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Time-Dependent One-Speed Albedo Problem for a Semi-Infinite Medium 
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(Received 19 May 1964) 

A Laplace transformation technique is used to determine the neutron distril;mtion in a sew-infinite 
medium which has been irradiated by a neutron pulse. The result is given in terms of known solutions 
of Milne's problem and of the steady-state albedo problem, which in tum are expressed by aid of 
Case's X-function. Simple asymptotic approximations, valid for t » 1, are deduced from the exact 
result. 

I. INTRODUCTION 

I T is well known that time-dependent transport 
problems with given initial values can be formally 

converted to steady-state problems by Laplace trans
formation. In simple cases the transformed equation 
can be solved rigorously, e.g., by the singular eigen
function method of Case. l

-
a Then the solution of 

the time-dependent problem is constructed by in
verse Laplace transformation. 

The indicated method has been used by Bowden' 
for a problem with slab geometry, the general aspects 
of which problem have been clarified previously by 
Lehner and Wing.5 A slightly different approach has 
been used by Case l for an infinite medium with a 
pulsed plane source. It seems worthwhile to extend 
these investigations also to the semi-infinite medium, 
in which case several explicit results can be deduced. 

We restrict our attention to the one-speed equa
tion with isotropic scattering and seek the neutron 
distribution everywhere in an infinite half-space 
following irradiation of the surface with a mono
directional pulse of neutrons at t = O. The appropriate 
equation (using units in which (T = v = 1) is l 

a1/; a1/; 
1/;(x, f./., t; f./.o) + at + f./. -a; 

= ~ Ll 1/;(x, f./.', t; f./.o) df./.', (Ia) 

where x ~ 0, f./.o > 0, and the boundary and initial 
conditions are 

1/;(0, f./., t; f./.o) = /J.;lO(/J. - f./.o)o(t) for fJ. > 0, (Ib) 

1/;(x, f./., t; f./.o) ~ 0 for x ~ co, (Ic) 
----

'" On leave of absence from the University of Ljubljana, 
Yugoslavia. 

1 K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960). 
2 K. M. Case, Recent Developments in Neutron Transport 

Theory (Michigan Memorial Phoenix Project, 1961). 
a K. M. Case and P. F. Zweifel, Neutron Transport Theory 

(to be published). 
4 R. L. Bowden, thesis, Virginia Polytechnic Institute (Re

p()rt TID 18 884, 1963). See also: R. L. Bowden and C. D. 
Williams, J. Math. Phys. S, 1527 (1964). 

6 G. M. Wing, An Introduction to Transport Theory (J. 
Wiley & Sons, Inc., New York, 1962). 

and 

1/;(x, f./., t; f./.o) = 0 for t < O. 

We shall also be interested in the distribution 

1/;*(x, f./., t) = 11 1/;(x, f./., t; /J.o)/J.o df./.o, (2) 

produced by a pulsed isotropic incident distribution. 
Finally, we shall need the values of the neutron 

densities and net currents, defined by 

p(x, t; f./.o) = Ll 1/;(x, f./., t; f./.o) d/J., (3) 

j(x, t; /J.o) = Ll 1/;(x, f./., t; /J.o)/J. d/J., (4) 

(and similarly for p*, j*). For convenience the factor 
2'11" has been omitted here, which can be justified 
by saying that 1/; represents the angular density 
integrated over the azimuth. 

Certain general properties of the solution are 
immediately apparent. First, we notice that the pulse 
initiates some transient discontinuities in the neutron 
distribution. Evidently 1/; = 0 for x > t, since the 
neutrons enter the medium with a speed which is 
unity in the present notation. Moreover, a term 
o(x - f./.ot)o(f./. - f./.o)e-', describing the distribution 
of the uncollided neutrons, is contained in 1/;. How
ever, all such singularities die out exponentially, and 
1/; becomes a smooth function for t » 1. 

Second, according to a reciprocity theorem,6 the 
following relation for the angular density of the 
reflected neutrons must hold 

f./. > o. (5) 

Finally, for an absorbing medium (c < 1), we 
expect that the decay of the neutron distribution 
is governed mainly by the true absorption rate, i.e., 

6 L. M. Biberman and B. A. Veklenko, Zh. Eksperim. i 
Teor. Fiz. 39, 88 (1960) [English transl.: Soviet Phys.-JETP 
12, 64 (1961 )]. 
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'" should be roughly proportional to e-o-o)l. After 
an appropriate substitution is made, Eq. CIa) shows 
that 

.,-'d( t.) -(1-<)1.,,(1)( t.) 
'Y X, /Jo, ,/Joo = ee 'Y ex, /Jo, e ,/Joo , (6) 

where the value of e is indicated by a superscript. 
Hence it is sufficient to study the problem for a 
nonabsorbing medium (e = 1), and therefore the 
subsequent discussion will be limited to this case only. 

Following Lehner and WingO and Bowden/ we 
multiply both sides of (la)-(lc), where now c = 1, 
by eO-o)ldt, and integrate from 0 to IXI. The integral 
converges for Re (8) > 1, and the transform 

",.(x, /Joi /Joo) = 1'" ",(x, /Jo, t; /Joo)eU
-

O

), dt (7) 

is found to obey the equation 

8"'.(X, /Jo; /Joo) + /Jo ~~. = ~ fl ",,(x, 1-"; 1-'0) d/Jo', (Sa) 

with the boundary conditions 

",.(0, /Joi 1-'0) = /Jo;18(/Jo - /Joo) for /Jo > 0, (Sb) 

and 

",.(x, /Joi /Joo) -t 0 for x -t ro. (8c) 

From ",,(x, /Joi /Joo) the solution of the time-depend
ent problem will be computed by inverse Laplace 
transformation, 

",(x, 1-', Ii /Joo) 

(9) 

where 'Y > 1. However, before carrying out this 
inverse transformation it seems advisable to modify 
it in the usual way by shifting and bending the 
path of integration as far as possible to the left 
in the complex 8-plane. In order to be able to do 
this we first must check the analyticity properties 
of "'.(x, /Joi /Joo) as a function of 8. We shall start 
with explicit expressions for this function. 

n. PROPERTIES OF THE TRANSFORM 
OF THE SOLUTION 

According to Eqs. (8a )-(8c), the function", 0 (x, P ; /Joo) 
coincides with the solution of the steady-state albedo 
problem, normalized to unit ingoing net current, for 
a semi-infinite medium with a macroscopic total cross 
section 8 and a macroscopic scattering cross section 
equal to unity. This problem has been solved by 
Case, and we can copy his results, at least for real 8. 
The only novelty encountered with the present 
problem lies in the necessity of performing an an-

alytical continuation to complex values of 8. We 
shall postpone this task temporarily, and start with 
the assumption that 8 is real and> 1. 

Besides ",.(x, /Joi /Joo) we shall need later on the 
solution ",.(x, /Jo) of Milne's problem, which is defined 
by an equation like (Sa), and the boundary conditions 

",.(0, /Jo) = 0 for /Jo > 0, (lOa) 

",,(x, /Jo) < O(e·~) for x -t (Xl. (lOb) 

In both cases we shall be interested also in the 
neutron densities and net currents, vthich will be 
denoted by P.(xi /Joo), Po(x) and i.(x; /Joo), i.(x), re
spectively. We normalize the solution of Milne's 
problem to unit emerging net current: i.CO) = -1. 

All these quantities can be expressed in terms of 
Case's X-function, or equivalently, in terms of 
Chandrasekhar's H-function/ H(/Jo, 8) = [(1 -
8-1)+(Vo + /Jo)X( -/Jo, 8)f1. In Case's notation the 
formulas for ",.(x, P; /Joo), etc., are2

,3.1.8 

1 
",,(x, /Joi /Joo) = (vo + 1-'0)X( -/Joo, 8) 

X {
48X( -vo, 8) A.. () () -8"'!P. 

A'() '1'.+ /Joo cf>.+ I-' e 
Vo • Vo 

+ 11 Cvo + v)X( -v, 8) () () -0",1. d} 
o vA:(v)A.(v) cf> .. /Joo cf> .. J.I. e v , 

"'.(0, -/Jo; Po) = [2(8 - 1)(1-' + /JoO)(l'o + /Joo) 

P ~ 0, 

"'.(0, -/Jo) 

(11) 

(12) 

(13) 

(14) 

(15) 

= [2(8 - 1)(1'~ - p2)X( -/Jo, 8)r\ J.I. ~ 0, (16) 

P.CO) = [(1 - 8-I)fvorl. (17) 

The following functions appear in the above 
formulas: 

1 [1 Jl A :(v) dv ] X(z, 8) = -1 - exp -2' In A-( ) -- (18) -z 1r/, 0 ,I'I'-Z 

7 S. Chandrasekhar, Radiative Transfer (Oxford Univer
sity Press, London and New York, 1950). 

8 1. Kuscer, Can. J. Phys. 31, 1187 (1953). 
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(with the integrand = 0 at P = 0), 

A.(z) = 1 - (z/s) tanh- I (l/z) (19a) 

(defined in the complex plane, cut along -1 < z < 1), 

A ~(p) = A,(P) ± 7r'ip/2s for -1 < P < 1, (19b) 

X.(p) = 1 - (p/s) tanh-1 v, (20) 

±Po(s) = roots of A,(po) = 0, 

A'( ) -I( 2 1)-1 -I ,Po = pos Po - - Po , (21) 

(22) 

P 1 
CP •• (p.) = -2 P -- + A,(P) 5(p - p.), 

s P - P. 
(23) 

where P indicates that we have to take the Cauchy 
principal value of any integral over P or p. of the 
expression 1/ (p - p.) following that symbol. The 
integral in (11), with the two singularities of the 
integrand merging when p. ~ P.o, has to be under
stood in the same sense as with the orthogonality 
relation 

used in full-range developments. I
-

4 It can then be 
seen that the right-hand side of Eq. (11) contains 
the discrete term p.;/5(p. - p.o)e-u/

"., corresponding 
to the uncollided neutron beam. 

The neutron densities and net currents, belonging 
to (11) and (15), follow immediately if we observe 
that CP.± and cP., are normalized to unit density, and 
that the corresponding net currents are ± (1 - S-I)pO 
and (1 - S-I)p, respectively. 

We may introduce the "extrapolation distance" 
q(s) and another parameter Q(s) by 

-X(po, s)/X( -Po, s) = e20/ 
•• , (25) 

-X(po, s)X( -Po, s) _ A:(po) 
- 2po(1 - S-I) 

1 
= Q2p~(1 _ S 1)2' (26) 

with the purpose of expressing p,(x) in a shorter form 

p,(x) = Qpo sinh sx + q 
Po 

1 11 X( -P, s) -u/> d 
- 2s 0 A :Cp) A :(p) e P. 

(27) 

When s ~ lone should use the well-known 

approximation 

(2S) 

which leads to Q(l) = 3, whereas q(1) = 0.71045. 
Let us now turn to complex values of s. By re

tracing the derivation of Eqs. (11)-(17) one verifies 
that they remain valid so long as s is such that 
A.(z) has a pair of zeros. The condition for this 
to happen is, according to Bowden,4 that s belongs 
to a certain region S; of the complex plane, as shown 
by Fig. 1. This region is the conformal map, produced 
by the function s = Po tanh -1 (l/po), of the (say) 
right-hand half of the complex plane of Po, cut as 
mentioned before. Hence the boundary C of S; is 
the (double) conformal map of half of this cut. 

The analytic behavior of 1/;,(x, JLj JLo) inside the 
region S; of the complex s-plane is linked to the 
properties of Po(s). This is the inverse of the pre
viously mentioned function s = Po tanh- l (l/po), and 
its values can be read from the quoted figure. We 
see there that the point s = 1 is a branch point 
of Po(s), as shown also by the approximation (2S). 
Hence, if we want Po to be uniquely determined 
for s E S;, a cut has to be drawn in the s-plane, 
most conveniently to the left of that point. If we 
chose Po to be the particular root which is positive 
for s > 1, then Re (Po) ;::: 0 in the whole cut region S;. 

Expression (11) shows that inside S, the function 
1/;. (x, JLj JLo) is regular in s, except for the branch 
cut (0 :::; s :::; 1) due to po(s). The reason why 
this cut is inherited by 1/;,(x, JLj JLo) is that, by de
finition, only one of the discrete eigenfunctions, 
cp,+(JL)e-U:/ •• , is involved in the expansion (11). Con
sequently, when s approaches the branch cut from 
above or below, two different limits 1/;: and 1/;: are 
obtained, involving the negative and positive imag
inary Po in (11), respectively. Since 1/;: and 1/;: both 
are solutions of Eqs. (Sa, b), the difference 1/;: - 1/;: 
is a solution of the corresponding homogeneous prob
lem, i.e., of Milne's problem. (For Milne's problem 
s = 1 is no branch point because going around this 
point merely interchanges the two discrete terms 
in (15) and leaves the sum unchanged.) Taking 
account of the value (14) of the net current at the 
surface we find that 

1/;:(x, JLj p.o) - 1/;:(x, JLj JLo) 

-2i IPol [(IPoI2 + JL~)X(-JLo, s)t l 1/;.(x, JL) 

-4i(1 - s) Ipo I 1/;.(0, - JLo) 1/;, (x , JL), 0:::; s :::; 1. 
(29) 

If s is in the external region S. (Fig. 1), the situa
tion is different because A,(z) then has no zero and 
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1m (s) 

S8 .99 
(~) ---------------~9-------:-:.:;-;;.:.--:.:::-=--~~-- c 

.8 

,.u~~..;.:...~.2.:.¥_!\!__....,_--.::;.lO:.:...1 -..,-_ Re( s) 
(2) (3) 

.8 

definition is adapted as follows: 

{
(I - z)X(z, s) for 

Xo(z, s) = 
(po - z)X(z, s) for 

with X(z, s) given by (18). 

s E S., (33) 

s E S" 

It may be mentioned that the analyticity of 
Xo(z, s) in both variables is obvious from a complex 
representation, which in a different form has been 
given by Chandrasekhar,7 and which also readily 
ensues from the above definition: 

1 Jia> A,(z') dz' -. In---,--
2m, -ia> A.( (X) z - z 

(_.i!!:) ____________ :.9____________ ___ In Xo(z, s) 
2 ~9 

+ I A.(z) 
n A.( (X) , 

Re (z) > 0 

FIG. 1. Values of 1'0(8) plotted in the complex plane of 8. The 
values of 8 are given in parentheses. 

the corresponding discrete term in the expansion is 
missing. By the use of Xo(z, s) = (1 - z)X(z, s) 
instead of X(z, s) the following formulas are obtained 
for this case: 

1 
1/;.(x, J.L; J.Lo) = X (_ s) 

o J.Lo, 

11 Xo( -P, s) () () -8%/' d 
X 0 pA:(p)A.(p) CP .. J.Lo CP •• J.L e P, (30) 

1/;.(0, -J.L; J.Lo) = [2(8 - 1)(J.L + J.Lo) 

J.L 2:: o. (31) 

Similarly as for s E S" we now conclude from 
(30) that 1/;.(x, J.L; J.Lo) is regular in s also for s E S., 
Re (s) 2:: O. However, we are still uncertain about 
what happens when 8 crosses the boundary C sep
arating the two regions. 

One way to assure the analyticity of 1/;.(x, J.L; J.Lo) 
across C would be to extend the existence theorems, 
worked out by Lehner and Wing for the slab case/· 6 

to the semi-infinite medium. An alternative method, 
chosen in the following, consists in the comparison 
of the limits of the explicit expressions (11) and (30), 
when 8 approaches the line C from one or the other 
side. First however, we have to insert a discussion 
about the X-function, which itself is discontinuous 
at sEC. 

It can be inferred from the definition (18) that 
the change of X(z, s), as s crosses C, is expressed by 

[(po - z)X(z, S)]in8ide = [(1 - Z)X(Z, s)]out8ide' (32) 
limit limit 

Thus, (po - Z)X(Z, 8) for s E S, and (1 - z)X(z, s) 
for s E S. represent one and the same analytic 
function, which we may denote by Xo(z, 8), if the 

1 Jia> A.(z') dz' -. In---,--, 
2m, -'a> A B ( (X) z - z 

Re (z) < 0, (34) 

with A.( (X) = 1 - S-I. For fixed s the function 
Xo(z, s) has no singularity in the z-plane, cut along 
(0, 1), and it has one simple zero at z == Po (s), 
Re (po) 2:: 0, only if s E S,. The zero disappears 
by crossing the cut when 8 crosses the boundary C. 
Vice versa, for fixed z there is no singularity in the 
8-plane, cut along (0, 1), and for Re (z) > 0 there 
is only one zero at s = z tanh-1 (liz). The zero 
disappears by crossing the cut when z crosses the 
imaginary axis. 

We return now to the problem of the behavior 
of 1/;.(x, J.L; J.Lo) at sEC. For the case x = 0, it is 
immediately clear, in view of Eq. (33), that (31) 
is an analytical continuation of (12). For x > 0, 
an apparent difficulty arises from the discontinuity 
of the individual terms in (11) and (30), when s 
crosses C. Moreover, certain terms have poles at 
those values of s which make po(s) equal to J.L or J.Lo. 
However, a closer inspection proves that all these 
singularities cancel each other, so that 1/;.(x, J.L; J.Lo) 
is, in fact, continuous across C, and consequently 
regular in the whole right-hand half-plane of s, cut 
along 0 ~ s ~ 1. This is what we wanted to know. 

The tedious term-by-term comparison of (11) with 
(30) can be avoided by transforming both expres
sions into a unique complex representation, from 
which the analyticity in 8 is evident: 

1/;.(x, J.L; J.Lo) = J.L·~/o(J.L - J.Lo)e-"/p, 

1 1 
2sX o( - J.Lo, s) 21Ji 

J Xo( -z, 8) 1 -,./0 dz 
X A.(z) (z - J.L)(z - J.Lo) e . (35) 
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The integration over z is carried out along a contour 
which starts and ends at z = 0, with Re (z/s) ~ ° 
at z -+ 0, and embraces the branch cut ° < z < 1, 
as well as the pole z = Po of the integrand. 

We see, by the way, that the discrete term in 
(11) is due to the residue of the integrand in (35) 
at z = Po, and that the expressions (12), (31) stem 
from the residue at z = p.. 

m. FINAL FORM OF THE SOLUTION 

The above conclusions permit us to deform the 
integration path in (9) as shown by Fig. 2. Thereby 
and by the use of relation (29) the integral in (9) 
is put into a more convenient form, 

1/;(x, p., t; p.o) 

= ~ 11 (1 - s) Ipo(s) I 1/;.(0, -p.o)1/;.(x, p.)e-(J-·), ds 
1r 0 

. 1 1;" -(1-0)' + hm 2--: . 1/;.(x, p.; p.o)e ds. 
w-+oo n -U!) 

(36) 

This, with the expressions (16), (15), and (30) sub
stituted, represents the final result. Expressions for 
p(x, t; p.o) and j(x, t; p.o) follow immediately. 

For x = ° a further simplification is possible 
because the expression (31) can be analytically con
tinued to Re (s) < 0, which for x> ° was impossible, 
because of the factor e-u

/, in the integrand in (30). 
Now the integration path can be bent still further 
to the left, and we end up with a closed loop en
circling the branch cut. This means that the last 
term in (36) drops out for x = 0, so that 

211 1/;(0, -p., t; p.o) = - (1 - s) Ipo(s)I 
1r 0 

x 1/;.(0, -p.o) 1/;.(0, _p.)e-(l-O)' ds, p. ~ O. (37) 

The validity of the reciprocity relation (5) is clearly 
demonstrated. The values of X( -p., s) involved in 
1/;.(0, - p.) through Eq. (16) can be taken from graphs 
presented by Bowden.4 

Imls) 

-~==3r-1fr--- Rels) 

FIG. 2. Integration 
paths for inverse Laplace 
transformation of 

",.(x, 1'; 1'0). 

The neutron density and the net current at the 
surface of the medium are obtained from (37) by 
substituting the factor 1/;.(0, -p.) of the integrand 
by the expression (17) and by j.(O) = -I, re
spectively, and by adding the contribution due to 
the incident neutrons, Pin.(O, t; p.o) = p.;;lO(t), 
jin.(O, t; p.o) = oCt). Especially simple formulas 
follow for the case of isotropic angular distribution 
of the incident neutrons: 

p*(O, t) = oCt) + r 1e-· /2 I I (it) (38a) 

= oCt) + ! [1 - ! t + ~ t2 
- ••• ] (38b) 

4 2 32 

= (1rt
a
)-{ 1 - ~ r 1 

- !~ r 2 + o (t-a) J. 
(38 c) 

j*(O, t) = io(t) - 1r- 1 
{ 2(1 - s) Ipo(s)I e-(I-.JI ds 

(39a) 

= io(t) - !(1 - In 2) + OCt) (39b) 

= _(31rtyl[1 - (27/20)r 1 + 0(t-2)]. 
(39c) 

The formula for p*(O, t) has been reduced to an 
expression containing the modified Bessel function 
II by aid of the substitution s = HI - cos8), 
which leads to Poisson's integral representation for 
this function. 9 

The initial values of the reflected angular density 
could be computed from Eq. (37) by substituting 
t = O. However, an easier way is to expand the 
previously mentioned closed-loop integration path 
into a very large circle, instead of shrinking it onto 
the branch cut. Observing that Xo(z, s) = 1 + O(S-I) 
for s -+ 00, as can easily be shown, we obtain, 
using (31), 

1/;(0, -p., 0; p.o) = [2(p. + p.o)r1
, p. ~ 0. (40) 

This angular density is entirely due to neutrons 
scattered only once, as one can infer directly from 
the transport equation. 

lV. DISCUSSION 

The above results closely resemble those obtained 
by Bowden for the slab problem. The main difference 
is that in the latter case two discrete terms, in
volving the factors e±";fvo, enter a development 
analogous to (11). Therefore the function 1/;.(x, p.; p.o) 
for the slab needs no branch cut, but has instead 
a finite number of poles at certain "critical" values 
of s inside the interval ° < s < 1. The poles fill 

9 Higher Transcendental Functions, edited by A. Erdelyi 
(McGraw-Hill Book Company, Inc., New York, 1953), 
Vol. II. 
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up this interval more and more densely as the 
thickness of the slab is increased. 

Thus in the slab case the integral over the branch 
cut in (36) is replaced by a sum over the residues. 
Actually, Eq. (36) can be deduced as a limit from 
Bowden's result [Ref. 4, Eq. (5.12)]. This is done 
by proving that the factor (2/11-)(1 - s) /I'o(s)/ of 
the first integrand in (36) is equal to the limit of 
the product of the pole number density and a 
normalization factor. 

The individual terms of the mentioned sum, just 
as the integrand of the branch-cut term in (36), can 
be pictured by standing waves decaying at various 
rates, slower than e- I

• Each wave corresponds in 
the slab case to a solution of the critical problem, 
and in the present case to a solution of Milne's 
problem for a multiplying medium. 

The last term in (36), when 1/;. (x, f.£; f.£o) is de
veloped according to Eq. (30), represents a sum 
over "a continuous family of traveling waves,JO all 
decaying like e-e, i.e., with a decay time equal to 
the mean time between collisions of a neutron. Only 
ingoing waves, with speeds I' ranging from ° to 1, 
are present in the case of a semi-infinite medium, 
whereas waves propagating in both directions are 
included in the slab solution. As shown by Eq. (37) 
those waves do not contribute to the angular density 
of the neutrons reflected by a semi-infinite medium. 

In view of the fast decay rate of the traveling 
waves we may say that their sum describes the 
transient effects mentioned in the introduction. Actu
ally this sum contains the uncollided beam term 
o(x - f.£ot)o(f.£ - f.£o)e-', since the Laplace transform 
of this term, f.£;10(f.£ - f.£o)e- u

/
P
., is contained in 

1/;.(x, f.£; f.£o). 
On the other hand, one expects the branch-cut 

term in (36) alone to describe the behavior of 1/; 
for large values of t, so that this term represents 
an asymptotic approximation. Some simplification, 
consistent with this kind of approximation, can 
be achieved by using (28) and by substituting 
1/;.(0, -f.£o) ~ 1/;1(0, -f.£o), and, for small x only, 
1/;. (x, f.£) ~ 1/;1 (x, p.). An expression results, which 
contains the integral n (1 - s)ie-(l-all ds. For t» 1 
it is permissible to shift the lower limit of this 
integral to - <Xl. Then, with (16), the expression 
simplifies to 

1/;(x, f.£, t; f.£o) ~ (ht3)-![X(-f.£0, I)f l1/;l(x, f.£). (41) 

Approximations for p, j, and for 1/;(0, -f.£, t; f.£o) 

10 A. M. Weinberg and E. P. Wigner, The Physical Theory 
of Neutron Chain Reactors (University of Chicago Press, 
Chicago, 1958), p. 235. 

follow in a simple way upon application of the 
formulas (17), and (16), with (28). 

In a similar way, by substituting the asymptotic 
part of (15) into (36), we arrive at a different 
asymptotic approximation, valid for t » 1, x » 1. 
Let us write down only the expression for the 
neutron density, which follows from the asymptotic 
part of (27): 

p(x, t; f.£o) ~ 3(i1l"t3)-![X( -f.£o, I)fl[x + q(l)] 

X exp {-Jrl[x + q(I)]2}. (42) 

Tables of H(f.£, 1) = v'3jX( -f.£, 1) and of Pt(x), 
needed for the evaluation of 1/;(0, -f.£, t; f.£o) and 
p(x, t; f.£o), according to the approximations (41) and 
(42), are available. 7

•
11 

Various refined asymptotic approximations could 
be conceived by making less crude substitutions for 
the functions involved in the exact expressions. For 
instance, we observe that the factor (1 - s)ie-O-.)I 

of the first integrand in (36) is zero at s = 1. Hence 
it seems advisable to approximate the remaining 
(finite) factor (1 - s)l /I'o(s)/ 1/;.(0, -f.£o)1/;.(x, f.£) by 
its value at s slightly below 1, rather than at s = 1. 
We may require that this procedure should be correct 
if the latter factor were a linear function of s. We 
find then that for t » 1 the appropriate value of 
s is 1 - !C 1

• This, with (15) and (16), has to be 
inserted in to 

1/;(x, f.£, t; f.£o) 

~ (1l"t3)-!(1 - s)l /I'o(s)/ 1/;,(0, -f.£o)1/;.(x, p.), (43) 

which is valid for t » 1, x « t\ as one can show. 
The improvement of (43) over (41) can be judged 
from the fact that the first two terms in (38c) and 
(39c) follow from (43), whereas only the first term 
is obtained from (41). 

It should be mentioned that the approximations 
(41)-(43) can be deduced also without knowing the 
exact result, solely by considerations based upon the 
diffusion equation and upon a reciprocity theorem. 
Such a derivation, though not rigorous, has the 
advantage of being amenable to generalizations to 
anisotropic scattering and to energy-dependent 
problems. 
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