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Quantum-mechanical reaction rate constants from centroid molecular
dynamics simulations
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It has been shown recently that in order for real-time correlation functions obtained from centroid
molecular dynamics~CMD! simulations to be directly related, without further approximations, to
the corresponding quantum correlation functions, one of the operators should be linear in the
position and/or momentum@Jang and Voth, J. Chem. Phys.111, 2357~1999!#. Standard reaction rate
theory relates the rate constant to the flux–Heaviside or the flux–flux correlation functions, which
involve two nonlinear operators and therefore cannot be calculated via CMD without further
approximations. We present an alternative, and completely equivalent, reaction rate theory which is
based on the position–flux correlation function. The new formalism opens the door to more
rigorously using CMD for the calculation of quantum reaction rate constants in general many-body
systems. The new method is tested on a system consisting of a double-well potential bilinearly
coupled to a harmonic bath. The results obtained via CMD are found to be in good agreement with
the numerically exact results for a wide range of frictions and temperatures. ©2001 American
Institute of Physics.@DOI: 10.1063/1.1412870#
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I. INTRODUCTION

The effect of dissipative environments on barrier cro
ing rates has been a central concern of theoretical chem
for many decades.1 Until quite recently, most computation
of reaction rates in condensed matter were based on clas
mechanics. Classical calculations are rather accurate at
temperature. However, significant quantum corrections to
classical rate emerge at intermediate temperatures. At e
lower temperatures, below a characteristic crossover t
perature, quantum tunneling becomes the dominant me
nism and the rate becomes weakly dependent on temp
ture. Quantum effects play a particularly important role wh
light particles such as protons and electrons are involved
general, the quantum reaction rate is enhanced relative to
classical rate, due to tunneling and zero-point energy effe
The coupling to a dissipative environment is generally fou
to diminish this quantum enhancement, and causes othe
teresting effects such as the ‘‘Kramers turnover.’’1

Several attempts to evaluate solution-phase quantum
action rate constants have been made. Early attempts o
nated from efforts to develop a ‘‘quantum transition sta
theory’’ ~QTST!. Of these, one of the the most successfu
Path-integral-QTST~PI-QTST!,2–6 which is based on the
centroid concept.2,7,8 This concept comes from the path
integral formulation of quantum mechanics,9,10 according to
which the equilibrium thermodynamics of a quantum parti
is analogous to that of a classical cyclic chain of beads c
nected by harmonic springs.11,12The center of mass of such

a!Electronic mail: eitan@umich.edu
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chain is known as itscentroid. The structure of PI-QTST is
similar to that of classical TST,13 except that the classica
position is replaced by the centroid of the correspond
chain.

Attempts to go beyond QTST were based mostly on
expression independently derived by Yamamoto14 and by
Miller and co-workers,15,16 which relates the reaction rat
constant with the equilibrium flux autocorrelation functio
Makri and co-workers have presented a numerical proced
for evaluating the quantum flux autocorrelation function, a
hence the exact quantum rate constant, for a reaction
takes place along a well-defined reaction coordinate, i
harmonic bath.17,18 This methodology is based on the influ
ence functional formalism of quantum dissipativ
dynamics,19–21 and involves the evaluation of real-tim
Feynman path integrals.9 The restriction to a harmonic bat
arises from the fact that, in this case, the influence functio
can be evaluated analytically. Such an analytical solution
not available when the bath is anharmonic. Unfortunate
the numerical calculation of real-time path integrals is no
riously difficult due to the infamous sign problem, althoug
recent attempts based on semiclassical approximations
quite promising.18,22–26

An alternative approach is based on analytical contin
tion of imaginary time flux autocorrelation functions.27–29

Imaginary-time path integrals can be calculated numeric
for relatively complex systems, by performing Monte Car
or molecular dynamics simulations on the correspond
classical chains~PIMC and PIMD, respectively!.11,12 How-
ever, difficulties arise due to the fact that transforming fro
imaginary time to real time is numerically unstable. Neve
9 © 2001 American Institute of Physics
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theless, Berne and co-workers have recently shown
some of these difficulties may be resolved, at least at in
mediate temperatures, by using a maximum entro
procedure30–32,28 and by incorporating knowledge on th
short-time dynamics.33,29 It still remains to be seen if this
approach will also be applicable under low temperature c
ditions, and in the case of more anharmonic systems.

In the present paper, we introduce a new and rather
ferent approach to the calculation of quantum reaction
constants. Like PI-QTST, it is based on the centroid conc
However, it avoids any kind of TST-like approximations, a
explicitly accounts for dynamical effects within the fram
work of centroid molecular dynamics~CMD!. CMD is an
approximate method for calculating real-time quantum c
relation functions.5,34–40It is based on the hypothesis that th
centroid follows classical-like dynamics, and that quant
effects can be incorporated by modifying the initial sampli
and the force fields, as well as by representing dynam
observables by suitably defined ‘‘centroid symbols.’’ In t
last few years, CMD has been shown to be useful and c
putationally feasible for realistic, complex, many-body sy
tems~see, e.g., Refs. 41–50!.

The main obstacle that stands in the way of calculat
reaction rate constants via CMD has to do with the followi
fact: In order for real-time correlation functions obtain
from CMD simulations to be directly related to the corr
sponding quantum correlation functions, one of the opera
must be linear in the position and/or momentum.39 The flux
autocorrelation function does not satisfy this criterion, due
the nonlinear nature of the flux operator. As a result, previ
attempts to use CMD for calculating the flux autocorrelat
function had to involve additional approximations whose v
lidity is not always clear.35,36,51In contrast, the new metho
presented below avoids any approximations other than th
which are intrinsic to CMD.39,40 This is made possible by
starting with a different, yet completely equivalent, expre
sion for the reaction rate constant, which involves anot
correlation function that is linear in the position and as su
can be calculated directly via CMD.

The remainder of this paper is organized in the followi
way: A short overview of CMD for a many-body system
given in Sec. II. The new method for calculating reaction r
constants is then discussed in Sec. III, while the metho
tested on a system consisting of a double-well potential
linearly coupled to a harmonic bath in Sec. IV, where a co
parison to the exact results is also made. The main con
sions of this work are summarized in Sec. V.

II. CENTROID MOLECULAR DYNAMICS „CMD…

In this section, we give a short overview of CMD, in th
context of a many-body system, with emphasis on res
that are important and useful for the present study. The
cussion follows Refs. 38 and 39, where further details m
be found.

Consider a general quantum system withN degrees of
freedom whose quantum mechanical Hamiltonian operato
at
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Ĥ5(
i 51

N
~ p̂( i )!2

2m( i ) 1V~ x̂(1),...,x̂(N)![(
i 51

N
~ p̂( i )!2

2m( i ) 1V~ x̂!.

~1!

Here, as in the rest of this paper, we use boldface letters
vectors and letters capped with a ‘‘hat,’’ e.g.Â, for operators.
x̂5( x̂(1),...,x̂(N)) and p̂5( p̂(1),...,p̂(N)) are the vector op-
erators that represent the Cartesian coordinates and conju
momenta, and$m( i )% are the corresponding masses. Cano
cal equilibrium is described by the following normalize
density operator:

r̂5e2bĤ/Z, ~2!

where Z5Tr(e2bĤ). The equilibrium expectation value o
an observable,Â, is given by

^Â&5Tr~ r̂Â!. ~3!

CMD is based on an alternative representation of E
~2! and ~3! in terms of a classical-like phase-spa
description,39,40

^Â&[^Ac&c5
1

Z E E dxcdpc

~2p\!N rc~xc,pc!Ac~xc,pc!, ~4!

where xc5(xc
(1) ,...,xc

(N)) and pc5(pc
(1) ,...,pc

(N)) are
classical-like coordinates and momenta, and

Z[E E dxc dpc

~2p\!N rc~xc,pc!. ~5!

As is well known, the transformation between the quant
operators,r̂ andÂ, and the corresponding phase-space fu
tions, rc(xc,pc) and Ac(xc,pc), is not unique. For example
the Wigner and Husimi transforms provide two such d
tinctly different phase-space representations.52 The centroid
formalism is based on yet another choice of such a pha
space representation. In this case, the classical-like ph
space probability density is given by the following ‘‘centro
probability density:’’

rc~xc,pc!5rc~xc!expF2b(
i 51

N
~pc

( i )!2

2m( i ) G , ~6!

where

rc~xc!5)
i 51

N S 2pb\2

m( i ) D 1/2E
x(0)5x(b\)

Dx~t!dFxc

2~b\!21E
0

b\

dt x~t!Gexp$2S@x~t!#/\%

5 lim
P→`

)
i 51

N H S 2pb\2

m( i ) D 1/2S m( i )P

2pb\2D P/2J
3E dx1¯ E dxPdS xc2

1

P (
k51

P

xkD
3exp$2S@x1,...,xP#/\%, ~7!

with
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1

\
S@x~t!#5 lim

P→`

1

\
S@x1,...,xP#

5
1

\ E
0

b\

dtF(
i 51

N
1

2
m( i )@ ẋ( i )~t!#21V~x~t!!G ,

~8!

and

1

\
S@x1,...,xP#5bH (

i 51

N

(
k51

P
1

2
m( i )vP

2 ~xk
( i )2xk11

( i ) !2

2
1

P (
k51

P

V~xk!J . ~9!

In Eq. ~9!, xP¿15x1 andvp
25P/(b\)2.

Two important points should be noted with respect
Eqs.~6!–~9!

~1! rc(xc) is given by an imaginary time path integral ov
all possible cyclic paths, and is proportional to the pro
ability density of finding a classical system consisting
N cyclic chains with their centers of mass~the centroids!
at xc

(1) ,...,xc
(N) , i.e., atx5xc.

~2! Unlike other phase-space representations of the can
cal quantum density operator,rc(xc,pc) assumes a
classical-like form. This is made clear by defining a ce
troid potential,Vcm(xc), such that

rc~xc![e2bVcm(xc). ~10!

@It is important to note thatVcm(xc) is generallydifferent
than the centroid symbol of the potential operator.39,40#

The corresponding transformation betweenÂ and its
centroid symbol,Ac , which ensures the validity of Eq.~4!, is
given by39

Ac~xc,pc!5Tr$d̂c~xc,pc!Â%, ~11!

where d̂c(xc,pc), which has been denoted thequasi-density
operator, and whose trace is equal to 1, is given by

d̂c~xc,pc!5
ŵ~xc,pc!

rc~xc,pc!
, ~12!

with

ŵ~xc,pc!5S \

2p D NE
2`

`

dzE
2`

`

dh eiz•( x̂2xc)1 ih•(p̂2pc)2bĤ

~13!

@z5(z (1),...,z (N)), h5(h (1),...,h (N))]. In practice, it is
convenient to use the path integral representation ofŵ(xc,pc)
in order to find the centroid symbol of a given quantu
observable.39 In particular, the centroid position and mome
tum can be shown to coincide with the centroid symbols
the position and momentum operators.39,40

xc5Tr$d̂c~xc,pc!x̂%, pc5Tr$d̂c~xc,pc!p̂%. ~14!
-
f

ni-

-

f

CMD is a method for calculating real-time equilibrium
correlation functions in many-body quantum systems. St
ing with the initial state (xc,pc), the dynamics of a centroid
observables,Ac , is exactly given by39

Ac~ t;xc,pc!5Tr$d̂c~ t;xc,pc!Â%, ~15!

where,

d̂c~ t;xc,pc!5e2 iĤ t/\d̂c~xc,pc!e
iĤ t/\. ~16!

In particular, the dynamics of the centroid positions and m
menta are governed by the following classical-like equatio
of motion:

d

dt
xc

( i )~ t !5
pc

( i )~ t !

m( i ) , ~17!

d

dt
pc

( i )~ t !5 f c
( i )~ t;xc!. ~18!

Here,fc(t50;xc)[fc(xc) is the centroid symbol of the force
which can be shown to satisfy the following rather rema
able identity:39

fc~xc!5Tr$d̂c~xc,pc!@2“xV~ x̂!#%52“xc
Vcm~xc!. ~19!

It should be emphasized that despite the classical-like
pearance of Eqs.~17! and ~18!, the dynamics obtained by
exactly solving them is fully quantum mechanical@cf. Eq.
~16!#.

CMD is based on the followingapproximationfor the
quantum dynamics of the centroid symbol,Ac , of any dy-
namical observableÂ:40

Ac@ t;xc,pc#'Ac@xc~ t !,pc~ t !#. ~20!

In particular, applying this approximation to the centro
symbol of the force yields

fc@ t;xc,pc#'fc@xc~ t !,pc~ t !#, ~21!

which gives the equations of motion, Eqs.~17!–~18!, a
closed classical-like structure. The approximation in Eq.~20!
becomes exact in one, or all, of three cases:~1! when the
time goes to zero;~2! in the classical limit; and~3! in har-
monic systems. However, a variety of examples has dem
strated that this approximation is in fact useful for a wi
range of realistic systems, especially for short times. T
strength of the CMD approximation comes from the fact th
it reduces quantum dynamics into classical dynamics on
centroid potential surface, which can be obtained from co
putationally feasible imaginary-time path-integral simu
tions. Furthermore, at long times, CMD reproduces the ex
equilibrium centroid distribution, and hence the exact regr
sion behavior limit.40

The relationship between correlation functions direc
calculated from CMD simulations and the correspond
quantum equilibrium correlation functions is based on
following identity:39,51
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1

b E
0

b

dl e2(b2l)Ĥx̂e2lĤ

5E E dxc dpc

~2p\!N rc~xc,pc!xcd̂c~xc,pc!. ~22!

Multiplying Eq. ~22! by eiĤ t/\B̂e2 iĤ t/\, whereB̂ is any op-
erator, and tracing over the result, leads to the follow
identity:

1

Z E E dxc dpc

~2p\!N rc~xc,pc!xcBc~ t;xc,pc!5C
x̂B̂

Kubo
~ t !, ~23!

where

C
x̂B̂

Kubo
~ t !5

1

bZ E
0

b

dl Tr$e2(b2l)Ĥx̂e2lĤeiĤ t/\B̂e2 iĤ t/\%

5
1

b E
0

b

dl^x̂~0!B̂~ t1 i\l!& ~24!

is the exact quantum Kubo-transformed correlatio
function.53 Note that the following definition of the ‘‘regu
lar’’ quantum correlation function was utilized in the la
equality of Eq.~24!:

CÂ,B̂~ t !5^Â~0!B̂~ t !&5
1

Z
Tr$e2bĤÂeiĤ t/\B̂e2 iĤ t/\%.

~25!

Applying the CMD approximation, Eq.~20!, to
Bc(t;xc,pc) in Eq. ~23!, leads to the following approximat
expression for this quantum correlation function:

C
x̂B̂

Kubo
~ t !'

1

Z E E dxc dpc

~2p\!N rc~xc,pc!xcBc@xc~ t !,pc~ t !#.

~26!

An important point is that Eq.~23! still holds if x̂ andxc are
substituted byp̂ and pc, respectively, or by a linear comb
nation of these two operators, but does not hold for ot
types of nonlinear operators. Hence, the relationship betw
correlation functions that are calculated from CMD and
corresponding quantum correlation functions is only well
tablished when one of the operators is linear inx̂ and/orp̂.

Several attempts have been made to extend the app
bility of CMD to correlation functions involving two nonlin-
ear operators.35,43,51,54 In practice, all of these approache
involved additional approximations. In this paper we purs
an alternative approach, where instead of trying to cha
the CMD formalism so that it can be used for directly calc
lating correlation functions with two nonlinear operators, w
express the desired quantity in terms of a correlation func
which has the form of that in Eq.~24!. This approach is
demonstrated in the following section for the case of
reaction rate constant.

III. REACTION RATE THEORY

In this section we discuss the quantum theory of reac
rate constants. We start by defining the phenomenolog
kinetics upon which the concept of the reaction rate cons
is based. This is followed by a discussion on the calculat
g
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of reaction rate constants via linear-response theory. The
tion closes with a discussion of how reaction rate consta
can be calculated directly from CMD simulations, witho
additional approximations to the correlation functions.

A. Phenomenology

We will focus, for simplicity, on a unimolecular reaction
such as isomerization, that takes place in solution, alon
predefined reaction coordinate. The total Hamiltonian
given by

Ĥ5
p̂2

2m
1(

i 51

N
~ P̂~ i !!2

2M ( i ) 1Ṽ0~ ŝ8!1V~Q̂!1W̃~Q̂,ŝ8!.

~27!

Here, ŝ8, p̂, and m are the reaction coordinate, conjuga
momentum, and corresponding mass, respectively;Q̂
5(Q̂(1),...,Q̂(N)), P̂5( P̂(1),...,P̂(N)), and$M ( i )% are the co-
ordinates, conjugate momenta, and masses of the bath
grees of freedom, respectively;Ṽ0( ŝ8), V(Q̂) andW̃(Q̂,ŝ8)
are the potential energies of the bare reaction coordinate
bath, and their interaction, respectively. It is assumed h
that Ṽ0( ŝ8) has the shape of a double well, and that t
barrier top is located ats85s‡. It is convenient to redefine
the reaction coordinate such that its origin coincides with
position of the barrier top. Hence, a new reaction coordina
s, is defined

s5s82s‡, ~28!

and the Hamiltonian in Eq.~27! is rewritten in terms of it

Ĥ5
p̂2

2m
1(

i 51

N P̂i
2

2M ( i ) 1V0~ ŝ!1V~Q̂!1W~Q̂,ŝ!. ~29!

Here, Ṽ0( ŝ8)5V0( ŝ82s†), W̃(Q̂,ŝ8)5W(Q̂,ŝ82s†). It
should be noted that the barrier top is now located ats50.

Let PR and PP be the mole fractions of the reactant (s
,0) and the product (s.0), respectively.PR and PP may
be expressed as quantum expectation values

PP512PR5^h~ ŝ!&[^ĥ&, ~30!

where ĥ[h( ŝ) is the Heaviside function operato
^suh( ŝ)us8&5d(s2s8) for s.0, and zero otherwise.

The concept of the reaction rate constant is based on
following phenomenology:

ṖP52 ṖR52kRPPP1kPRPR , ~31!

or equivalently

d Ṗ i52kdPi . ~32!

Here, i 5P or R, k5kPR1kRP , dPi5Pi2Pi
eq , PP

eq

5kPR /k, andPR
eq5kRP /k ~it should be noted that the mol

fractionsPR
eq andPP

eq are sometimes denoted byxR andxP!.
Relaxation processes are generally characterized

many relaxation times, not one. In order for reaction kinet
to be described by a single rate constant, the effective ba
energy,Eb , has to be high, i.e.,e2bEb!1. This is indeed the
case in many problems of chemical interest, and it result
one relaxation time which is much longer than the rest, a
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with vanishingly small amplitudes of the other, faste
decays.55–57 Under these circumstances, the above phen
enology becomes valid after a short transient time dur
which the reaction does not make a significant progress.57,58

The reaction rate constant can be obtained from the
lowing expression:

k'ke2kt52d Ṗi~ t !/dPi~0!. ~33!

The approximation in Eq.~33! is justified as long ast
!1/k. We expectk to be explicitly time dependent during a
initial transient period, 0,t,tp(!1/k), following which it
will reach the ‘‘plateau region,’’ where it acquires a fixe
value.57,58 This fixed value corresponds to the actual ph
nomenological reaction rate constant. Thus,

k5 lim
t→tp

k~ t !, ~34!

with k(t)[2d Ṗi(t)/dPi(0).

B. Linear response theory and the standard reactive
flux method

Direct evaluation of the reaction rate constant from E
~33! would require explicit nonequilibrium quantum dynam
cal simulations. Such simulations are generally not feas
in condensed phase systems, due to the exponential sc
of the computational effort with the number of degrees
freedom.59 In fact, Eq. ~33! is not very useful even if we
assume that the dynamics is governed by classical mec
ics. This is because barrier crossing processes follow
event statistics, and prohibitively long classical molecu
dynamics simulations would be required if good statistics
barrier crossing events is to be obtained.

Linear response theory provides an alternative route
calculating reaction rate constants, which help overco
both of the above difficulties. This approach is useful wh
the kinetics is exponential at all time scales of practical
terest and if the rate constant is indeed a constant in the s
that it is independent of the initial state. Under such circu
stances, the conditions under which the reaction rate cons
is actually evaluated becomes a matter of convenience14,60

Choosing the initial state in the vicinity of thermal equilib
rium then allows us to take advantage of linear respo
theory.14,53 In this subsection we briefly review, for com
pleteness, the general formulation of linear response the
followed by a more specialized adaptation to the case
barrier crossing kinetics.

Consider a quantum system with the total Hamilton
Ĥ1 f Â at t,0 andĤ at t>0. Here,f is a scalar coefficient
andÂ may be any perturbation that can shift the system fr

the equilibrium statee2bĤ/Tr(e2bĤ). At t50, the system is
assumed to be in thermal equilibrium with respect to
perturbed Hamiltonian

r̂~0!5e2b(Ĥ1 f Â)/Tr@e2b(Ĥ1 f Â)#. ~35!

In the linear response limit, Eq.~35! may be replaced by its
expansion to first order in powers off 61
,
-
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r̂~0!5
e2bĤ

Z H 12 f E
0

b

dl dÂ~2 i\l!J , ~36!

where Z5Tr@e2bĤ#, dÂ(t)5Â(t)2^Â&eq , ^Â&eq

5Tr@e2bĤÂ#/Z, and Â(t)5eiĤ t/\Âe2 iĤ t/\. We may now

propagater̂(t) in the usual way,r̂(t)5e2 iĤ t/\r̂(0)eiĤ t/\,
which leads to

r̂~ t !5
e2bĤ

Z H 12 f E
0

b

dl dÂ~2 i\l2t !J . ~37!

The expectation value of any observable,B̂, at a later time
can then be obtained as follows:

^dB̂~ t !&5Tr@ r̂~ t !dB̂#52 f E
0

b

dl^dÂ~0!dB̂~ t1 i\l!&

52 f bC
dÂ,dB̂

Kubo
~ t !, ~38!

whereC
dÂ,dB̂

Kubo
(t) is a quantum Kubo-transformed correlatio

function @cf. Eq. ~24!#.
In the case of reaction kinetics, the observed quantity

the instantaneous mole fraction of the product. This dicta
that B̂5h( ŝ) in Eq. ~38!. However, we are left with almos
complete freedom regarding the choice of the actual per
bation, Â. The standard linear response expression for
reaction rate constant corresponds to one partic
choice,14,62 namelyÂ5h( ŝ). In this case, one substitutesÂ

5B̂5h( ŝ) in Eq. ~38!, to obtain

^dĥ~ t !&52 f bC
dĥ,dĥ

Kubo
~ t !. ~39!

It can be shown thatdĥ(t) commutes with e2bĤ at
t@\b.63,15,16,64Thus, as long astp@\b, we may substitute
the Kubo-transformed correlation function,C

dĥ,dĥ

Kubo
(t), by the

regular correlation function,Cdĥ,dĥ(t) @cf. Eq. ~25!#:

^dĥ~ t !&52 f bCdĥ,dĥ~ t !. ~40!

Exchanging the Kubo-transformed correlation function fo
regular correlation function would usually be a welcom
simplification. However, it should be noted that this is not
in the case of CMD, which yields correlation functions th
are already in the Kubo-transformed form.

Proceeding with the above choice ofÂ5h( ŝ), and sub-
stituting t50 in Eq. ~40!, we obtain

^dĥ&~0!52 f b^~dĥ!2&eq52 f b^ĥ&eq~12^ĥ&eq!

52 f bPP
eqPR

eq . ~41!

Assuming exponential kinetics, Eq.~32!, one finds that the
correlation function in Eq.~39! should also decay exponen
tially

^dĥ&~ t !

^dĥ&~0!
5

Cdĥ,dĥ~ t !

PP
eqPR

eq
5e2kt. ~42!

The first equality in Eq.~42! is based on Eqs.~40! and~41!,
while the second equality is based on Eqs.~30! and ~32!.
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Substituting Eq.~42! into Eq.~33! yields the following set of
equivalent expressions for the reaction rate constant:15,16

PP
eqPR

eqk52
d

dt
Cĥĥ~ t !U

t5tp

5CF̂ĥ~ tp!5E
0

tp
dt CF̂F̂~t!,

~43!

where

F̂5
d

dt
ĥ5

i

\
@Ĥ,h~ ŝ!#5

1

2m
@ p̂d~ ŝ!1d~ ŝ! p̂# ~44!

is the flux operator. In deriving the first equality in Eq.~43!,
the correlation functionCdĥ,dĥ(t) was substituted byCĥ,ĥ(t)
since they have the same time derivative. The second eq
ity in Eq. ~43! is based on the identityCÂB̂

˙ (t)52CÂ
˙
B̂(t).65

The third equality in Eq.~43! is based on the identity

Tr@e2bĤF̂ĥ#50.16,64 The expressions in Eq.~43! are of
course well known14–16,64and widely used.

FIG. 1. A schematic view of the ‘‘regression experiment.’’ Att,0, the
system is assumed to be equilibrated with respect to the potential en
along the reaction coordinate,s, which is perturbed, and the perturbation
assumed to be linear ins. The perturbation is removed att50, following
which the system is allowed to relax to the equilibrium state with respec
its natural potential,V0(s). The sought-after reaction rate constant gove
the relaxation of the reactant and product populations towards their
equilibrium values and is independent of the initial perturbation.
a
he

rd
c
tr

th

l
rn
al-

The second and third expressions for the reaction
constant in Eq.~43! are potentially useful in practice, due t
their ability to circumvent the problem of rare event stat
tics. The very inefficient sampling over all the initial stat
that do not make it to the barrier top is avoided by the spa
delta function in the flux operator, Eq.~44!, which biases the
sampling to initial positions at the barrier top.

C. Reaction rate constants from CMD

As discussed in Sec. II, using CMD to directly calcula
a correlation function presently requires that at least one
the operators is linear in the coordinates and/or momenta
the case of calculating reaction rate constants, one of the
operators is already dictated by the underlying physical
servation, namelyB̂5h( ŝ). However, the choice of the sec
ond operator,Â, which corresponds to the perturbation,
essentially unconstrained in the linear response approxi
tion. Obviously, the standard choice ofÂ5h( ŝ), a nonlinear
operator, is not convenient if CMD is to be used, for t
reasons mentioned earlier. However, we can always rep
it by a more convenient choice, namelyÂ5 ŝ, without any
loss of generality. This choice will then lead to an expressio
for the rate constant in terms of a Kubo-transformed cor
lation function that can be obtained directly from CMD.

In particular, following a procedure similar to that i
Sec. III B, only this time withthe perturbation linear in the

reaction coordinate, i.e.,Â5 ŝ, leads to the following expres
sion for the reaction rate constant:

k52
C

ŝ,F̂

Kubo
~ tp!

C
d ŝ,dĥ

Kubo
~0!

. ~45!

With the help of Eq.~23!, Eq. ~45! can now be put in terms
of the centroid formalism

gy

o

w

k52
*dsc*dpc*dQc*dPc rc~sc ,pc ,Qc,Pc!scFc~ tp ;sc ,pc ,Qc,Pc!

*dsc*dpc*dQc*dPcrc~sc ,pc ,Qc,Pc!dscdhc~sc ,pc ,Qc,Pc!
. ~46!
duct
to
re-
rate

ac-
the

nt

ide
us.
The choice of the perturbationÂ5 ŝ in this approach to
calculate the reaction rate constant has a straightforw
physical interpretation, which may not be obvious from t
resulting expressions in Eqs.~45! and ~46!. More specifi-
cally, a linear perturbation applied along the reaction coo
nate shifts the relative proportions of reactant to produ
This can be seen schematically in Fig. 1, where a symme
double well along the reaction coordinates, with a barrier
top at s50, becomes an asymmetric double well when
perturbationf Â5 f ŝ is applied att,0 @cf. Eq. ~35!#. The
perturbation is switched off att.0, and the double wel
reverts to its unperturbed symmetric form. This, in tu
rd

i-
t.
ic

e

,

causes a relaxation, or regression, of the reactant and pro
populations to their equilibrium proportions with respect
the unperturbed potential. Upon application of linear
sponse theory, an alternative expression to the reaction
constant is obtained, namely Eq.~45!. When visualized in
this fashion, the choice of a perturbation linear in the re
tion coordinate in some ways seems more natural than

choice Â5h( ŝ) made in the more conventional treatme
@cf. Eqs.~39!–~43!#.

The evaluation of the centroid symbols of the Heavis
and flux operators is straightforward, although rather tedio
The final results are as follows:
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hc~sc ,pc ,Qc,Pc![Tr@ d̂c~sc ,pc ,Qc,Pc!ĥ#

5
rc

1~sc ,Qc!

rc~sc ,Qc!
, ~47!

Fc~sc ,pc ,Qc,Pc![Tr@ d̂c~sc ,pc ,Qc,Pc!F̂#

5
pc

m

rc8~sc ,Qc!

rc~sc ,Qc!
, ~48!

where

rc~sc ,Qc!5CE
s(0)5s(b\)

Ds~t!E
Q(0)5Q(b\)

DQ~t!

3dFsc2~b\!21E
0

b\

dt s~t!G
3dFQc2~b\!21E

0

b\

dt Q~t!G
3exp$2S@s~t!,Q~t!#/\%

5 lim
P→`

N~P!E ds1¯E dsP E dQ1¯E dQP

3dFsc2
1

P (
k51

P

skGdFQc2
1

P (
k51

P

QkG
3exp$2S~s1 ,...,sP ,Q1,...,QP!/\%, ~49!

rc
1~sc ,Qc!5CE

s(0)5s(b\)
Ds~t!E

Q(0)5Q(b\)
DQ~t!

3F ~b\!21E
0

b\

dt h~s~t!!G
3dFsc2~b\!21E

0

b\

dt s~t!G
3dFQc2~b\!21E

0

b\

dt Q~t!G
3exp$2S@s~t!,Q~t!#/\%

5 lim
P→`

N~P!E ds1¯E dsP E dQ1¯E dQP

3F 1

P (
k51

P

h~sk!GdFsc2
1

P (
k51

P

skG
3dFQc2

1

P (
k51

P

QkG
3exp$2S~s1 ,...,sP ,Q1,...,QP!/\%, ~50!
rc8~sc ,Qc!5CE
s(0)5s(b\)

Ds~t!E
Q(0)5Q(b\)

DQ~t!

3F ~\b!21E
0

b\

dt d~s~t!!G
3dFsc2~\b!21E

0

b\

dt s~t!G
3dFQc2~\b!21E

0

b\

dt Q~t!G
3exp$2S@s~t!,Q~t!#/\%

5 lim
P→`

N~P!E ds1¯E dsP E dQ1¯E dQP

3F 1

P (
k51

P

d~sk!GdFsc2
1

P (
k51

P

skG
3dFQc2

1

P (
k51

P

QkG
3exp$2S~s1 ,...,sP ,Q1,...,QP!/\%, ~51!

with

1

\
S@s~t!,Q~t!#5 lim

P→`

1

\
S@s1 ,...,sP ,Q1,...,QP#

5
1

\ E
0

b\

dtH 1

2
m@ ṡ~t!#2

1(
i 51

N
1

2
M ( i )@Q̇( i )~t!#21V0~s~t!!

1V~Q~t!!1W~s~t!,Q~t!!J , ~52!

1

\
S@s1 ,...,sP ,Q1,...,QP#5b(

k51

P H 1

2
mvP

2 ~sk2sk11!2

1(
i 51

N
1

2
M ( i )vP

2 ~Qk
( i )2Qk11

( i ) !2

1
1

P
@V0~sk!1V~Qk!

1W~sk ,Qk!#J , ~53!

C5H S 2pb\2

m D)
i 51

N S 2pb\2

M ( i ) D J 1/2

,

~54!

N~P!5CH S mP

2pb\2D)
i 51

N S M ( i )P

2pb\2D J P/2

.

The discrete path-integral versions of the functio
rc

1(sc ,Qc) and rc8(sc ,Qc) are equivalent to configurationa
partition functions of a system consisting ofN11 chains,
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whose centroids are fixed at (sc ,Qc
(1) ,...,Qc

(N)). In the case
of rc

1(sc ,Qc), the statistical weight for a given configuratio
is proportional to(k51

P h(sk)/P, i.e., the fraction of the bead
in thes chain that lie to the right of the barrier top (s.0). In
the case ofrc8(sc ,Qc), the statistical weight for a given con
figuration is proportional to(k51

P d(sk)/P, i.e., the fraction
of the beads in thes chain that lie at the barrier top (s
50). Alternatively, rc8(sc ,Qc) can be associated with th
partition function ofN11 chains with fixed centroidsand
with one of the beads in thes chain attached to the barrie
-
n

a
ns
o
r
l

ac
top ~the symmetry of the chain renders the actual identity
the bead attached to the barrier top unimportant!.

It should be emphasized that Eq.~46! gives the exact
quantum reaction rate constant. The CMD approximation
next introduced in order to treat the time evolution of the fl

Fc~ t;sc ,pc ,Qc!'Fc@sc~ t !,pc~ t !,Qc~ t !# ~55!

@note thatFc , Eq. ~48!, is independent ofPc#. The centroid
position–flux correlation function can now be approximat
in the following way:
ity

ction
ntroid

n
n of the
~2p\!N11ZC
ŝ,F̂

Kubo
~ t !5E dsc E dpc E dQcE dPc expH 2bF(

i 51

N
~Pc

( i )!2

2M ( i ) 1
pc

2

2m
1Vcm~sc ,Qc!G J scFc~ t;sc ,pc ,Qc!

'E dsc E dpc E dQcE dPc expH 2bF(
i 51

N
~Pc

( i )!2

2M ( i ) 1
pc

2

2m
1Vcm~sc ,Qc!G J scFc~sc~ t !,pc~ t !,Qc~ t !!

5E dsc E dpc E dQcE dPc expH 2bF(
i 51

N
~Pc

( i )!2

2M ( i ) 1
pc

2

2m
1Vcm~sc ,Qc!G J sc~2t !Fc~sc ,pc ,Qc!,

~56!

where the second equality is based on the approximation in Eq.~55!, and the third equality is based on the time reversibil
of CMD correlation functions. Substituting Eq.~48! in the last equality of Eq.~56!, and utilizing Eq.~10!, leads to our final
result

~2p\!N11ZC
ŝ,F̂

Kubo
~ t !'E dsc E dpc E dQcE dPc rc8~sc ,Qc!expH 2bF(

i 51

N
~Pc

( i )!2

2M ( i ) 1
pc

2

2mG J sc~2t !
pc

m
. ~57!

Thus, the task of calculatingC
ŝ,F̂

Kubo
(t) is transformed into the evaluation of a classical-like correlation between the rea

coordinate centroid momentum,pc , at the initial time, and the backwards-in-time propagated reaction coordinate ce
position,sc(2t), with the initial ~unnormalized! distribution of centroid positions given byrc8(sc ,Qc) @cf. Eq. ~51!#. Placing
the flux at theinitial time is crucial for overcoming rare event statistics. In the classical limit,Fc reduces topd(s)/m and
hencerc8(sc ,Qc)/rc(sc ,Qc)→d(sc), such that only trajectories that start atsc50 are sampled. Quantum delocalizatio
manifests itself by broadening this delta function, and the degree of broadening will depend on the typical delocalizatio
s chain when one of its beads is attached at the barrier top position.

The above discussion leads to the following approximate expression for the reaction rate constant:

k'2

*dsc*dpc*dQc*dPc rc8~sc ,Qc!8expH 2bFS i 51
N

~Pc
( i )!2

2M ( i ) 1
pc

2

2mG J sc~2tp!pc /m

*dsc*dpc*dQc*dPc rc~sc ,Qc!expH 2bFS i 51
N

~Pc
( i )!2

2M ( i ) 1
pc

2

2mG J dscdhc~sc ,Qc!

. ~58!
y

ffi-
e
c-

t
d

as
The denominator in Eq.~58! can be calculated via equilib
rium PIMD or PIMC simulations. The correlation function i
the numerator of Eq.~58! can be calculated in two steps:~1!
sampling of the initial centroid positions,$sc(0),Qc(0)%,
and momenta,$pc(0),Pc(0)%, via a PIMD or PIMC
simulation,11,12 with the constraints150 ~the cyclic symme-
try renders the actual label of the constrained bead physic
meaningless!; ~2! propagating the sampled centroid positio
and momenta via a constraint-free CMD simulation. The c
relation function can then be obtained by averaging ove
large number of trajectories that start at different, random
sampled, initial states.

It is interesting to contrast the above CMD-based re
lly

r-
a
y

-

tion rate constant, Eq.~58!, to the PI-QTST reaction rate
constant.2–6 The most general form of the latter is given b

PR
eqPP

eqkPI2QTST5
kopt

2pb\

*dQc*dscd~sc!rc~sc ,Qc!

*dQc*dsc rc~sc ,Qc!
,

~59!

wherekopt is the classical Grote–Hynes transmission coe
cient at the variationally optimized barrier frequency. Lik
Eq. ~58!, it involves constrained sampling. However, the a
tual constraints are different:s150 in the case of Eq.~58!
andsc50 in the case of Eq.~59!. It should also be noted tha
Eq. ~58! was derived directly from the CMD formalism, an
is therefore expected to include dynamical effects, such
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the Kramers turnover, which PI-QTST cannot account
The relationship between PI-QTST and CMD was the s
ject of a recent paper by Jang and Voth.6 These authors found
that deriving PI-QTST from CMD requires additional a
proximations beyond these pertinent to CMD and TS6

Hence, despite the fact that both of these approximate m
ods are based on the centroid concept, one should not ex
them to give the exact same results.

IV. APPLICATION TO A DOUBLE WELL BILINEARLY
COUPLED TO A HARMONIC BATH

In this section, the new method described above is u
to calculate reaction rate constants in the case of a symm
double-well potential bilinearly coupled to a harmonic ba
It should be emphasized that the method is by no me
limited to such systems, and can easily accommodate an
monic environments, nonlinear coupling, and multidime
sional reactive potential surfaces. However, the availab
of numerically exact quantum rate constants for a wide ra
of temperatures and frictions in the case of the harmo
bath17 provides an opportunity for testing the accuracy of t
new method.

A. The model

Following Topaler and Makri,17 we consider a double
well bilinearly coupled to a bath of harmonic oscillators. T
total Hamiltonian operator is given by

Ĥ5
p̂2

2m
1V0~ ŝ!1(

j
F ~ P̂( j )!2

2M ( j ) 1
1

2
M ( j )~v ( j )!2

3S Q̂( j )2
c( j )ŝ

M ( j )~v ( j )!2D 2G . ~60!

The potential along the bare reaction coordinate,V0(s), is
taken to be of the form of a symmetric double well,

V0~s!52a1s21a2s4. ~61!

It should be noted thatV0(s) is defined such that the barrie
top is positioned ats50, as required. The spectral density
the bath is assumed to be ohmic, with an exponential cu

J~v!5
p

2 (
j

~c( j )!2

M ( j )v ( j ) d~v2v ( j )!5hve2v/vc, ~62!

whereh is the friction coefficient~in the limit vc→`!. m
was taken to be the mass of a proton, and the values o
parameters definingV0(s) and J(v) were taken to
be the same as in the DW1 model of Makri and Topale17

~cf. Table I!.

TABLE I. The parameters for the DW1 model.Eb5a1
2/4a2 is the barrier

height; vb5A2a1 /m is the barrier frequency;v05&vb is the well fre-
quency. The parameters are given in units of cm21.

Eb vb v0 vc

2085 500 707 500
r.
-

th-
ect

d
ric
.
ns
ar-
-
y
e

ic

ff

he

B. Discretization of the bath

In order to perform the simulations, the continuous ba
spectral density of Eq.~62! had to be discretized.17,26,66To
this end, it is convenient to work with the mass-weight
coordinates and momenta of the bath modes,$Q̃( j )

5AM ( j )Q̂( j )% and $P̃( j )5 P̂( j )/AM ( j )%, respectively, such
that

Ĥ5
p̂2

2m0
1V0~ ŝ!1(

j
F P̃j

2

2
1

1

2
~v ( j )!2

3S Q̃j2
c( j )ŝ

AM ( j )~v ( j )!2D 2G . ~63!

This form makes it clear that each bath mode is character
by two, rather than three, parameters:v ( j ) and c( j )/AM ( j ).
Next, a density number of bath modes,r~v!, is chosen. In the
actual simulations presented below,r(v)}J(v)/v. The fre-
quencies of the discrete bath modes,$v ( j )%, are obtained as
follows:

E
0

v( j )

dv r~v!5 j , j 51,2,...,N, ~64!

with N large enough such thatvN@vc . The values of
$c( j )/AM ( j )% are then obtained from17

~c( j )!2

M ( j ) 5
2

p
v ( j )

J~v ( j )!

r~v ( j )!
. ~65!

For the simulations reported here, convergence was achie
at N5100– 150.

C. Classical dynamics simulations

The new methodology for calculating reaction rate co
stants was first tested in the classical limit. The results
presented in terms of the transmission coefficient

k5kPR/kPR
TST, ~66!

where

kPR
TST5

1

m

^d~s!ph~p!&

^12h~s!&
~67!

is the classical TST reactant-to-product reaction rate cons
~^...& corresponds to averaging over the classical many-b
Boltzmann distribution!. The classical reactant-to-product r
action rate constant in the case of a symmetrical double w
is given by

kPR
Cl 5

kCl

2
52

1

2m

^A~2t !pd~s!&

^dhdA&
. ~68!

In Eq. ~68!, A can be any perturbation that distorts the eq
librium reactant and product populations. Substituting E
~67! and ~68! into Eq. ~66!, and using the fact that the
double-well potential is symmetric, we obtain

kCl5
kPR

Cl

kPR
TST52Apb

8m

1

^dAdh&

^A~2t !pd~s!&

^d~s!&
. ~69!
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The equilibrium averagêdAdh& was calculated via Nose´–
Hoover chain classical MD simulations, using the VV-3 a
gorithm of Jang and Voth67 ~Nosé–Hoover chains of length
four were attached to each of the degrees of freedom!.

The term^A(2t)pd(s)&/^d(s)& was evaluated from a
separate simulation, by averaging over many trajectories
started ats50. Since the bath modes are uncoupled as
50, their initial states could be randomly sampled from t
phase-space Gaussian Boltzmann distributions of the i
vidual harmonic oscillators. The sampled initial states w
then propagated backwards in time by the velocity-Ve
algorithm ~without Nosé–Hoover thermostats!.

The approach of the classical time-dependent transm
sion coefficient to its asymptotic value is shown in Fig. 2 f
different choices of the perturbation,A. As can be clearly
seen, different choices ofA—A5h(s) ~solid line!, A5s
~circles!, andA5s3 ~dashed line!—lead to exactly the sam
asymptotic value, and hence the same reaction rate cons
Different choices ofA may differ, however, in how long it
takes to reach the plateau. The choice ofA5h(s) is the
quickest due to its insensitivity to oscillations within the r
actant and product wells. The signature of these oscillati
is clearly seen in the low friction behavior orkCl(t) when
A5s and s3. Increasing the friction leads to damping
these oscillations, and the time it takes to reach the pla
becomes independent of the choice ofA. We were able to
reproduce the classical rate constants and demonstrat
equivalence of different choices ofA across the rather wide
range of temperatures and frictions considered by Makri
Topaler.17

FIG. 2. The approach of the classical transmission coefficient to
asymptotic value. The plots were obtained for DW1 at 200 K. The up
panel corresponds to low friction~below the Kramers crossover!, the middle
panel corresponds to intermediate friction~around the Kramers crossover!,
and the lower panel corresponds to high friction~above the Kramers cross
over!. The different lines correspond to different choices of the perturbat
A: A5h(s) ~solid line!, A5s ~circles!, A5s3 ~dashed line!.
at
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D. CMD simulation techniques

Performing a CMD simulation of a system consisting
N11 degrees of freedom would generally involve PIMD
PIMC simulations involvingN11 coupled chains, each con
sisting ofP beads. However, in our case, we can take adv
tage of the fact that harmonic degrees of freedom can
averaged analytically. In particular, when evaluating the c
troid distribution, rc(sc ,Qc), one can analytically averag
over theN harmonic bath modes. This leads to the followin
result:68

rc~sc ,Qc!5A~P!

3expH 2bFVeff~sc!1(
j 51

N
1

2
M ( j )~v ( j )!2

3S Qc
( j )2

c( j )sc

M ( j )~v ( j )!2D 2G J , ~70!

where

exp@2bVeff~sc!#

5E ds̃1¯E ds̃P d~ s̃12sc!

3expH 2bF (
k52

P
1

2
@mVk

21Vkĥ~Vk!# s̃k
2

1
1

P (
k51

P

V@sk~ s̃1 ,...,s̃P!#G J , ~71!

and

A~P!

5A2p\2b

m S mP

2pb\2D P/2

)
i 51

N FA2p\2b

M ( i ) S M ( i )P

2pb\2D P/2G
3)

i 51

N

)
k52

P A 2p

bM ( i )~Vk
21v i

2!
. ~72!

Here, $s̃k% and $Vk% are the coordinates and frequencies
the normal modes of thes chain

s̃k5
1

P (
l 51

P

Ulksl , Ul151, UlP52~21! l ,

V150, VP5
2P

b\
, ~73!

Uk,2n225A2 cos@2p~k21!~n21!/P#

Uk,2n2152A2 sin@2p~k21!~n21!/P#

V2n215V2n225
P

b\
A2@12cos~2p~n21!/P!# 6

~n52,3,...,P/2!,

andĥ(z) is the Laplace transform of the classical dynamic
friction kernel

s
r

,
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ĥ~z!5(
i 51

N
~c( i )!2

M ( i )~v ( i )!2

z

z21~v ( i )!2 . ~74!

Equations~70! and~71! reveal that our system is equiva
lent to that consisting of a classical chain whose beads
positioned at$s1 ,...,sP%, coupled toN classical-like bath
modes whose coordinates are given byQc

(1) ,...,Qc
(N) . The

ĥ-dependent terms correspond to bath-induced shifts to
frequencies of the springs that connect the beads. Increa
the friction makes these springs stiffer, thereby diminish
quantum delocalization. The second way in which the b
vi
o

ith

th

h

n

u

n
a

i
in
d
A

d

re

he
ing
g
h

affects thes chain is via the coupling term between the ce
troids of the bath modes,$Qc

( i )%, and the centroid of thes
chain,sc . The corresponding interaction potential takes
most the exact same form as the classical interaction po
tial, except for the fact that the classical positions are
placed by the corresponding centroid positions. Sim
expressions can be obtained forrc8(sc ,Qc) and rc

1(sc ,Qc)
by adding the corresponding constraints to Eq.~71!.

The calculation of the reaction rate constant from CM
Eq. ~58!, was carried out via two separate simulations. T
first simulation was designed for calculating the denomi
tor, which in this case can be put in the following form:
oor-
*dsc*dpc*dQc*dPc rc~sc ,pc ,Qc,Pc!dhc~sc ,Qc!dsc

*dsc*dpc*dQc*dPc rc~sc ,pc ,Qc,Pc!

5
1

P

*ds̃1¯*ds̃Pe2b[ (k52
P 1/2[mVk

2
1Vkĥ(Vk)] s̃k

2
1 1/P(k51

P V[sk( s̃1 ,...,s̃P)]] s̃(1)(k51
P h@sk~ s̃1 ,...,s̃P!#

*ds̃1¯*ds̃P e2b[ (k52
P 1/2[mVk

2
1Vkĥ(Vk)] s̃k

2
11/P (k51

P V[sk( s̃1 ,...,s̃P)]]
~75!

To this end, we performed non-Boltzmann sampling69 over the independent Gaussian distribution of the normal mode c
dinates,$s̃1 ,...,s̃P%, and averaged over the term that couples them. SinceV150, s̃15sc was sampled from2L to L with
equal probability, and the value ofL was increased until we reached convergence.

The second simulation was designed for calculating the numerator in Eq.~58!

*dsc*dpc*dQc*dPc rc~sc ,pc ,Qc,Pc!dsc~2t !Fc~sc ,pc ,Qc!

*dsc*dpc*dQc*dPc rc~sc ,pc ,Qc,Pc!

5S *dsc*dQcrc8~sc ,Qc!

*dsc*dQcrc~sc ,Qc!
D S *dsc*dpc*dQc*dPc rc8~sc ,pc ,Qc,Pc!sc~2t !pc /m

*dsc *dpc*dQc*dPc rc8~sc ,pc ,Qc,Pc!
D . ~76!
is
The first factor on the right-hand side was calculated
non-Boltzmann sampling over the Gaussian distribution
the independent normal modes, as described above, e
with or without constraining one of the beads tos50. The
second factor required the appropriate initial sampling of
centroid of the constrained chain,sc , which can be conve-
niently performed in the normal mode representation. T
bath modes centroids,$Qc

(k)%, for a given value ofsc , were
sampled from the shifted Gaussian distributio

e2 b/2 M (k)(v(k))2[Qc
(k)

2c(k)sc /M (k)(v(k))2] 2
. Each sampled initial

configuration was then propagated in time via a CMD sim
lation. The dependence of the centroid force onsc was tabu-
lated beforehand, and the numerical effort involved in ru
ning a CMD simulation was therefore essentially the same
that of running a classical MD simulation.

The constrained centroid distribution,rc8(sc), deserves
special attention. At high temperatures, this distribution
very narrow and localized at the barrier top. Its broaden
as the temperature is lowered is a reflection of quantum
localization. This behavior is demonstrated in Figs. 3–5.
the relatively high temperature of 300 K~cf. Fig. 3!, the
distribution is found to be unimodal and fairly localize
a
f
er

e

e

,

-

-
s

s
g
e-
tFIG. 3. The initial constrained centroid distributionrc8(sc) ~normalized!, for
DW1 at 300 K. The distribution is shown for various values ofh/(mvb)
~see the legends!. The classical potential along the reaction coordinate
also shown for reference.
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around the barrier top. As expected, increasing the frict
further localizes the distribution. A somewhat different p
ture emerges at 200 K~cf. Fig. 4!. At high frictions, the
distribution is wider than at 300 K, but still unimodal an
localized around the barrier top. However, the distribut
becomes bimodal at low frictions. This is because lower
the temperature and/or friction leads to more exten
chains. One of the beads has to be attached to the barrie
but the rest of the beads seek regions of lower potential
ergy which are downhill on both sides of the barrier. As
result, the corresponding centroid distribution acquires
symmetric, with respect to the barrier top, bimodal structu
This behavior is further enhanced at 100 K, whererc8(sc) is

FIG. 4. Same as Fig. 2 exceptT5200 K.

FIG. 5. Same as Fig. 2 exceptT5100 K.
n

g
d
op,
n-

a
.

seen to consist of two, clearly separated peaks on both s
of the barrier~cf. Fig. 5!.

The above-mentioned behavior ofrc8(sc) can lead to in-
efficient sampling at low temperatures, since the most lik
starting centroid positions will have a low likelihood fo
crossing the barrier. In order to enhance the efficiency,
performed the sampling at 100 K with two infinitely hig
reflecting walls whensc is equal2L or L. Starting with the
walls in the close vicinity of the barrier top,L is gradually
increased until convergence is reached. The value ofL at
which convergence is attained increases when the temp
ture is further decreased, due to quantum delocalizat
thereby rendering even the above-mentioned samp
method inefficient below 100 K. The development of me
ods to enhance the efficiency of the sampling at such v
low temperatures will be the subject of future research.

E. Results of CMD simulations

Using the simulation techniques described above,
were able to calculate reaction rate constants for DW1 aT
5100, 200, and 300 K, for a wide range of frictions. Th
results of these calculations are presented in Figs. 6
alongside the numerically exact results, the results obtai
from classical MD simulations, and the results from P
QTST. The following observations can be made based
these plots:

~1! The most important observation is that CMD ca
tures most of the quantum enhancement to the reaction
Thus, the CMD approximation is seen to work well and le
to quantitative predictions in situations where classical m
chanics fails.

~2! The CMD rate constant, Eq.~58!, provides a lower
bound to the exact results. This is a manifestation of the
that CMD approximates the quantum dynamics, and the

FIG. 6. The transmission coefficient as a function of friction, for DW1
300 K. Shown are the exact, CMD, PI-QTST, and classical results.
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fore misses some of the quantum enhancement. It shoul
emphasized, however, that the deviations from the exac
sults are usually rather small.

~3! CMD improves as the temperature increases. T
relative weight of the quantum enhancement intensifies
lower temperatures, so that the relative error involved in
proximating it becomes larger. However, it should be emp
sized that CMD can still provide quantitative estimates
temperatures as low as 100 K.

~4! CMD improves as the friction is increased. This is
manifestation of the fact that CMD cannot capture pur

FIG. 7. The transmission coefficient as a function of friction, for DW1
200 K. Shown are the exact, CMD, PI-QTST, and classical results.

FIG. 8. The log10 of the transmission coefficient as a function of friction, f
DW1 at 100 K. Shown are the exact, CMD, PI-QTST, and classical res
be
e-

e
at
-
-
t

y

quantum coherences for long times. These coherences
dephased by the bath at higher frictions, thereby improv
the quality of CMD. This means that the present CMD-bas
method for computing rate constants will be applicable
many condensed phase systems for which the high fric
region is the relevant one.

~5! The reaction rate constants obtained from CMD c
incide with these obtained from PI-QTST at high friction
At intermediate frictions, the predictions of PI-QTST a
slightly better, which is likely to be accidental. PI-QTS
being a TST method, fails to capture the the turnover beh
ior at the low friction, energy diffusion regime. On the oth
hand, CMD, being a dynamical method, does capture
turnover behavior. These results indicate that CMD and
QTST are distinctly different methods, despite the fact t
they are both based on the centroid concept, with CMD
more general theoretical framework which includes dyna
cal effects.

V. CONCLUSIONS

A new method for calculating quantum reaction rate co
stants has been presented in this work. The new metho
based on the following two elements:

~1! Linear-response theory, either classical or quantu
mechanical, leads to a family of expressions for the reac
rate constant. In all of these expressions, the rate consta
given in terms of a correlation function of the flux and
second observable. The important point is thatthe same
value of the reaction rate constant will be obtained regar
less of which second observable is chosen. In particular, one
can express the quantum reaction rate constant in terms
position–flux correlation function.

~2! CMD can be used to approximate the quantu
position–flux correlation function, and hence the quant
reaction rate constant, in general many-body systems.

The method was tested on a model system consistin
a symmetric double well coupled to a harmonic bath. CM
was found to provide a very good approximation for t
quantum reaction rate constant, and typically accounted
the major part of the quantum enhancement. It should
noted that the level of agreement with the numerically ex
results is of similar quality as for rate constants calculatio
based on analytical continuation28,29 and semiclassical22,23,26

methods. Comparison to the linearized version of the se
classical approximation23 is also worth noting. In this case
the semiclassical approximation amounts to doing the ini
sampling based on the Wigner distribution of the combin
Boltzmann and flux operators, followed by fully classic
dynamics. CMD, on the other hand, is based on nonclass
sampling followed by classical-like dynamics on a noncla
sical centroid potential. Despite the similar spirit of the tw
approaches, the additional important differences should
be highlighted:~1! the initial centroid distribution function is
fundamentally different from the Wigner distribution,39 and
~2! calculating the centroid distribution for realistic system
is feasible, while calculating the Wigner distribution for r
alistic systems may be extremely difficult due to its regio
of negative amplitude.s.
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The sensitivity of the CMD approximation to the tem
perature and friction was systematically mapped, for the fi
time, within the context of a widely studied ‘‘many-body
system. It should be emphasized that the new method
scribed herein is in no way limited to one-dimensional s
tems bilinearly coupled to harmonic baths. The applicat
of the theory to more complex and realistic condensed ph
systems will be the subject of future work.

Finally, it should be noted that the present method is a
to accommodate alternative methods for computing the
namics of centroid variables.40 Such methods may replac
the CMD approximation in Eq.~55!, and thus lead to poten
tially even more accurate methods for calculating quant
reaction rate constants.

ACKNOWLEDGMENTS

This work was supported by the National Science Fo
dation~No. CHE-9712884!, and by start-up funding from the
University of Michigan. One of the authors~E.G.! is grateful
to Dr. Seogjoo Jang for enlightening correspondence reg
ing CMD and also thanks Professor David Tannor for int
ducing him to the problem of calculating quantum react
rate constants, Dr. Udo Schmitt and Dr. Soonmin Jang
their help in writing the CMD code, and Professor Nan
Makri for sending an electronic copy of her data.

1P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62, 251 ~1990!.
2G. A. Voth, D. Chandler, and W. H. Miller, J. Chem. Phys.91, 7749
~1989!.

3G. A. Voth, Chem. Phys. Lett.170, 289 ~1990!.
4G. A. Voth, J. Phys. Chem.97, 8365~1993!.
5G. A. Voth, Adv. Chem. Phys.93, 135 ~1996!.
6S. Jang and G. A. Voth, J. Chem. Phys.112, 8747~2000!.
7M. J. Gillan, Phys. Rev. Lett.58, 563 ~1987!.
8M. J. Gillan, J. Phys. C20, 3621~1987!.
9R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integra
~McGraw-Hill, New York, 1965!.

10R. P. Feynman,Statistical Mechanics~Benjamin, New York, 1972!.
11B. J. Berne and D. Thirumalai, Annu. Rev. Phys. Chem.37, 401 ~1986!.
12D. M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
13P. Pechukas,Dynamics of Molecular Collisions, Part 2~Plenum, New

York, 1976!, p. 269.
14T. Yamamoto, J. Chem. Phys.33, 281 ~1960!.
15W. H. Miller, J. Chem. Phys.61, 1823~1974!.
16W. H. Miller, S. D. Schwartz, and J. W. Tromp, J. Chem. Phys.79, 4889

~1983!.
17M. Topaler and N. Makri, J. Chem. Phys.101, 7500~1994!.
18N. Makri and K. Thompson, Chem. Phys. Lett.291, 101 ~1998!.
19R. P. Feynman and F. L. Vernon, Jr., Ann. Phys.24, 118 ~1963!.
20U. Weiss,Quantum Dissipative Systems~World Scientific, London, 1993!.
21N. Makri, J. Phys. Chem. A102, 4414~1998!.
22W. H. Miller, Faraday Discuss.110, 1 ~1998!.
23H. Wang, X. Sun, and W. H. Miller, J. Chem. Phys.108, 9726~1998!.
24J. S. Shao and N. Makri, J. Phys. Chem. A103, 7753~1999!.
st

e-
-
n
se

le
y-

-

d-
-

r

25K. Thompson and N. Makri, Phys. Rev. E59, R4729~1999!.
26H. Wang, M. Thoss, and W. H. Miller, J. Chem. Phys.112, 47 ~2000!.
27K. Yamashita and W. H. Miller, J. Chem. Phys.82, 5475~1985!.
28E. Rabani, G. Krilov, and B. J. Berne, J. Chem. Phys.112, 2605~2000!.
29E. Sim, G. Krilov, and B. Berne, J. Phys. Chem. A105, 2824~2001!.
30E. Gallicchio and B. J. Berne, J. Chem. Phys.105, 7064~1996!.
31E. Gallicchio, S. A. Egorov, and B. J. Berne, J. Chem. Phys.109, 7745

~1998!.
32S. A. Egorov, E. Gallicchio, and B. J. Berne, J. Chem. Phys.107, 9312

~1997!.
33G. Krilov and B. J. Berne, J. Chem. Phys.111, 9147~1999!.
34J. Cao and G. A. Voth, J. Chem. Phys.100, 5093~1994!.
35J. Cao and G. A. Voth, J. Chem. Phys.100, 5106~1994!.
36J. Cao and G. A. Voth, J. Chem. Phys.101, 6157~1994!.
37J. Cao and G. A. Voth, J. Chem. Phys.101, 6168~1994!.
38J. Cao and G. A. Voth, J. Chem. Phys.101, 6184~1994!.
39S. Jang and G. A. Voth, J. Chem. Phys.111, 2357~1999!.
40S. Jang and G. A. Voth, J. Chem. Phys.111, 2371~1999!.
41A. Calhoun, M. Pavese, and G. A. Voth, Chem. Phys. Lett.262, 415

~1996!.
42U. W. Schmitt and G. A. Voth, J. Chem. Phys.111, 9361~1999!.
43S. Jang, Y. Pak, and G. A. Voth, J. Phys. Chem. A103, 10289~1999!.
44M. Pavese and G. A. Voth, Chem. Phys. Lett.249, 231 ~1996!.
45K. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys.106, 1154

~1997!.
46K. Kinugawa, P. B. Moore, and M. L. Klein, J. Chem. Phys.109, 610

~1998!.
47K. Kinugawa, Chem. Phys. Lett.292, 454 ~1998!.
48M. Pavese, D. R. Berard, and G. A. Voth, Chem. Phys. Lett.300, 93

~1999!.
49S. Miura, S. Okazaki, and K. Kinugawa, J. Chem. Phys.110, 4523~1999!.
50F. J. Bermejoet al., Phys. Rev. Lett.84, 5359~2000!.
51D. R. Reichman, P.-N. Roy, S. Jang, and G. A. Voth, J. Chem. Phys.113,

919 ~2000!.
52M. Hillery, R. F. O’Connell, M. O. Scully, and E. P. Wigner, Phys. Re

106, 121 ~1984!.
53R. Kubo, M. Toda, and N. Hashitsume,Statistical Physics II—

Nonequilibrium Statistical Mechanics~Springer, Berlin, 1983!.
54J. Poulsen, S. R. Keiding, and P. J. Rossky, Chem. Phys. Lett.336, 488

~2001!.
55B. Widom, J. Chem. Phys.55, 44 ~1971!.
56J. L. Skinner and P. G. Wolynes, J. Chem. Phys.69, 2143~1978!.
57D. Chandler, J. Chem. Phys.68, 2959~1978!.
58J. A. Montgomrey, Jr., D. Chandler, and B. J. Berne, J. Chem. Phys.70,

4056 ~1979!.
59N. Makri, Annu. Rev. Phys. Chem.50, 167 ~1999!.
60J. Ankerhold and H. Grabert, Chem. Phys.204, 27 ~1996!.
61B. B. Laird, J. Budimir, and J. L. Skinner, J. Chem. Phys.94, 4391~1991!.
62E. Geva, E. Rosenman, and D. J. Tannor~unpublished!.
63G. A. Voth, D. Chandler, and W. H. Miller, J. Phys. Chem.93, 7009

~1989!.
64W. H. Miller, J. Phys. Chem. A102, 793 ~1998!.
65D. A. McQuarrie, Statistical Mechanics~Harper and Row, New York,

1976!.
66H. Wang, X. Song, D. Chandler, and W. H. Miller, J. Chem. Phys.110,

4828 ~1999!.
67S. Jang and G. A. Voth, J. Chem. Phys.107, 9514~1997!.
68J. Cao, L. W. Ungar, and G. A. Voth, J. Chem. Phys.104, 4189~1995!.
69D. Chandler,Introduction to Modern Statistical Mechanics~Oxford Uni-

versity Press, New York, 1987!.


