the quantum enhancement intensifies atecond observable. The important point is thia¢ same
lower temperatures, so that the relative error involved in apvalue of the reaction rate constant will be obtained regard-
proximating it becomes larger. However, it should be emphaless of which second observable is chodarparticular, one
sized that CMD can still provide quantitative estimates atcan express the quantum reaction rate constant in terms of a
temperatures as low as 100 K. pOSition—ﬂUX correlation function.

(4) CMD improves as the friction is increased. Thisisa  (2) CMD can be used to approximate the quantum

manifestation of the fact that CMD cannot capture pure|yposition—flux correlation function, and hence the quantum
reaction rate constant, in general many-body systems.

The method was tested on a model system consisting of

4 . Exact a symmetric double well coupled to a harmonic bath. CMD
was found to provide a very good approximation for the
. O < PI-QTST guantum reaction rate constant, and typically accounted for
3 o — CMD 1 the major part of the quantum enhancement. It should be

————- Classical noted that the level of agreement with the numerically exact
results is of similar quality as for rate constants calculations
based on analytical continuati@f® and semiclassic&?32
methods. Comparison to the linearized version of the semi-
classical approximatidf is also worth noting. In this case,
the semiclassical approximation amounts to doing the initial
sampling based on the Wigner distribution of the combined
Boltzmann and flux operators, followed by fully classical
dynamics. CMD, on the other hand, is based on nonclassical
sampling followed by classical-like dynamics on a nonclas-
sical centroid potential. Despite the similar spirit of the two
approaches, the additional important differences should also
be highlighted{(1) the initial centroid distribution function is
-1 : : fundamentally different from the Wigner distributiéhand
n/(mo,) _(2) calc;ulating .the centroi_d distribut.ion for.realllisti.c systems
b is feasible, while calculating the Wigner distribution for re-
FIG. 8. The log, of the transmission coefficient as a function of friction, for @liStic systems may be extremely difficult due to its regions
DW1 at 100 K. Shown are the exact, CMD, PI-QTST, and classical resultsof hegative amplitude.
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The sensitivity of the CMD approximation to the tem- #k.
perature and friction was systematically mapped, for the firsf°H.
time, within the context of a widely studied “many-body”
system. It should be emphasized that the new method desg
scribed herein is in no way limited to one-dimensional sys-=°g,
tems bilinearly coupled to harmonic baths. The applicationE
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