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A recently proposed technique to solve a class of second order functional difference
equations arising in electromagnetic diffraction theory is further investigated by
applying it to a case of intermediate complexity. The proposed approach is concep-
tually simple and relies on first obtaining well-defined branched solutions to a pair
of associated first order difference equations. The construction of these branched
expressions leads to an equation system whose solution requires relationships akin
to Riemann’s bilinear relations for differentials of the first and third kinds; their
derivation necessitates the application of Cauchy’s theorem on Riemann surfaces
of, in this particular instance, genera one and three. Branch-free solutions of the
second order difference equation are then obtained by taking appropriate linear
combinations of the branched solutions of the first order equations. Analysis and
computation demonstrate that the resulting expressions have the desired analytical
properties and recover known solutions in the appropriate limit2@2 American
Institute of Physics.[DOI: 10.1063/1.1445287

I. INTRODUCTION

The Sommerfeld—Maliuzhinets technidifeemains today the most general approach to solve
electromagnetic scattering problems involving wedge-shaped structures with faces characterized
by impedance boundary conditicnsnder plane wave illumination. Within its framework solu-
tions are sought by expressing components of the total electric and magnetic fields in terms of
unknown plane wave angular spectra, defined here in the compdane, which, besides being
meromorphic, must satisfy a number of analyticity requirements. In particular, since poles of the
spectral functions give rise to plane wave contributions, the spectra are required to be analytic—
save for a pole necessary to reproduce the illuminating incident field—in a strip of the complex
plane corresponding to the angular opening of the wedge. Additionally, besides the boundary
conditions characterizing the surfaces of the wedge, obtaining a unique solution of the wave
equation also requires knowledge of the behavior of the fields at the tip of the wedge and enforce-
ment of the resulting edge conditfbspecifies the asymptotic behavidiof the spectral functions
for large imaginary values af. The imposition of the boundary conditions on the spectral repre-
sentation of the fields together with a theorem put forward by Maliuzhitessls to a pair of first
order difference equations for the spectra and their periods are related to the open angle of the
wedge. The problem is thus reduced to obtaining spectra that satisfy both the difference equations
as well as the analyticity requirements outlined above.

In the special case of normal incidence, where the illuminating plane wave is incident per-
pendicularly to the edge of the structure, the technique leads to uncoupled first order difference
equations whose coefficients are rational trigonometric functions and solutions subject to the
required constraints are readily obtained in terms of Maliuzhinets functidisskew (non-
norma) incidence, the equation pair is generally coupled and solutions are obtainable for a few
particular wedge/angle combinations for which uncoupled first order equations for linear combi-
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nations of the spectra can be found. Recent examples of this include the polarization independent
wedge studied by Berndtdnd the right-angled anisotropic impedance wedge with one perfectly
conducting face examined by Manara and Néprageneral the equation pair cannot be uncoupled

and we are faced with solving a second order functional difference equation whose coefficients are
rational functions of trigonometric polynomials. Its solutions are linear combinations of the de-
sired spectral functions, a consequence of the decoupling procedure, and must therefore satisfy
analyticity requirements analogous to those of the spectral functions. A pair of associated first
order difference equations can be obtained from the second order one, but these, as we shall see
below, typically involve branched functions and Maliuzhinets’s technique does not apply.

There have been few attempts published in the literature to solve second order difference
equations due to the complicated nature of the problem. A successful example is provided by
Gaudif who considers the second order difference equation that arises in the study of the quan-
tum mechanical problem of two electrons interacting with a localized magnetic moment. The
particular equation studied is of a high order of complexity and the ensuing analysis is prohibi-
tively complicated. In electromagnetic theory, the second order functional difference equation of
form

tam—ol1 200527;—00526
t(at3m) cos a—cos 6

t(a+m)+t(a—7)=0 (1)

was recently solved by Senior and Legault. is a generalization of the one considered by
Demetresctet alX? in their study of the penetrable composite right-angled wedge consisting of
abutted resistive and perfectly conducting semi-infinite half-planes. In this particular instance, the
parametersy and 6 are both related to the resistivity of the wedge. As noted above, the function
t(a) represents a combination of the unknown spectral functions and it therefore satisfies require-
ments related to those imposed on the spectral functions. Accordingly, the sohftiQrsbtained

in Ref. 9 are {) meromorphic, i) free of poles and zeros in the strip of analyticifys,,
={a:|Rea|<} (the inclusion of zeros here is a consequence of reciprocal symmetry between
solution pairs in certain limifs and, in accordance with the edge conditionj) O(1) as

|Im a|—cc. Two linearly independent solutions satisfying the above analyticity requirements were
constructed by successively eliminating the undesired singularities in theSsiripThe concep-

tual simplicity of the technique hinges on recognizing that expressions recovered during the course
of the analysis are of the same nature as those occurring in Riemann’s bilinear relations for
differentials of the first and third kind$:'?In contrast, the solution based on a Fourier transform
approach proposed in Ref. 10 fails to satisfy requiremBnalpove since it is free of branch points

only in the strip of analyticityS,,, as opposed to the entiee plane.

Equation(1) may be qualified as being of moderate complexity due to the relatively low
number of singularitiegpoles and branch pointsvhich must be eliminated to successfully com-
plete the analysis. In comparison, geometries of contemporary interest such as the right-angled
wedge characterized by isotropic impedance boundary conditions on both faces or the anisotropic
impedance half-planésee Ref. 13 for an approximate solutidead to substantially more com-
plicated equations. To gain insight into the applicability of the technique in such cases and also
provide some details on the procedure, as opposed to focusing on a particular physical problem,
we examine here a case of intermediate complexity by considering an equation of the same form
as(1) but with the period doubled to#, viz.

cog 7—cos 6

(a+m)+t(a—37)=0, (2)

and, consistent with the requirement fd, a solution is sought which ig)Y meromorphic, (i)

free of poles and zeros in the strip of analyticBy, ={«:|Rea|<2m}, and (ii) O(1) as|Im q

—o0, The increase in complexity arises from the doubling of the strip of analyticity as this
effectively doubles the number of singularities, both poles and branch points, that must be con-
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sidered in the course of the analysis. Consequently, whereas the solutidn fequired analysis

on a Riemann surface corresponding to a tghasdlebody of genus onan the case of2) it will

be seen that we are required to work on Riemann surfaces whose corresponding handlebodies are
of genera one and three.

In what follows, Sec. Il gives the solution procedure for the branched first order equations
associated witti2) and provides the derivation of a system of four equations in four unknowns to
be satisfied in order for their solutions to be well-defined. The unknowns consist of two multipli-
cative constants associated with elliptic integrals of the first kind with periadar®t] 47, and the
location of the logarithmic singularities associated with two elliptic integrals of the third kind also
of periods 2r and 4. Section Ill shows how to solve for the quantities associated with the 2
periodic elliptic integrals. The analysis, which is carried out on a torus, is of the same nature as
that required in Ref. 9 but it is examined here in greater detail. Section IV gives the solution for
the quantities associated with the elliptic integrals of periadafd it is now required to carry out
the analysis on a Riemann surface which is the topological equivalent of a handlebody of genus
three. The branched solutions to the first order equations are used in Sec. V to construct branch-
free solutions to the second order equation. A fully analytic solution that satisfies all of the
prescribed requirements is provided. The only shortcoming of the solution is that it vanishes in a
certain limit and, in an effort to address this shortcoming, an alternative approach that relies on
numerically locating zeros is also examined.

II. FIRST ORDER EQUATIONS AND SOLUTIONS

Since there is no available technique to directly attack the type of second order difference
equation with which we are concerned, it must first be recast as an associated pair of more easily
handled first order difference equations. Unfortunately the latter generally involve branch points;
the price paid for this reduction in order is that the established solution technique for first order
equations by Maliuzhinetdails to apply. However, solutions to the first order difference equations
can, in principle at least, be obtained by applying a logarithmic derivative and this is the approach
taken here. This yields a solution expressed in terms of an initially ill-defined path integral and
multiplicative terms of period #, corresponding to the period of the difference equation, must be
added to rectify this. This ultimately leads to the derivation of a system of four equations in four
unknowns which can be partially decoupled into two systems in two unknowns, one invokring 2
periodic quantities and the otherrdperiodic ones.

A. Reduction to first order equations

The second order functional difference equat{@hcan be rewritten in terms of first order
difference equations quite straightforwardly by exploiting the periodicity of the functional coeffi-
cient. To see this consider the second order difference equation

t(a+5m)+pla)t(a+m)+ ﬁ{t(a%— 7)+p(a)t(a—3m)}=0 3

whose solutiong(«), provided p(«) is 47 periodic, must also explicitly satisfy first order
difference equations. Enforcing equality betwé8nand (2) then yields the equation pair

t(a+21'r)_ _u(a)—u(&)
m—g(a,+u(a))—m, (4)
t(a+2m) u(a)+u(6)
a2 Y@~ u@)=rrn—G) ®

where

u(a)=cos a—cos 7. (6)
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FIG. 1. The strip of analyticitys,,={«:|Rea|<2m}. The thick lines indicate the branch cutswfa), the positive and
negative signs indicate relative changes in sign(af) across the different cuts. The clockwise cydes, c andd used
to define the cyclic periods are as indicated. Note that the cychesdc cross from the upper Riemann shésdlid ling)
to the lower Riemann sheédashed lingwhereash andd are confined to the upper sheet.

Alternatively, one could also proceed by factoring the associated second order difference operator
in (2) into a pair of first order difference operators and recover the same result as above. The first
order equations obtained are generally branched owing to the presence of théarpethich has

branch points atv=* 7, = (p—w),*(n+ 7),=(— n+27) in the strip of analyticityS,, and is

made well defined in the complexplane by introducing the cuts shown in Fig. 1. These are such
thatu(a) has the same symmetry as eoso that

Ula)=u(—a)=—u(axm). (7)

Note that the functiom(«) is used here to generally denote solutions of the second order equation
and each of the first order equations above identifies one such solutide.) Ew(a,u(a)) is a
solution of(4), thent(a) =w(a, —u(«)) is a solution of(5), and this follows from the symmetry

of the right-hand sides d#) and(5) with respect to the sigfthe branch of u(«). It is therefore
sufficient to considemw(a,u)—writing w(ea,u) instead ofw(«,u(«)) for convenience—and,
sinceg(— a,u)=g(a,u), we can construclv(a,u) such that

1
w(—a,u)zw(a,u)=w(a,—u). (8)

In terms of the solutions of the first order difference equations, solutio(®) tare
t(a)=Ci(a)w(a,u)+Cy(a)w(a,—u), 9

where C,; ) are 4r periodic functions. This generally conflicts with the requirement for a
branch-free solution but there are particular case$9pfthat overcome this difficulty and the
simplest two such linearly independent expressions free of branch points are

t(a)=w(a,u)+wW(a,—Uu), and t(a)= ﬁ{w(a,u)—w(a,— u)}. (10

While the branch-free property of these two symmetric forms can be ascertained rigorously by
means of Taylor expansions in the neighborhood of branch point§®f, it can also be appre-

ciated from the fact that both are invariant under a change of the branetwdf This crucial

feature makes the construdts0) the fundamental building blocks from which branch-free solu-

tions to the second order difference equation can be assembled once branched solutions of the
associated first order equations have been obtained. As we shall soon see, the presence of branch
points makes this task quite challenging and the brunt of the subsequent analysis focuses on
deriving solutions to the first order equations.
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B. Special cases of interest

It is worthwhile to first consider the special casgs 0 andn= /2 as the branch points then
vanish and known solutions, which are useful when characterizing the behavior of the general
solution obtained below, can be obtained in terms of Maliuzhinets functions. The first one when
n=ml2 proves to be especially interesting since the branch cut§ ®f, as illustrated in Fig. 1
and chosen so thd&?) holds, vanish as;— @/2. In this instancd4) becomes

w(a+2m,u) CcOoSa—Ccosf
w(a—2m,u) cosa+cosh’

and, despite the fact that the right-hand side is now meromorphic, the dependenGe, 0f on
u(«) is maintained to distinguish it from(«,—u), the solution to Eq(5) in the same limit. A
solution free of poles and zeros i§,, and O(1) as |Imal]—« follows directly from
Maliuzhinets® It may be written as

wW(a,u)=¥,(a)

_ Ylatml2—0)
Y (a— 72+ 6)

!

ja — (a'l2m)cosfsina’ + y,+ y,cod @’ [2) + y3 cosa’ + v, coq3a’/2) q
=exp

cos a’' —cos 0 s
(11
where
y1=— %sind cosé,
1 0 0 1 o 0 0
Y2=7| —C€OS5 Fsinz | + 5 cos5 | cos5 +sin |,
(12

(e Y,
YaT\ o g3

1 0. 0
’y4—Z —COSE smi,

and ¢_(«) is the Maliuzhinets functioh.Since ¥,(— a)=1/,(a), consistent with(8), two
linearly independent solutions ¢2) are

ti(a)=VY(a), ty(a)=Vi(—-a),

and these are bot®(1) as|Im a]—x. The other case of interest where the branch points also
vanish isyp=0 and in that instance two linearly independent solutions, @&b) as|Im a|—x,
are provided by

@ 2 (wl2— 0)

1
W) =Wala)=cosy =g (a—m2r ) XY o

ti(a)’

and we must now contend with poles or zerosvat+ 2.
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C. General case

We now proceed to solvel) in the general case whenrg# 0, /2 and Maliuzhinets’s tech-
nique does not apply. The solutions sought should preferably reduce to one or both of the known
limiting functions whenz goes to the appropriate limit and, consistent with the limiting cases,
they must also b&(1) as|Im a|— for all . As we shall see, while the solutiok;(«) [and
1/ ()] are easily recovered ag— /2, the recovery ofV',(a) [and 1¥,(a)] asn—0 proves
to be much more difficult. Taking the logarithmic derivative(d§, we obtain

d | o d | ) B d | B u(f) 2sinacosa 14
da MWat2mu) = rinw(a=2m,u)= gring(a,u)= u(a) cofa—cog 6’ (14
and if vg(ea,u)=d/da Inw(a,u), then
i 5 _ u(d) 2 sinacosa
volat2m,u) ~vo(a—2m,u)= - u(a) cof a—cog @
and a solution td4) can tentatively be written as
W(a,u)=expf vola',u)da’, (15
a@g

with

a u(f) sinacosa
- 27 u(a) cofa—coLd’

Uo(a,u):

The form proposed ir{15) is, however, ill-defined owing to the presence of the polar and the
cyclic periods(we borrow here the terminology used in Ref. 11 when characterizing differentials
of the third king due to, respectively, the poles and the branch points,0#,u). In order to
obtain a single-valued integral expression, we must consider instead

W(oz,u)=expfa{vo(a’,u)+v2(a',u)}da’, (16)

where the added terms(«a,u) represents a sum of 7 periodic terms, of even parity like
vo(a,u), specifically selected to remove the offending periods. Not all classesrgbetiodic
functions are acceptable: it turns out thai «,u) must fulfill certain order requirements in order
for expfus(a)da to be a 47 periodic function and a simple analysis shows that, for the case at
hand, it is sufficient to consider expressions such tkgtv,u) —0 as|Im a|—c. It will be shown
below thatvs(a,u) will consist of five terms:vi(«,u) to eliminate the polar periods and
vi-(a,u), v3_(a,u), vi (a,u), vi_(a,u) to eliminate the cyclic periods.

It is worthwhile to discuss the nature of the lower limi§ at this juncture as its selection may
appear at first glance to be somewhat arbitrary. This is not the case as consideration of the
symmetric forms in(10) together with the requirement for continuity reveals that the lower limit
ay must be a branch point i§,, so thatage{* 5, *(n—m),x(n+m),= (27— 5)}. Further-
more, oncevs(a,u) has been properly defined, the solution is independent of the choice of the
particular branch point and this will become more obvious when we consider the elimination of
the cyclic periods. We first examine the elimination of the polar periods.

1. Elimination of polar periods

The presence of poles will generally make a path integral such as the @h® multivalued.
A pole of residue Res will give rise to a polar period equal tei Res and, depending on the
orientation of the integration path and its winding number around the pole, the contribution to the
integral will be 27i7ZRes. In the case dfl5), polar periods arise at the poles wf(«,u) at «
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=*6, £(0—m), x(0+m), = (27— ). Elimination of these poles serves two purposes as it not
only eliminates their associated polar periods but goes toward fulfilling the requirement for a
solution that is pole-free i%,,.. We eliminate them by introducing themperiodic

u(#) coga) yi+ y,cos(al2) + y3cosa+ vy, cos(3al2)
u(a) cog 6) cos a—cos 6 '

vl(a,u)=

which is even, vanishes dém a|—>, and has poles coinciding with those of(«,u). The
constantsy, are chosen to eliminate the residues and straightforward algebra yields the coeffi-
cients in(12). It then follows from(11) that

u(o) cosa d

Uo(a,U)Jrvl(a,u):mE@ n

1(a),

which correctly reduces ta/da In V() when n=x/2. We therefore recognize that, in the
simpler case where the right-hand side (@#) is meromorphic so thatl5) is free of cyclic
periods, the known solutions expressed in terms of Maliuzhinets can be recovered by following
the above procedure of pole elimination. We also note in passing that poles with integer Fesidue
do not compromise path independence. Indeed, their capture leads to an adsglitiveahtribu-

tion in the exponent of16) which has no effect on the final value @af «,u).

2. Elimination of cyclic periods

In a fashion similar to polar periods, a cyclic period arises from the nonzero contribution
incurred when integrating along a loop encircling a branch cuf,in, thereby making the path
integral multivalued. For example, such a period is obtained when integmajing , along the
cycle b, shown in Fig. 1, which encircles the branch cut joining the branch pojrasd — »

+ . As in the case of the polar periods, it is strictly speaking not required for the cyclic periods
to vanish identically to avoid jeopardizing single-valuedness since periods equai ¥od®d not
change the value dfl6). However, asp— /2 the branch points of Ui{«) in vg; coalesce into

poles at+ 7/2 and = 37/2 and their associated cyclic periods then become polar periods. Con-
sequently, the cyclic periods associated with the cyblemdd in Fig. 1 must be annulled, as
opposed to setting them equal to some nonzero integer multiplerof ® eliminate poles that
would otherwise arise ag— /2. We observe that this requirement is equivalent to annulling the
integral ofvy+ vy along the cuts betweenandm— » as well asr+ » and 2r— ». There is also

a similar requirement, which is not obvious when solely considering integration on either of the
Riemann sheets, on the cyclic periods associated with the cgcée®l c which loop from one
Riemann sheet to the other. Its necessity is revealed by examining either of the symmetric forms
in (10) together with the requirement for continuity. In short, the above implies, taking advantage
of the even parity, the need to annul the cyclic periods gffa,u) +vs(a,u) on the clockwise
cyclesa, b, ¢ andd shown in Fig. 1. Alternatively, this can be thought of as requiring that all
branch point to branch point integrals vanishSp, and, under this condition, the lower limi,

can be arbitrarily chosen among any of the branch points located within the strip. This also ensures
that the resulting expressions will remain free of poles despite coalescing branch points in the
limits »—0 and n— =/2.

Four degrees of freedom are required to annul the cyclic periodg-6b; on the cycles,

b, c andd. We introduce the following four even7 periodic terms which, likeso(a,u) and
v1(a,u), vanish aglm a|—:

' () 1 3 (u) u(¢o,) cCOSa sings,.
1% o, = v o, = y
2m 2m u(a) €oS,, COSa—COSL,.,

u(a)’

7

and
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cos(a/2)
u(a) ’

3 _ U(§4ﬂ.) COSa %Sln(g477/2)
Van(@l)= u(a) €oséy, codal2) —cos iy, /2)"

vin(au)= (18)

These all give rise to elliptic integrals with the first pair being periodic and the second®
periodic. The subscript identifies the periodicity of the term while the superscript identifies the
type of elliptic integral to which it gives rise. Henoéw(a,u) is 27 periodic and gives rise to an
elliptic integral of the first kind whilezgw(a,u), also 2 periodic, gives rise to an elliptic integral

of the third kind with logarithmic singularities withib,,, at ={5,,*({,,+2m). Likewise,

v3 _(a,u) is 4 periodic and gives rise to an elliptic integral of the third kind with logarithmic
singularities at+{,,. The use of expressions associated with integrals of the third (kitth

poles having nonvanishing residyigesults from the impossibility of introducing the required
number of degrees of freedom without violating the order requirement. It must be emphasized that
the poles of bothjgw(a,u) andviw(a,u) have residuest 1 and their polar periods therefore do
not disrupt the single-valuedness of the path integral. Their elimination from the strip of analyt-
icity is the objective of the last step in the construction of the solution and this is carried out in
Sec. V. For future reference we define the cyclic periods

A i [ oA laida, BE = [ o3 (@uda,
(19

1,3 _ 1,3 13 _ 1,3
C27T,47T_ fCUZWAqT(au U)da’, D271-,477_ fdl) 271.’47T(a’, U)da’,

and use similar definitions fayg i(a,u) [i.e., Ag=[avo(a,u)da]. Inspection of(17) and (18)
reveals that the periods associated with the integrals of the third kind are functions of thé,poles
and ¢,,, providing two of the four degrees of freedoms required to annul the periods of
vo(a,u)+uvs(a,u). In contrast, the periods associated with the integrals of the first kind are
constant and two multiplicative constanis,,, and «,,., must be introduced to produce the two
additional degrees of freedom. The solution(4d then takes the form

(23
W(a,u)=expf {vola',u)+v(a’ u)+ Kkpv3 (a' U)+ 0p,05 (a',u)
g

+K4ﬂv}1ﬂ(a',u)+U4ﬂviﬁ(a',u)}da’, (20)

where the four unknowns to be determined atg., {,, and «,,, {4,. The quantitieso,,
==*1 ando,,= =1 have been introduced to avoid loss of generality in the definition of the terms
associated with the integrals of the third kind. They account for the eventuality where the sign of
the logarithmic residues ofgﬁ(a,u) or vﬁ,,(a,u) must be changed, thereby swapping poles and
zeros ofw(a,u) between the two Riemann sheets. Their proper definition will be determined in
the course of the analysis and, to reduce clutter, they will be omitted in what follows pending their
reintroduction when appropriate.

An equation system consisting of four equations in the four unknowns is obtained by enforc-
ing vanishing cyclic periods on the cyclas b, ¢ andd. Doing so for the cyclal, for example,
leads to

—nt2m 1 3 1 3 _
- (vot Vit Ko U5 TUS F K4V, TV, )da=0 (21
nTa

with the superscript negative sign in the limits indicating the corresponding side of the branch cut
(see Fig. 1 along which to integrate. Upon use 9) this becomes

DO+ Dl+ KZWD%7T+ Dgﬂ'+ K47TD1]i7T+ Dlslﬂ': O’
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which is further simplified by exploiting the symmetri€;,_=—B3_, D3 =—B3_ andDj_
= B}W. Introducing the notatio®,, =D+ D4, we finally obtain

1 3 1 3 _
Do+1— k2,B5,= B3+ k4,B4,+D3,.=0,

a relationship equivalent t21). Repeating the same process for theb andc cycles yields

Ags1t konAs +AS + ks AL +AS =0, (223
Bos1+ konB3 +B3 +k,,Bi +BS =0, (22b

Cor1— K2 AL —A3 +C3 =0, (229
Dos+1— KpnB3,— B3 _+k4,B3 +D3 =0, (220

with the explicit unknownsg,,. and «,,, and the unknowns,.. and{,, implied by the presence
of cyclic periods associated with the integrals of the third kind. Note 0’3@,1 vanishes since
v}h,(a,u), which is odd symmetric with respect @ [see(18)], does not contribute when inte-
grated on cycle (see Fig. 1 This seemingly intractable system can be fully solved analytically.
The quantities associated with thereriodic elliptic integrals can be decoupled by adding Eq.
(229 to (220 and(22b) to (220 to obtain

KanPhrt Adnt Can=—(Aos1+Cor), (233
2K47Bis+Bi,+D3,=—(Bor1+Dos), (23b)
and the elimination of,, produces
Aljiﬂ'( B?hr_'— Diw) - ZBljiﬂ'(A?lTr_F Ciﬂ) = _Aiw( BO+1+ DO+ l) + ZBéjiﬂ(A0+l+ CO+ 1) (24)
in which the only (implicit) unknown ¢,, determines the perioda; , B , C3_andDj, .
Despite appearances, the above equation can be inverted to Hhtaind the technique for doing
so is described in Sec. IV. Onag, has been obtained, the value of, immediately follows

either from Eq.(233 or (23b). One can then proceed to solve o1, by subtracting Eq(220
from (229 and(22d) from (22b) to obtain, respectively,

2k AS +2A3 =— k4 AL —AS +C3 —Ay 1+Coin, (259
2ky,B3 +2B3 =—B3 +D3 —Bo.1+Dos1, (25b)
and the elimination ok, gives
A3,B3,—B3.AS,= 3{A3,(~B},+D§,~Bo.1+ Do 1)
= Bon(— KanAhr = A4+ Clr—Ags1+ Corn)}, (26)

where the only unknown is nod,,,, the value of which determines the periodl§_andB3_.

This equation is of the same form as the one obtained in Ref. 9 and the solution follows the same
approach. To set the stage for the comparatively more complicated inversion requifggd fove

first reexamine the analysis required ., in more detail.

[lI. DETERMINATION OF ¢, AND K,

The key to inverting for{,, in (26) lies in the application of Cauchy’s theorem on the
Riemann surface delimited by the conta@lyrshown in Fig. 2. Indeed, by judiciously choosing the
integrand it is possible to obtain an alternative expression for the left-hand si@é)ah which
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FIG. 2. The contou€;=C,,UC- ,UC-., on the uppefsolid line) and lower(dashed lingsheets of the Riemann surface.
The thicker inner lines are the dissectianand b introduced to make the Riemann surface simply connected. The path
C.us denotes the portion of the contour enclosing the dissecting cycéesl b.

the unknown¢, .. appears more explicitly as the argument of an elliptic integral of the first kind,
paving the way for its inversion by means of the Jacobian elliptic sine function. This follows from
recognizing that the relationship between cyclic periods on the left-hand s{@é)a$ of the same

form as the expressions found in Riemann’s bilinear relationships for differentials of the first and
third kinds'*?these equate expressions involving cyclic periods such as the one on the left-hand
side of (26) to sums of residues. To achieve this, we seek to evaluate

Jc Vi (a,u)dV3_(a,u)=2mi>, Res, (27)

where the elliptic integraV%W(a,u) of the first kind ano\/gﬂ(a,u) of the third kind are defined
as

(@)
gﬁ(a,u)=j vy (a',u)da’, ne{l,3.
(7,0)

The path of integratiod;, shown in Fig. 2, delimits a strip of width72 centered at the origin of

both Riemann sheets and encloses the dissections and branch cuts contained therein. For 2
periodic functions the enclosed surface is topologically equivalent to a tariiandlebody of
genus 1 as shown in Fig. 3. The canonical dissectiarendb are introduced to make the surface

FIG. 3. The torus, handlebody of genus 1, is topologically equivalent to the Riemann surface in Fig. 2. It has been made
simply connected by introducing the dissectianandb.
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simply connected, a key requirement in order for Cauchy’s theorem to apply, and this is more
easily appreciated on the dissected torus in Fig. 3. Examination of the intedgal) ishows that

only C,, the portion of the path enclosing the branch cuts and dissections, provides a contribu-
tion. The rest of the integral vanishes either by symmetry, as for the parts aloag Reé on

C.,, or identically, as in the case whejen a|==> on C..,. Evaluation of the integral along

C.us Produce$t?

| VAwava, o -2, 3, w3, 24,
Cuub

where, extending our notation, capitalized letters denote cyclic periods on cycles identified by the
correspond lower case letters so that, for examﬂhzfavéwda. The cycles defined by the
dissectionsa and b in Fig. 2 are the same as the cycesandb shown in Fig. 1 so tha®(;

=Aj, and®B;_=B)_. We therefore obtain, in light of26), the remarkable result

| VAwdVE e -2, %3, - 9,2, - AL B2, 8L AL 28
G

which, by virtue of(27), can be expressed as a sum of residues. On the Riemann surface, the
residues of the integrand {27) are given by

vs (a')da’

u({p,) cosa sind,, J’(a,u)
U(a) coSlo, sina J(,o

a=(*£{,.,*u)

IJ ’)U%ﬂ.(a,)da{/, a:(§27riiu)1
0

(a,u)
if v%w(a')da’, a:(_§2w1iu)i

and these, after carrying out the integration on the dissected Riemann surface, can be expressed in
terms of the elliptic integravﬁw(a) defined on the upper Riemann sheet. Being mindful of the
dissections and exploiting the numerous symmetries involved, we obtain

1 1

2

1 1 1 1 ’ BZﬂ' ,
> Ress—Al_ +2Bl 4Vl (£,.), Vi (lpn)e —r R 0= =1 (29)

It would of course be impossible to obtain a unique expression for the above if the Riemann
surface had not previously been made simply connected. Substituti@Bjoaind (29) in (27)
yields

1 %77 B%'n’ 025 1 p3 1 A3 A%’IT B%W .
V27T( gZﬂ') == T iT - %(AZWBZﬂ'_ BZﬂ'AZTr) == T iT + 0, A27T ) (30)

where the only unknown i§,, and we have reintroduces,, from Eq.(20). The quantityA , . is,
from (26), defined as

1
Azw:E{A%ﬂ( —B3,+D3,—Bo:1+Do11)— B3 (—KanAs,— AL+ Ch—Ags1+Cos1)}-
(31)

This is a known quantity provided equation syst&28) has been solved, a procedure carried out
in the next section.
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FIG. 4. The regionsP; and P in terms of the complete integrals of the first kikdand K’ with k=cos7. The
parallelogram¢P indicate the various ranges in whigh,,, must lie when carrying out the inversion 65, with Eq. (34).

A closed-form expression faf,, can be found by using the Jacobian elliptic sine function sn
to invert the elliptic integral of the first kind i(80). Legendre’s standard form for the integral is

dt
o\/(1 t2)(1—Kk%t?)

wherek is the modulus of the integral and the elliptic sine function is such that

F(x,k)=

s F(x,k),k]=x

with x located in the fundamental period parallelogram of dimensidfsadd 2K’ centered at
the origin of the complex plane. The perio#ls and K’ are the standard quantities defined,
respectively, by the complete elliptic integrals of the first kind with modilasd complementary
modulusk’. The transformationx= cosa/cosy then shows that

vl f [ (COSa . Blw) -
cos i—
2al 7 \cod a —cos’- cos 7 4
and we note the following useful relationships:
k=cosy, A3 =4K', B} =4iK. (33

Finally, taking into account the definition &fRes in terms of the range M%,T(gz,,) given in(29)
and inserting'32) in (30), we obtain after some algebraic manipulations

arccofksn(iK'+3K+0,,A5,,K)], Ay, ePl?7,
52772 (34)

arccofksn(iK' —K+op,A2,,K)], Az, ePy?m,

which is an explicit expression fdk, .. The correct expression to use(B¥) as well as the correct
definition foro, .= £ 1 follow from locatingA , . in the appropriaté® parallelogram in Fig. 4. For
instance, ifA,,e P, , theno,,=—1 and{,,=arccogksn(K'—K— A, ,k)]. The multiplica-
tive constantx,,. follows immediately from(25g or (25b). The period parallelograms in Fig. 4
were obtained by usin@0) and(29) to specify the range ok, in terms of that of\/%W(gqu). For
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FIG. 5. The contou€,=C,,,UCUC.uUC, UC.,,UC.., on the uppecsolid line) and lower(dashed ling Riemann

912
sheets. The thicker inner lines are the dissectioris ¢, 9, ¢, f andg; , introduced to make the Riemann surface simply

connected. The patt}, , denotes, for example, the portion of the contour enclosing the dissecting ayatetb.

example, if we consider the case 0#28%77, then it follows that o, A5, e[ —2K,0]
X[ —1iK’,0] and, sincer,,= =1, this corresponds to the requirement that, lies in either of the
parallelogramg?‘l"““ shown in Fig. 4. One proceeds similarly for the case where we I%EB%,T

to obtain theP‘zrz’* parallelograms in the figure. Taking into account the periodicity of the elliptic
sine function,(34) becomes

{on=arccofksn(iK' +3K+o0,,Ay,,K)], Ap,ePl?"UP2T, (35

whereA . is given in(31) and the standard perio# andiK’ (as well as the parametkj are
given in (33).

IV. DETERMINATION OF 4, AND k4,

A similar procedure to the one given in the previous section is required to successfully invert
for {4, in (24). However, the cyclic periods appearing on the left-hand sid@4)fare now related
to 44 periodic expressions and the application of Cauchy’s theorem must now be carried out on
the Riemann surface delimited by the cont@yrof width 47 shown in Fig. 5. Proceeding as in
Sec. lll we consider

f Vi (a,u)dV (a,u)=2mi>, Res, (36)
C2

with the elliptic integrals defined as in the previous section but using thepdriodic terms
v}l;‘:’(a,u). For 44 periodic functions, the enclosed surface is now the topological equivalent of a
handlebody of genus thrda sphere with three hand)eas shown in Fig. 6 and it can be appre-
ciated that making it simply connected involves a larger number of dissections than the torus of
the previous section. To make it so, three pairs of canonical disseatignso ande,f are required

as well as the two auxiliary dissectiogs and g,. They are shown in both Figs. 5 and 6; the
simple connectedness is once again better appreciated by examining the handlebody representation
of the Riemann surface. To keep the analysis relatively straightforward it is beneficial to draw the
dissections such that only members of dissection pairand b, for example, intersect. This,
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FIG. 6. Handlebody of genus 3, the topological equivalent of the Riemann surface in Fig. 5. It has been made simply
connected by introducing the dissectians, ¢, 9, ¢, f andg, 5.

while simplifying the evaluation of the path integral around the dissections, entails the rather
intricate set of dissections shown in Fig. 5. Carrying out the integration it is seen that only
CausUCcaUC, s, the portion of the path enclosing the dissection pairs, contributes. The rest of
the integral vanishes either by symmetry, as for the parts along=Re27 on C. ,,., or identi-

cally, as in the case whef¢ém a|==+« on C~... The contributions from the path enclosing the
three dissection pairs, following our previous work, are

[T AREL S S S, @

Cuub

J Vi (a,u)dV3 (a,u)=¢; 03 —D;.¢5 (38
cUd

[, Vi(awavi (e et 5, 3

eUf

Comparing the canonical cycles defined by the dissections with those defined in Fig. 1, together
with symmetry, it is possible to rewrite the above canonical periods in terms of the cyclic periods
defined in(19). The cyclic periods are defined on intervals between adjacent branch points and
extending these definitions to the negative real axis, by means of the even parity of the expres-
sions, the contributions from the branch point to branch point integral§,jncan then be
identified as shown in Fig.(@. The canonical cycles, b, ¢, 9, ¢ andf from Fig. 5 are then
partitioned into branch point to branch point contributions, as shown in Figs—7d). By
comparing with Fig. 7a), they are easily expressed in terms of the cyclic periods and it can thus
be shown that

A=C, B=-B,
¢=A+B+C+D, D=B,
¢=A+B+2C, F=D.
This yields the following equalities for the right-hand sides of the above equations:
al B3 —w) w3 =Bl c3 -clB,
et o3 —ei 93 =Al B3 —BL A} +Ci B —BiC3 +DlB: -BLID3,

eiﬂsiﬂ_ Qsi‘rrsi‘rr: Al]iﬂ'D?hT— Dé]iwAlslﬂ+ BiWDiﬂ_ Diﬂ'Biﬂn’_l_ Z(Ci‘er?l‘rr_ Di‘rrci‘n)
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(d) Canonical cycles ¢ and f
FIG. 7. Figures used to express the canonical periods in Fig. 5 in terms of the basic cyclic periods e Eiglin terms
of A, B, C, D). The canonical cycles on thsolid lineg upper and(dashed lineslower sheets inb), (c) and(d) are

written as chains of branch point to branch point segment#to a sequence of,, for example—which are easily
expressed in terms of the basic cyclic periods givefan

Summing up these contributions,

f Vi (a,u)dV3 _(a,u) UM JM Jew)\/“(a u)dVs_(a,u)

= AiLhTBi'n'_ BiwAlglﬂ'—’_ A4’TTD:437T_ DiwA2w+ Z(CiwDiﬂ'_ Difrrciﬂ')
=Ai(Bi,+D34,)— 2By, (A7, +Ci,), (40

where on the last line we have made uségf =B}_andC}_=0. This is remarkable in that it
reproduces the left-hand side (@4) and can be expressed in terms of residues in accordance with
(36). The integrand in36) has residues
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U({4r) COSa SIN({4,/2) ((aw) |
“u(a) cosy, sinal2) 0 4

(a')da'

a:(igh_,tu)

(a,u)
- f vida)da',  a=({4n, ),
0)

(m,

(a,u)
tj viw(a’)da', a=(—"{4,,FU),
(7,0)

which are expressed in terms Vﬁﬂ(gw) and V}h,(27-r—§47,)—both taken on the top Riemann
sheet—after carrying out the path integrals on the dissected Riemann surface. Taking advantage of
the numerous symmetries and avoiding the crossing of any dissection leads to

Al Bl
—A‘l‘ﬂi4Biw—4V}17(§4w)a Viw(§4ﬂ)e[—r’ : iTT4ZO$T',7'$1],

2 Res=

1 1 1 il-171' Bl]iﬂn'
A= WV (2T lan) V27— Lag) e = T 2 iTTZOST'ﬂSl .

(41)

In the short analysis that follows, we restrict for now our attention to the first case given above
with the +4B}1W term for the sake of brevity. Usin@0) and(41) in (36) then produces

1

A47T O4r
Van(an)= = " TBay— gt {AL(Be, +D3,) ~ 283, (AL, +Ca)}

Az
— ™ 1
=—— *Bi+

_Th_p 42
COS 77/2) 41 ( )
where the only unknown i§,,, and the sigrr, . from Eq.(20) has been reintroduced. The cg2
term is used for future convenience and, in agreement (@idh we have

cog7/2) 1
4WZW{A4W(BO+1+ Do+1) —2B4,(Agr1+Cor1)} (43
In order to use the Jacobian elliptic sine function sn to invert the elliptic integral of the first kind,
we recast V}w(a) in terms of Legendre’s standard form. The transformatian
=(sina/2)/(sinn/2), together with the alternative expression(@p,

u(a)=2\/< co§g—co§g)<co§g—sinzg),

enables us to write

acoa'l2) | 1 (sin( al2) 77) cogn/2) ,
sin(72) "8~

l = —_— =
Vin(@)= f , u(a) % codpl2) 4 A‘“T]’ “4
and we have the following relationships for the param&tand the cyclic periods:

4K . 2K

cog 7/2)’ Bin= cog 5/2)’ (45)

k:tang, Al =

Inserting(44) in (42), solving for ¢, then produces, after some algebraic manipulations,
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FIG. 8. The region® ; , Q1 andQ  in terms of the complete integrals of the first kikdandK’ with k=tan /2. The
parallelogram<? indicate the various ranges in whigh,,. must lie when carrying out the inversion fox . with Eq. (46).

Can=2 arcsi+singsd iK' + oA g K)

It follows from (42) and (41) that this holds ifo,,,A,4, lies in the period parallelograf,K]
X[—iK’,=2iK']. As 04,= *1, the acceptable range fdr, . is thereforex[0K]X [ —iK",
—2iK'] with the plus sign corresponding tg,,= 1. These regions are identified in Fig. 8 by the
period parallelogram® '1’4”. Repeating this process for the other caseéti), it can be shown
that

.
2m—2 arcsir{singsr(awAM ,k)}, Ay Qg4

Lam= 9 2arcsi+singsr(2iK’+a4ﬂA4W,k)}, Agre Q7" (46)

o4
i A47TEQZ 'n',

2 arcsi+singsr( —2iIK'+04,M4,,K)
\

which is an explicit expression faf,,. The proper expression and the signaf,=*+1 are
selected by using Fig. 8 in order to determine in which period parallelogpdias the quantity
A4, . The multiplicative constant,,. immediately follows from23a or (23b). Note that(46) can
be simplified by exploiting the periodicity of the sn function to obtain

2m—2 arcsir{singsr(ohmw,k)}, Ayre Qg““,
§411': (47)

2 arcsi+singsr(o4wz\4w ,k)}, Ayre QU Q04

whereA ., is given in(43) andk, iK' are given in(45).
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V. BRANCH-FREE SOLUTIONS

The determination of the unknowids, 4., and ;. 4, completes the definition of the solution
to the first order difference equatiomg «,u) as given in(20). It still has branch points and is
therefore multivalued owing to the arbitrariness of the branchi(ef) but its integrand is now
such that the path integral is single-valued on either of the Riemann sheets. Meromorphic solu-
tions to the second order difference equation can now be obtained through the use of expressions
(10). We recall, however, that solutions free of poles and zeros in the Sfrifare required and
therefore seek to use specific linear combinationg1d) to finalize the construction of the
solutions. Knowledge of the poles and zerosmgfr,u) is required to successfully complete this
endeavor and, since they arise solely due%,p(a,u) andviﬁ(a,u), it is straightforward to show
thatinS,,

a+§211' a+(§277_277) a+§411' =1
a—{or a—({on=27) @—{4,) '

w(a,*u)~ (48

whereo,,.=0g,,=1 is assumed for simplicity. With this information in hand, the poles of any
linear combinations involvingl0) are easily determined. Zeros are by nature more elusive and we
rely on knowledge of the limiting functions in order to determine their number as well as general
location. The cancellation of the poles and zeros is also complicated by the order requirement on
the solutions which must b&(1) as|Im a|—c.

We first present an entirely analytic approach from which two independent solutions are
obtained. They satisfy the analyticity requirements, recover the known solufigfa) and
1, (a) when n— /2, and their only shortcoming is that they vanishzas 0, though knowl-
edge of(13) circumvents this difficulty. In an effort to obtain expressions that also recover the
known solution¥,(a) whenz— 0, a number of approaches relying on numerically locating zeros
were explored but, despite producing more desirable behaviors, they fa@ib&sdue to inadmis-
sible poles that arise in the strip of analyticity in that limit. An example of such an approach is
provided here which nearly succeeds in recovering both limiting functiopgy) andW¥,(«).

In the following, we use the primed functioh «) to denote intermediate branch-free solu-
tions of the second order difference equatighwhich still have undesired poles and zeros in the
strip S, ,, Whereas the unprimed functiohg «) denote the appropriate branch-free and pole/zero-
free solutions.

A. Analytical solution

We proceed by constructing two meromorphic solutiong2f t;(«) andt;(«), sharing a
common pole at,, but having distinct unknown zeras, anda,, and then use a linear combi-
nation to obtain an expression with a known pole/zero pair. Proceeding in a manner similar to the
technique presented in Ref. 9, we write

T27T(a) [

ti(a)= 27 i)

(
U@

)W(a,u)+ 1- (( )))W(a,—u)}, (49
a linear combination of the branch-free forr(®0). The functionsf,(«) and T,,.(a) are 4
periodic; f,1(«) is a trigonometric polynomial used to introduce zeros at appropriate locations in
the « plane while the external multiplicative functidn,.(«) is a rational trigonometric function
used to annul poles and zeros. We observe that the introduction of double zeros coincident with the
poles of eithew(a,u) or w(a,—u) produces, by48), a simple zero in the term in curly braces
above. Thus, if we require
fi(a) 5 5
( ) (a+§27r) (a+(§2ﬂ'_2ﬂ.)) (a+§4frr)1 (50)
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then the second term in braces (#0) has simple zeros coinciding with those w{«,u) at «
=—{,..,2m— {5, and is finite ata= — ¢, . This implies

(1+ fi1(a) fi(a) atlor at({o,=2m) a—a;
U(a) U(a’) a_§277 a_(§277_277) a_§47r,

wherea; is the unknown location of a zero in tifg . strip. While the exact location af; is not
easily determined, its general location is known whgis in the neighborhood ofr/2. Indeed, as
n— m/2 we havef(«a)/u(a)—1 and

— 172
%[<1+ fl(0[))W(a u)+(1—(—)>w(a u)]n—> wW(a,u),

u(a) u(a)

and we conclude, sgd8), that whenz is in the neighborhood o#/2, «; is in the neighborhood
— 4. ChoosingT, (@) to eliminate the poles and zeros associated Wjth gives

w(a,u)+{1— w(a,—U)~

tan({,,/2) —tan a/2)

Ton(@)= G o) T ar(ai2)
so that
a—o
ti(a)~ =7

The 47 periodicf,(«) is obtained by letting

. a
+ Vg SIN+

X o
fi(a)=v,+v,coSa+ vzSina+ v, COS 5

2

and enforcement of50) produces

————(sir? 7 €0S{,, C0SL 4, —COS 7SNy, SINEL) |

1
1—coszzw—§4w){ Udzq)

V1=

u(§ )
sir »
v2=cos§27,(—v1+ —u(§2 ))
L cos 7;)
vz3=sin, .| v +m )

with v,=v5=0. We note that, in agreement with the analyticity requirements, the function
T,.(a) and the ratiof ;(a)/u(a) areO(1) as|Im a|—. A related meromorphic solution to the
second order difference equation sharing the same pole but having a different zero is

C Ta@ (.t o)
to(@)=—3 [(1_ u(a) u(a)

wheref,(«) is now chosen, following the same kind of procedure asf{¢e), such that

fala@)
u(a)

1+

) w(a,u)+ W(a,—u)], (51

N(a_ §27T)2(a_(§277_277-))21

(( )) ( at §4W)
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and hence

a— ay

a_§471'.

to(a)~

By the same reasoning as above, the zeyas also in the neighborhood @f= — ¢, when % is
in the neighborhood ofr/2. The meromorphic solutiort$(«) andty(«) then share the same pole
and a linear combination can now be used to introduce a zesic=at {,,. such that

’ ’ a+ §4W
ti(a)+ et~ o= " (52
and this requires
gZ . ti( - §477) _ —T2 (_ g ) Sin§477 COS§477_ u(£4ﬂ)( Vo Sin§477+ V3 COS§477)
té( - 5477) 2m am Sin§477 COS{47T+ U( §47T)( Vo Sin 547T+ L&! COS§47T) '

An acceptable solution of the second order difference equé®ipiiree of poles and zeros ify .
andO(1) as|Im a]—x, is then

tan({,,/4) —tan(al4) ,
tan ¢, /4) +tanald) (@)t (),

tl( )= (53)

and

n— 2 n—0
ti(a) — ¥i(a), ti(a)— 0.

The first limit stems from the fact that, ag— /2, 1—f,(«)/u(a)—0, £&—0 and, since in that
I|m|t K2ﬂ.’477.—>0,

n=l2tan({,.12) +tan al2) tan £,./4) +tan( al4)
W) = G, 12) —tanal2) @ Z, J4) —tan ald)

Vi(a),

where we are still assuming that, .= o,,= 1. For the second limit, it is can be shown that
—t5 andé——1 asy—0, andt,(«) therefore vanishes in that limit. Following the same pre-
scription as above, a second independent solutign) can be derived by seeking instead a
common pole at- {,,. and it can easily be shown that

ty(a)=ti(—a), (54
but we now have, using the same arguments as above,

n—ml2 n—0
ty(a) — V() to(a) — O.

The pair of solution$;(«) andt,(«a) satisfy the prescribed analyticity requirements listed in Sec.

| and recover the known solutiong;(«) and 1% ,(«a) as n— w/2. However, both vanish as

—0 and they therefore fall short of the preferred behavior obtained in Ref. 9 where the solutions
are seen to vary smoothly as a functionspbetween the two known limiting functions when

= /2 and »=0. Although undesirable, this is not a serious shortcoming since a pair of linearly
independent solutions are known whgi 0 and are given ifi13). This vanishing of; 5 «) when

17— 0 can be attributed to the use of linear combinatime®(52)] in order to create known zeros,

a procedure which was not required in Ref. 9. Experience suggests that a purely multiplicative
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[ti(e)] 3

9-27r -7 0 T o

FIG. 9. Magnitude of the branch-free solutibif«) given in(53) when 6= 0.25(1+i) for various values of;. The thicker
line corresponds to the known limiting functioh,(«), per(11), for »=m/2. The case fom=1.57 is indistinguishable
from ¥, (a).

method for eliminating the poles and zeros would likely reproduce the desired behavior, but this so
far remains elusive. The continuationtg{a) andt,(«) outside the stripRea|<2 is provided
by the first order difference equatio® and(5), and the results confirm the fact that the solutions
are free of branch points everywhere. Indeed, the expressions so obtained are linear combinations
of the branch-free formglL0). The technique has been implemented and sample curvés (faj|
are provided in Fig. 9 for various values af when 6=0.25(1+i). We observe that(«)
—WV(a) as n— /2, andt,(a)—0 asy—0.

We close this section by summarizing the procedure for computing the solutigms and
to(a). The fundamental building block i&(«,u), given in (20), the solution to the first order
equation(4) and its computation requires the quantities, 4., {24, and o, 4. The prelimi-
nary step in obtaining those quantities is to first compute the cyclic pefi®isising numerical
integration. The quantities,,, and o, then follow from(35) and k,, from (25). The quantities
lamy 04, and k., are likewise obtained fron¥7) and (23). The functionw(a,u) can then be
computed by carrying out numerically the path integral26); the functionst;(«), t;(«) and
t1(a), to(@) then respectively follow front49), (51) and(53), (54).

B. Numerical solution

By foregoing an entirely analytical approach, it is possible to construct solutions that, unlike
t; (@), do not vanish asy—0 but we must however resort to the numerical identification of
zeros, a somewhat unattractive prospect. The main motivation behind this approach is to proceed
with the pole/zero cancellation in a multiplicative fashion and avoid the use of linear combinations
of the type(52). Interestingly, it is possible to reproduce in this manner the more desirable
behavior obtained in Ref. 9 where E@) is solved. Therein, the solutions obtained are observed
to smoothly vary between two known limiting functions corresponding to, in the case at hand,
V. (a) as p—w/2 andW¥,(a) as —0. This can be achieved here but at the price of having to
numerically locate four zeros though, as discussed below, a pole that arigesaproves to be
problematic. Turning once again to the by now familiar form, we write

Tar(@) f3(a) f3(a)
ty(a)= 5 [(1 u(a) 1- (a))w(a,—u)}, (55)

and examination of the behavior of the solution in Ref. 9 now suggests using

)W(a, u)+
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COS{ 4, SiM? 77 COSa +Sin{,, oS 7 sina
u(§4ﬂ') '

fa(a)=

so that

fa(@)
u(e)

The term in braces i(65) is then such that

~(a+ g (@t (L4p—2m))2

_atl, (a—ay)(a—ay)(a—ag)(a—ay)
a—{y (a+Gn)(a—Gon)(at ({on—2m)) (a+ (Lon+2m))

i

and the pole and zero associated wjih) are eliminated by choosing

tan({,,/4) —tan(al4)
tan({,,/4) +tan(al/d)’

T47T( a) =

In the limit as »— 7/2 we have

atlon at({o—2m)
a—{on a—({o,—2m)

ty(a)~ :
which implies that, whem, is in the neighborhood ofr/2, the poles atv=—{,, anda=—{5,

+ 24 will each have a closely located pair of zewgs. Once the location of these zeros has been
obtained numerically by evaluatirtg(«) in (55), the desired solution may be written as

ta(a) (56)

4 .
COSa— COS{5 sin(ay/4)
to() = |

1-coséy., e
San(an—a)

so thattz(«) is free of poles and zeros iy, . It is easily shown that

n—ml2

t3(a) — Vi(a),

and sincef 3(a)/u(a)— +=1 asnp—0, albeit in a branched fashion, it can also be shémumeri-
cally) that

7n—0

t3(a@) — Wa(a).

Figure 10 provides sample curves fog(«)| for various values ofy when §=0.25(1+i). The
behavior obtained is reminiscent of the one in Ref. 9 since the solution now varies smoothly
between the two limiting function¥; «) as a function ofs. Once again, a second solution is
provided byt;(— «) and this recovers ¥, (a) asn— w/2 and¥,(«a) as n— 0. Despite this, the
approach is, however, flawed since one of the numerical zeros strays slightly asisidéhen
7n=0.001. This leads to failure of the solution in that limit since the corresponding zero canceling
term in(56) gives rise to a pole within the strip of analyticity. It is unclear at this time if this is due
to numerical inaccuracies or a fundamental limitation of the approach. It does, however, suggest
that the construction procedure based on branch-free combinations of the fum€tiqun) has the
potential to recover solutions that vary smoothly between the two known limiting functions pro-
vided a proper method can be devised for constructing the branch-free solutions.
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FIG. 10. Magnitude of the branch-free solutiby{a) given in (56) when 6=0.25(1+i) for various values ofp. The
thicker lines corresponds to the known limiting functitn (), per(11), for n==/2 and¥,(«), per(13), for »=0.

VI. CONCLUSION

A recently proposed solution technique for a class of second order functional difference
equations was applied to a case of intermediate complexity in order to assess its potential use for
solving certain electromagnetic scattering problems. The essence of this conceptually simple ap-
proach lies in the construction of branched solutions to first order difference equations and this is
achieved by systematically eliminating singular contributions to produce single-valued expres-
sions. This requirement leads to an equation system whose analytical solution is made possible by
obtaining, through the application of Cauchy’s theorem on Riemann surfaces, specialized versions
of relationships arising in the bilinear relations of Riemann. While the portion of the analysis
carried out on a Riemann surface of genus one has the same order of complexity as the one found
in Ref. 9, we were also now required to carry out a similar but more intricate analysis on a
Riemann surface of genus three in order to obtain well-defined branched solutions to the related
first order equations. The final solutions, expressed in terms of branch-free linear combinations of
the branched solutions to the first order equations, have all the desired analyticity properties and
also recover the known solutioW;(«a) as »— /2. The fully analytical approach presented
satisfies all of the solution requirements and the fact that it vanishes—a8 is not a critical
shortcoming since known exact solutions are available in that particular limit. The other variation
provided, which requires the numerical identification of zeros in the complpbane, represents
an attempt at resolving this shortcoming and, although it fails wiet®, it otherwise recovers a
solution which varies smoothly between the two known limiting functidhg «) and ¥, («).

This is encouraging since it suggests that the proposed approach has the potential to produce a
solution that smoothly recovers the two known limiting functions provided a proper method for
constructing branch-free solutions can be found.

The results obtained demonstrate the promise of the proposed technique but there are still a
large number of interesting issues to be addressed. Indeed, while the procedure for constructing
branch-free solutions is fairly well understood, the construction of such meromorphic solutions
free of poles and zeros in particular regions of the complgane, the striS, . in this instance,
remains challenging. Consequently, a fully analytical solution displaying the more desirable be-
havior obtained for the numerical approach, where the solutions recdvé¢rg) and¥,(«) in the
appropriate limits, is still sought. The success of this endeavor is apparently dependent on gaining
more insight into the behavior of the zeros of the meromorphic functions constructed. Addition-
ally, a better understanding of the dependency of the quantitigs,, on the problem parameters
nand@ is required. Ideally, this would take the form of specific requirements on, for instance, the
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impedances characterizing the structure and would provide a range over which the procedure for
determining the values, , 4., can be carried out. Indeed, it is not inconceivable that under certain
circumstances\ ,, 4, might lie outside theP and Q parallelograms, leading to a failure of the
technique. Another highly interesting item is the application of the approach when solutions of
different orders(i.e., notO(1) as|lm o|—=) are required since in such cases the integrand of
w(a,u) is required not to vanish asm a|—x. It is, however, apparent that, unless beneficial
symmetries can be found in cases of higher complexity, a sufficiently large number of singularities
in the strip of analyticity, while not precluding a solution in principle, may well make such an
approach impractical. Despite this and some of the currently unresolved issues mentioned above,
the technique proposed in Ref. 9, as demonstrated herein, can be applied relatively straightfor-
wardly to cases of intermediate complexity. Current efforts focus on its application to cases of
higher complexity such as the diffraction from an anisotropic impedance half-plane illuminated at
skew incidence.
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