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In this paper we consider the effects of two-electron, one-center interactions when added to the 
one-electron, two-center molecular orbital model. There are, therefore, two parameters 
considered: The standard Hiickel f3 (two-center, one-electron) term and the Hubbard one­
center, two-electron term U. It is shown how the change in the ground state as one changes the 
U 1f3 ratio is highly dependent on the presence or absence of odd member rings. 

INTRODUCTION 

Some years ago it was fashionable to debate the relative 
merits of molecular orbital and valence bond theory. Since 
then, it has become universally acknowledged that both 
methods can be valid starting points for calculation. In cer­
tain cases the same chemical system may be treated by either 
technique.) There is no a priori reason why this should be 
true. For a method to be physically relevant, the true system 
must be located inside the circle whose epicenter is the initial 
trial solution and whose radius is the radius of convergence 
of its perturbation expansion. The molecular orbital and va­
lence bond methods have very different starting points, each 
with its own quite different perturbation expansion. At first 
glance, they are not even in the same Hilbert space. 

Nevertheless, in this paper we show that in systems 
which contain no odd member rings, and which preferably 
have low atomic coordination numbers and no squares, both 
molecular orbital and valence bond methods provide suit­
able starting points for calculation. In this paper we will use 
the Huckel Hamiltonian as a paradigm for molecular orbital 
calculations and the Heisenberg-Dirac spin Hamiltonian for 
valence bond calculations. 

DEFINITIONS 

The Huckel Hamiltonian is a one-electron Hamiltonian. 
It may be considered to be acting on a space of atomic orbi­
tals. In this case: 

iJ 

where Ix) and Ix) are atomic orbitals and 

if Xi and Xj are nearest neighbors 

otherwise 

(1) 

(2) 

Alternatively the Huckel Hamiltonian may be considered to 
be acting on n-electron wave functions (we shall call such n­
electron wave functions SDs for Slater determinants). In 
this case: 

(3) 

where ala and aia are, respectively, the creation and annihil­
ation operators for Xia and where the a index denotes 

a) Dedicated to my parents on the occasion of their sixtieth birthdays. 

whether the i orbital is up-spin (a = + ) or down-spin 
(a = - ). 

The Heisenberg-Dirac spin Hamiltonian (HD) acts 
only on a space of SDs. 

(4) 

where Si and Sj are spin - 1/2 operators indexed by atomic 
orbital and 

J .. = {J 
I} 0 

if f3ij =f3 
otherwise 

(5) 

Both Huckel and HD Hamiltonians are asymptotic cases of 
the Hubbard Hamiltonian2

: 

HHubbard = L f3ijaiaaja + UL a;+ at ai _ ai + . (6) 
i>j i 
a 

Thus when U = 0, 

HHubbard = HHUcke) (7) 

and when U> 1f3 I, 
P HHubbard P = HHO' (8) 

Equation (8) points out the essential difference between the 
space of either the Huckel or the Hubbard Hamiltonian and 
the HD Hamiltonian. In the HD Hamiltonian, the Hamilto­
nian is defined only on SDs in which every spatial atomic 
orbital is singly occupied. S; can not act on an SD which has 
neither Ix;+ ) or IXi- ). We call the restricted space of the 
HD Hamiltonian localized, as there is exactly one electron 
located at each orbital. The Huckel and Hubbard Hamilto­
nians act on a delocalized space where there is no restriction, 
besides that of the exclusion principle, as to the number of 
electrons which occupy a spatial atomic orbital. The Pin Eq. 
(8) refers to the projection of the Hubbard Hamiltonian 
onto the localized HD space. 

Figure 1 illustrates the Huckel, HD, and Hubbard 
Hamiltonians for the 1T orbitals of trimethylenemethane 1. 

1 
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3 

(a) 

o 112341 

ii. 112341 

112341 

iii. 

112341 

112341 

(b) 

FIG. 1. The Huckel, HD, and Hubbard diagrams of 1. (a) The standard 
Huckel diagram. Circles represent orbitals, lines p-interactions. (b) The 
HD diagrams. (i) is the Sz = 2 manifold, (ii) the Sz = 1 and (iii) the Sz 
= O. Open circles represent SDs. Lines are the J exchange interactions. (c) 

The Hubbard diagram. Large open circles are localized SDs (e.g., 112341), 
small open circles single-excited SDs (e.g., 11 1231), and small filled circles 
double-excited SDs (e.g., 111221 ). Thin lines represent positive off-diagonal 
terms, thick lines negative off-diagonal terms. 

TABLE I. Key to symbols. 

Symbol 

Xi 
iJ,k,1 
¢J. 

o,b,c 
¢Ji. 
o andot 

"'-1121 

i+,i-,o+,o-

"'HD' "'Huckel' 

'IIHubbaro 

Meaning 

refers to the atomic orbital" 
indices used for atomic orbitals 
refers to molecular orbital 
¢JI is the lowest energy molecular orbital, 
¢J2 the next lowest and so forth 
indices used for molecular orbital 
refers to Xi component of ¢J. 
annihilation and creation operators 
refers to a Slater determinant 
refers to the Slater determinant, 

I
XI+(rl) X2-(rl)1 

XI + (r2) X2- (r2) 
refers to the up and down spin of the 
appropriate atomic or molecular orbital 
the ground state of the HD, Huckel, and 
Hubbard Hamiltonians 

"Where no ambiguity occurs the X label will be dropped. An example is 
1121 = IXI+x2-1. See below. 

Finally in Table I we state the notational conventions which 
will be used in this paper. 

Geometry of the HD Hamiltonian 

We define two geometrical concepts: 
( 1 ) Alternant.3 A Hamiltonian is alternant with respect 

to a given basis set when the basis vectors may be divided into 
two sets, the starred set and the unstarred set, in such a way 
that all nonzero off-diagonal terms connect starred basis 
vectors to unstarred basis vectors. 

(2) Connected. A Hamiltonian is connected with re­
spect to a given basis set when the basis set does not create a 
block-diagonal Hamiltonian. 

Thus the Hiickel and Hubbard diagrams of Fig. 1 are 
both connected and alternant. Although alternant, the HO 
diagram of Fig. 1 is not connected. 

HO and Hubbard Hamiltonians are always block diag­
onal, as off-diagonal matrix elements between SOs with dif­
ferent total directional spin quantum numbers are always 
zero. We may call these different blocks the Sz = N /2, 
(N /2) - 1, etc ... manifolds, where N equals the total num­
ber of electrons in the system. The following lemma is evi­
dently true: 

Lemma 1 

If the Hiickel Hamiltonian is alternant, then both the 
Hubbard and HO Hamiltonians are alternant. If the Hiickel 
Hamiltonian is connected each distinct Sz manifold of the 
HO and Hubbard Hamiltonians are connected. 

Comparison of Huckel and HD ground states 

In this section we state three approximate results. Nu­
merical illustrations of these results are to be found in the 
following section. 

Lemma 2 

Let ¢I and ¢2 be two different localized atomic SOs 
belonging to the same Sz manifold. Let PI and P2 be, respec-
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tively, the number of nonzero off-diagonal elements involv­

ing "'I and "'2' If PI > P2' then generally 

I ('" I 1 'I' HD ) 1 > I ("'21'1' HD ) I (9) 

and 

(10) 

Proof 

One can prove this result in a variety of ways. Perhaps 
the simplest way is to recall that the coordination number is 
directly proportional to the second moment. 4 If the second 
moment of "'I is greater than that of "'2' then "'I will in 
general contribute more to the most bonding eigenfunctions, 
and to the ground state in particular. Q.E.D. 

In a similar manner one may also consider second near­
est neighbors. 

Lemma2a 

Let "'I and "'2 be two different localized atomic SDs 
belonging to the same Sz manifold. Let both "'I and "'2 have 
the same number of first nearest neighbors (i.e., following 
Lemma 2, PI = P2 ). Let "'I though have more second near­
est neighbors than "'2' Then, in general Eqs. (9) and (10) 
are also true. 

Proof 

The proof is identical to the previous one, except now 
one considers the fourth moment. Q.E.D. 

Lemma 3 

Let a Hiickel Hamiltonian be that of an alternant system 
with an equal number of starred and unstarred atomic orbi­
tals. Assume furthermore that there are no nonbonding mo­
lecular orbitals. Let us call the starred orbitals 1,3,5, ... N - I 
and the unstarred orbitals 2,4,6, ... N. Consider only the Sz 
= 0 manifold localized SDs [i.e., the SDs such as those 

shown in Fig. 1 (b)( iii) for trimethylenemethane]. The SD 
which provides the largest contribution to 'l'Htickel is in gen­

eraI12,4,6, ... N,l,3, ... N - 11. 

Proof 

To simplify notation we give the prooffor N = 6. In this 
case 

and 

(113524611'1'Hticke'> 

<PI I <P12 <P13 <P21 <P22 <P23 

= <P31 <P32 <P33 <P41 <P42 <P43 

<PSI <PS2 <PS3 <P61 <P62 <P63 

(11) 

(12) 

Recall that in alternant systems, eigenfunctions have the 
property that if 

(<Pla'<P3a'<PS,,,<P2a'<P4a'<P6a) and (<Plb,<P3b,<PSb,<P2b,<P4b,<P6b) 

are eigenvectors then so are 

(<Pla'<P3a'<PSa, - <P2a' - <P4a' - <P6a) 

and 

(<Plb,<P3b,<PSb' - <P2b' - <P4b, - <P6b)' 

Due to the orthonormality of the above vectors we see that 
3 3 

L <PZk,a <PZk,b ± L <PZk - I,a <PZk - I,b = O. (13) 
k= I k= 1 

Therefore, 

(14) 

Thus the two determinants shown in Eq. (12) are both 
composed of orthogonal 3-vectors. Recalling that determi­
nants are volumes, we have in some sense maximized the 
volume of each determinant. Were we to have picked a dif­
ferent SD, we would in general not have orthogonal vectors 
and hence we would find a smaller coefficient for such an 
SD.Q.E.D. 

For the next lemma we adopt the following phase con­
vention: the spatial orbital position remains fixed in local­
ized SDs. Thus for trimethylenemethane the six Sz = 0 
manifold localized SDs are 112341, 112341, 112341, 112341, 
112341, and 112341. 

Lemma 4 

Consider an alternant system with an equal number of 
starred and unstarred atomic orbitals. Consider the starred 
and unstarred sets of the HD Hamiltonians SDs. It is well 
known that 'I' HD has positive contributions from all its 
starred SDs and negative contributions from all its unstarred 
SDs. S This is also true, in general, for the same localized SDs 

in'l'Hticke" 

Proof 

We will consider the example used in the proof of 
Lemma 3. We begin by comparing the relative phases of 

(11352461/'I'Htickel) and (11362451/'I'Hiicke')' 

Recalling Eq. (12) and noting, 

(11362451 1'1' Htickel > 

<PI I <P12 <Pl3 <P21 <P22 <P23 

<P31 <P32 <P33 <P41 <P42 <P43 

<P61 <P62 <P63 <PSI <PS2 <PS3 
we find, 

(11362451 / 'I' Htickel) = {( <P61 ,<P62,<P63) • (<PSI ,<P52,<P53) F 

(15) 

X(I13524611'11Hticke,), (16) 

Furthermore, 

<j135246Ij'l'Htickel) = - <j13624511'1'HtiCke')' (17) 

This is just the result we want to prove. In general though, 
one does not have only orthogonal vectors. In general one 
must compare 

XII XI2 XI3 YII YI2 YI3 
A= X21 X22 X23 Y21 Y22 Y23 (18) 

X31 X32 X33 Y31 Y32 Y33 
with 
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TABLE II. Comparison of I(IHtickel and I(IHD for some six atom systems. 

4 'IIHO plus 5 'IIHO plus 
Down spin 4th order 4th order 

atoms· 2 "'Huckel 
b 2'11HO 3 "'Hiicke! 3'11HO 4 "'HuCke! 4'11Ho correctionsc 

5 'IIHilck.' 5'11HO correctionsd 

4,5,6 - 0.112 -0.131 -0.007 -0.021 -0.008 -0.051 -0.004 - 0.759 -0.517 -0.700 
3,5,6 0.444 0.434 0.091 0.135 0.166 0.225 0.183 0.234 0.183 0.285 
3,4,6 -0.444 - 0.434 -0.234 -0.293 -0.166 - 0.225 - 0.183 - 0.091 -0.205 - 0.114 
3,4,5 0.112 0.131 0.150 0.178 0.008 0.051 0.004 0.616 0.538 0.529 
2,5,6 -0.444 -0.434 -0.234 -0.293 - 0.825 -0.725 -0.820 -0.234 -0.183 -0.285 
2,4,6· 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
2.4,5 -0.444 -0.434 - 0.759 -0.686 -0.166 -0.225 -0.183 -0.007 -0.300 -0.014 
2,3,6 -0.444 - 0.434 -0.616 -0.529 -0.166 -0.225 -0.183 -0.150 - 0.278 -0.186 
2,3,5 0.444 0.434 0.759 0.686 0.825 0.725 0.820 0.150 0.278 0.186 
2,3,4 -0.112 -0.131 -0.150 -0.178 -0.667 -0.550 - 0.634 - 0.759 -0.517 -0.700 

'SD phase convention is such that first and second row are, respectively, 11234561 and 11234561. 
b Each column presents 1(1 in column vector form. 
e (U j{3)2 = 0.10. 
d (U j{3)2 = 0.03. 
eVectors are normalized so that (112345611(1) = 1.00. 

Yi = (YiI,y,2'y,'J) and Xi = (XiI,X,2'X,'J) (21) 

and Yi is the dual of Y3' i.e., that portion of Y3 which is 
orthogonal to Y 1 and Y 2 and similarly for X~ . 

Hence in general B and A are not of the same phase. But 
BandA will be of different signs only when Yi and Y3 and/or 
xi and X3 differ significantly from each other. If this is the 
case, then A or B must be rather small. Hence our rule will in 
general break down only for small coefficients. Q.E.D. 

Numerical illustrations 

It is useful to examine some numerical examples of these 
lemmas. In Table II we consider four six-orbital systems, 2-
5. 

2 
2 

3 

6 

3 

5 4 

They may be viewed, for example, as representations of 
the 1T orbitals of unsaturated hydrocarbons. 2 would then 
represent benzene, 3 hexatriene, and so forth. Table II shows 
there is a strong correlation in the contribution of the local­
ized SDs to 'I1HD and to 'I1Huckel' In particular we note: 

( a) The relative size of each SD in '11 HD and '11 Huckel 

depends on its coordination number. Recalling that the co­
ordination number of Huckel and HD diagrams are propor­
tional to each other, we find (as predicted by Lemma 2) that 
the size of a given SDs contribution to either '11 HD or '11 Huckel 

is in rough accord. The only exception to this rule is found in 
the 11234561 SD for 5. 

(b) As predicted by Lemma 3, the largest term is invar­
iably 11234561. 

(c) As predicted by Lemma 4, the relative phase is the 
same for each SD coefficient. 

We see that the agreement is best for 2 and 3 and worst 
for 4 and 5. We shall show in a later section that this in­
creased disparity is due to the presence of a square in 5, and 
to the nonhomogeneity of both 4 and 5. 

This latter concept of homogeneity will be elaborated 
later. We anticipate the results of a following section by also 
including in Table II the fourth order corrections to 'I1HD • It 
can be seen that these corrections substantially improve the 
agreement between the spin Hamiltonian and the Huckel 
Hamiltonian. 

Table III treats in an identical manner three 8-orbital 
systems, 6-8. 

We observe the same trends as in Table II and again we 
observe that the least homogeneous system, 8, needs fourth 
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8 
6 

7 

7 

8 
6 

order corrections to its 'I' HD' 8 also illustrates the approxi­
mate nature of Lemmas 3 and 4. We find for example that 

TABLE III. Comparison of'i'Hiieke. and'i'Ho for eight atom systems. 

Down spin 
atoms· 6 'i'Hiieke. b 6'i'HO 7 'i'Hiiekc. 7'i'HO 8 'i'Hiiekc. 

5,6,7,8 0.001 0.000 - 0.001 0.001 0.006 
4,6,7,8 - 0.001 -0.004 0.002 -0.010 0.023 
4,5,7,8 0.000 0.016 0.041 0.020 - 0.021 
4,5,6,8 - 0.013 -0.026 - 0.038 - 0.016 -0.008 
4,5,6,7 0.013 0.014 -0.003 0.004 0.001 
3,6,7,8 0.000 0.016 0.001 0.034 0.081 
3,5,7,8 -0.030 -0.084 -0.112 - 0.119 -0.087 
3,5,6,8 0.127 0.157 0.113 0.108 O.otl 
3,5,6,7 -0.098 -0.089 - 0.001 -0.024 - 0.011 
3,4,7,8 0.030 0.094 0.183 0.210 0.004 
3,4,6,8 -0.185 -0.300 - 0.197 -0.292 - 0.091 
3,4,6,7 0.156 0.194 0.011 0.057 - 0.017 
3,4,5,8 0.070 0.131 0.009 0.063 0.082 
3,4,5,7 -0.070 - 0.158 - 0.120 -0.174 0.022 
3,4,5,6 0.000 0.038 0.114 0.137 0.006 
2,6,7,8 -0.013 -0.026 0.005 -0.060 -0.908 
2,5,7,8 0.127 0.157 0.126 0.248 1.011 
2,5,6,8 - 0.351 - 0.323 -0.141 -0.243 -0.091 
2,5,6,7 0.236 0.192 0.010 0.053 -0.017 
2,4,7,8 - 0.185 -0.300 -0.927 -0.720 -0.087 
2,4,6,8d 1.000 1.000 1.000 1.000 1.000 
2,4,6,7 -0.802 -0.670 -0.080 - 0.211 -0.028 
2,4,5,8 -0.566 -0.493 -0.068 -0.222 - 0.923 
2,4,5,7 0.623 0.622 0.827 0.674 0.021 
2,4,5,6 -0.070 -0.158 - 0.752 -0.520 0.023 
2,3,7,8 0.070 0.131 0.682 0.394 -0.022 
2,3,6,8 -0.566 -0.493 -0.744 -0.524 -0.023 
2,3,6,7 0.508 0.372 0.056 0.155 0.871 
2,3,5,8 0.634 0.465 0.127 0.160 0.021 
2,3,5,7 - 0.802 -0.670 -0.766 -0.683 -0.924 
2,3,5,6 0.156 0.195 0.700 0.499 0.081 
2,3,4,8 - 0.151 - 0.117 -0.005 -0.034 0.022 
2,3,4,7 0.236 0.192 0.067 0.149 0.082 
2,3,4,6 -0.098 -0.089 -0.054 - 0.150 -0.908 
2,3,4,5 0.013 0.014 -0.007 0.034 0.798 

the largest contributor to 'l'Htickel is not 11h456781 but rath­
er 1123456781, not in accord with Lemma 3. Similarly 
Lemma 4 breaks down over several of the smaller terms in 
'l'Htickel' e.g., 1123456781· 

Hubbard Hamiltonian 

In the preceding section we have illustrated in a some­
what formal manner that the Huckel and HD ground states 
in alternant systems have a similar localized electronic con­
figuration. Why is this true and what does this mean chemi­
cally? One way of viewing our preceding results is as follows: 

The Huckel and the Heisenberg Dirac Hamiltonians ac­
count for two different interactions. The Huckel Hamilto­
nian concerns itself only with one electron terms while the 
HD Hamiltonian considers electron correlation energies. In 
many chemical systems, neither Hamiltonian is really ade­
quate as often the two electron terms and the one electron 
terms are of the same order of magnitude. But if the Huckel 
ground state and the HD ground state are qualitatively simi­
lar in their localized part of the wave function then one may 
infer that the region of chemical interest will also show simi-

8 'i'HO 
fourth 

8 'i'HO order" 

0.011 -O.ot5 
-0.044 0.056 

0.042 - 0.051 
-0.012 0.008 

0.003 0.003 
0.168 0.118 

-0.220 - 0.149 
0.065 0.022 

-0.023 0.023 
0.054 0.026 

-0.226 - 0.138 
0.048 -0.062 
0.162 0.122 

-0.038 0.051 
0.011 -O.ot5 

-0.544 -0.796 
0.711 1.011 

-0.226 -0.138 
0.048 -0.062 

-0.220 - 0.149 
1.000 1.000 

- 0.192 - 0.111 
- 0.718 - 0.927 

0.185 0.115 
-0.044 0.056 

0.042 -0.051 
- 0.191 -0.117 

0.525 0.846 
0.185 0.115 

-0.717 - 0.926 
0.168 0.118 

- 0.038 0.051 
0.162 0.122 

-0.544 - 0.796 
0.409 0.637 

• SD phase convention is such that the first and second rows are, for example, 1123456781 and 1123456781. 
b Each column presents the 'i' in question in vector form. 
e (U //1)2 = 0.135. 
d Vectors are normalized so that this coefficient equals 1.00. 
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TABLE IV. "'Hubba,d for 9. 

U=O U=1 U=2 U=4 

(\1234\ "'HUbb.,d >a 0.20 0.22 0.24 0.26 
{\1234\ "'Hubba,d >" 1.00 1.00 1.00 1.00 
{\1234\ "'Hubba,d >a 0.80 0.78 0.76 0.75 

1 {P "'Hubbacd 1 "'Hubbacd > 11 21.0% 32.8% 46.0% 67.8% 

• Largest coefficient normalized to 1.00. 

lar qualitative behavior.6 It is therefore of interest to place 
both Hiickel and HD Hamiltonians within the context of a 
Hamiltonian which considers both one and two electron 
terms. As we have mentioned earlier, this corresponds to the 
Hubbard Hamiltonian. 

We now consider the Hubbard Hamiltonian of but ad i­
ene, 9. In Table IV we show how the localized SDs slowly 
evolve from the Hiickel antipode where U /13 = 0 to the HD 

fl... p4 
rr,~ 

9 

antipode where U,> 1131. As may be seen, the change is slow, 
continuous and slight. The entire effect of the changing U /13 
parameter is spent on changing the percent contribution of 
this localized configuration from the HD antipode to the 
Hiickel antipode. This is also shown in Table IV. 

One particularly useful way of viewing the Hubbard 
Hamiltonian is to tabulate the molecular orbital provenance 
of the Hubbard ground state. To do so, one uses as a basis set 
of the Hubbard space SDs composed of molecular orbitals. 
Thus in the case of the four atom chain 9, one has four molec­
ular orbitals, ¢ll' ¢l2' ¢l3' and ¢l4' We therefore express the 
Hubbard ground state as 

(22) 

where a=j:.b and c=j:.d. 
We then· arbitrarily assign a quarter of laabcd 12 to, re-

u=o u =-413 u = -10{3 u = - 50P 

414 I------J 

Et 

FIG. 2. Molecular orbital occupation as a function of 1 U 1/3\ for 9. Going 
from left to right we consider increasingly large 1 U 1/31. Striped area repre­
sents filled orbitals, nonstriped area unfilled ones. Note even at U = - 10/3 
the bonding orbitals are substantially more occupied. 

U= 10 U=50 

0.27 0.27 
1.00 1.00 
0.74 0.73 

91.6% 99.6% 

spectively, ¢la' ¢lb' ¢lc' and ¢ld' In this way one can represent 
the molecular orbital provenance of 'l'Hubbard' 

We plot the results of such a fractionation in Fig. 2. It 
may be seen that the switching on of the U parameter is 
reminiscent to the effect of temperature. The bonding orbi­
tals empty out and the antibonding orbitals fill up as U be­
comes increasingly dominant. This is an intuitive result. In 
the limit of very large U, molecular orbital stabilization ener­
gy becomes immaterial. The only energetic requirement in 
the limit of high U is that electrons should be as localized as 
possible. Total localization corresponds to a half-filling of 
every molecular orbital. 

Fourth order correction 

As we have seen in the previous sections, the agreement 
between the localized portion of the Huckel and HD ground 
states is not always excellent. As we show in this section, this 
divergence comes from changes which occur in the region 
where I U /131> 1. We prove this result via perturbation theo­
ry. Before showing how this is done in practice, we would 
like to note, that there is no mathematical reason why the 
discrepencies have to be eliminated by higher order correc­
tion. A perturbation expansion starting from either the 
Hiickel or Heisenberg Dirac antipode breaks down at 
U = 1131. The reason why the expansion method works is 
because the changeover from Hiickel to Heisenberg anti­
podes is of a continuous type for the altemant systems. 

In order to calculate higher order terms in the HD Ham­
iltonian we need to recall several results from effective Ham­
iltonian perturbation theory.7 In Table V we list the various 

TABLE V. Rayleigh-Schriidinger perturbation formulas. 

Order of 
perturbation 

I a 

2b 

3 

4 

PVP 

pvJL VP 
6.E 

Expression 

PV JL V JL VP - PV-Q- VPVP 
6.E 6.E (6.E)1 

PV JL V JL V JL VP - PV JL V_Q- VPVP 
6.E 6.E 6.E 6.E (6.E)2 

- PV_Q- V JL VPVP - PV_Q- VPV JL VP 
(6.E)2 6.E (6.E)2 6.E 

+P~VPVPVP 
(6.E)· 

• V is the perturbing Hamiltonian elements, i.e., H = Ho + V, where H is 
the full Hamiltonian and Ho the unperturbed Hamiltonian. Pis the projec­
tion operator onto the effective space. 

b Q = I - P. 6.E = Eo - Ho, where Eo equals the unperturbed diagonal ele­
ment of the degenerate vectors which compose the effective space. 
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order corrections to the Hamiltonian. In our case PVP = 0, 
and furthermore for alternant systems there are no third or­
derterms. 

Some computation shows the fourth order correction in 
the absence of squares is 

/3 4 

H4a = L - -3 {bij(16S;·Sj) - Cij(4S;·Sj) - 4bij + cij}' 
;>j U 

(23) 

where 

{
I if /3ij =/3 

b .. = , 
IJ 0 otherwise 

(24) 

and cij is the number of first nearest neighbors which both X; 
and Xj share in common. 

When four member rings are present one has the addi­
tional correction 

/3 4 

H4b =-3 L dijk/{lO[(S;·Sj)(Sk·S/) + (S;·S/)(Sj·Sk) 
U ;j,k,/ 

- (S;"Sk )(Sj·S/)] - HS;·Sj + Sj·S/ + Si·S/ 

+ Si·Sk + Sj·Sk + S/·Sk] + n, (25) 

where 

dijk/ = {~ if bijbjkbk/bi/ = 1 

otherwise 

The total fourth order correction is, therefore, 

H4 = H 4a + H 4b • 

In the case of cyclobutadiene 10 we find 

0: 
H4 = /3: {80(SI·S2) (S3·S4) + 80(SI·S4) (S2·S3) 

U 

- 80(SI·S3) (S2·S4) - 4SI·S3 - 4S2·S4 

(26) 

(27) 

10 

+ 20[SI·S2 + S2·S3 + S3·S4 + SI·S4] - 13}. (28) 

We can see there are three types ofterms which appear 
in the fourth order: 

(a) A ferromagnetic interaction between nearest neigh­
bors. In the absence of four member rings this effect is exact­
ly proportional to the HO Hamiltonian. By itself therefore, 
it introduces no change in the functional form of the Hamil­
tonian. Except in the presence of squares this force is oflittle 
qualitative importance. 

(b) An antiferromagnetic (AF) interaction between 
second nearest neighbors. We illustrate this effect for tri­
methylenemethane, in Fig. 3. We may understand its effect 
in the following manner: in general we will be placing an AF 
force between two SOs which are in ferromagnetic align­
ment to one another. If the second order solution has en­
dowed the two SOs with disparate coefficients this AF force 
will tend to further increase the coefficient of the larger SO 
and further decrease the coefficient of the smaller one. In the 

112341 

112341 112341 

112341 112341 

112341 

FIG. 3. Fourth order correction to the HD Hamiltonian of 1. Solid lines are 
second order terms, dotted lines are fourth order terms. All lines are of AF 
type. Compare to Fig. l(b)(iii). 

case of Fig. 3, though, all the second nearest neighbor inter­
actions are between SOs which are of identical magnitude. 
Hence this force is of little importance. Thus when the sys­
tem exhibits more homogeneity, ofthe kind found in 1, this 
force also is of lesser importance. 

(c) A four body interaction. Evaluation of Eq. (25) 
shows that the four body term is of the type shown in 11. This 
force is quite important. 

Inclusion of this force genuinely improves the similarity 
between P'I'Hiickel and P 'l'HD' 

We give numerical illustrations of this improvement in 
Table VI for 12. Other examples are given in Tables II and 
III. 

1D~ 
~ 1 

~D1 
1 ~ 

H4b 11 

8 

12 

Nonalternant systems 

The results presented in the earlier sections are applica­
ble only to alternant systems. Nonalternant systems present 
a radically different behavior. We show this by examining 
13. 
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1<1>3 13 

4 

In Table VII we present in an analogous fashion to Ta­
ble IV the results of a Hubbard calculation for 13. It may be 
seen that the system undergoes a delocalized-electron to lo­
calized-electron transition. This transition occurs at 
U = - 2.7951 {3. At this U 1{3 ratio there is a crossover be­
tween the ground state and the first excited state of the Hub­
bard Hamiltonian. The two states correspond to different 
irreducible symmetry representations of the Hubbard Ham­
iltonian and hence the crossing is a true one, not an avoided 
one. This crossing leads to unanalytic behavior between the 
Hiickel and HO antipodes. We illustrate this in Fig. 4. In this 
figure we contrast butadiene, 9 to 13. 

The reason for the crossover in 13 is also of interest. Let 

TABLE VI. IJIHuekel and IJIHD for 12. 

Down spin 121J1HD with some fourth 
atoms' 121J1Huekei b order correctione 121J1HD 

5,6,7,8 0.001 0.002 0.005 
4,6,7,8 -0.014 -0.006 - 0.016 
4,5,7,8 0.029 0.049 0.101 
4,5,6,8 -0.026 - 0.121 - 0.218 
4,5,6,7 0.010 0.075 0.129 
3,6,7,8 0.004 0.004 0.026 
3,5,7,8 -0.004 -0.014 - 0.166 
3,5,6,8 -0.002 0.017 0.326 
3,5,6,7 0.003 -0.010 - 0.190 
3,4,7,8 0.008 0.048 0.094 
3,4,6,8 - 0.081 - 0.179 - 0.282 
3,4,6,7 0.083 0.133 0.\78 
3,4,5,8 0.086 0.199 0.13\ 
3,4,5,7 - 0.119 - 0.282 - 0.161 
3,4,5,6 0.024 0.084 0.044 
2,6,7,8 -0.003 - 0.016 -0.027 
2,5,7,8 0.130 0.097 0.147 
2,5,6,8 - 0.218 -0.207 -0.299 
2,5,6,7 0.134 0.123 0.175 
2,4,7,8 -0.221 -0.290 -0.319 
2,4,6,8d 1.000 1.000 1.000 
2,4,6,7 -0.762 - 0.688 - 0.638 
2,4,5,8 -0.634 -0.509 -0.372 
2,4,5,7 0.740 0.653 0.444 
2,4,5,6 - 0.122 - 0.163 - 0.110 
2,3,7,8 0.115 0.125 0.156 
2,3,6,8 - 0.659 -0.495 - 0.513 
2,3,6,7 0.544 0.382 0.359 
2,3,5,8 0.682 0.485 0.347 
2,3,5,7 - 0.879 -0.694 - 0.483 
2,3,5,6 0.198 0.199 0.140 
2,3,4,8 - 0.147 - 0.191 - 0.118 
2,3,4,7 0.244 0.308 0.187 
2,3,4,6 - 0.112 - 0.135 -0.087 
2,3,4,5 0.013 oms 0.012 

'SD phase convention is such that first and second rows are, respectively, 
1123456781 and 1123456781. 

b Each column presents the IJI in vector form. 
e (U /P)2 = 0.3 
d Vectors are normalized so that this coefficient equals 1.00. 

TABLE VII. IJIHubbard for 13. 

u=o U=2 U=4 u= 10 U=50 

(1123411J1HUbbard )U 1.00 1.00 0.50 0.50 0.50 
(1123411J1HUbbard )a 0.00 0.00 1.00 1.00 1.00 
I (P IJIIIJI)12 9.6% 29.2% 71.0% 90.5% 99.5% 

• Largest coefficient normalized to 1.00. 

us first examine the 'l'HD antipode. The SOs 112341 and 
112341 contain only one pair of like spins on bonded atoms 
while the other four SOs contain two such energetically un­
favorable pairs. It is to be expected that 112341 and 112341 
both contribute to 'I' HD' Furthermore 13 is of D2h symme­
try. The permutational transposition (13) corresponds to 
two of the D2h symmetry elements. We note: 

(29) 
Therefore if'l'HD is to contain any 112341 within it it must 
belong to an irreducible representation which is not the most 
symmetric representation of D 2h • On the other hand, as there 
are no degenericies in the Huckel molecular orbital, 'l'HUckel 
does belong to the most symmetrical representation of D2h • 

Therefore a crossing is inevitable. 

Spin multiplicities and unsaturated hydrocarbons 

Although our understanding of the electronic structure 
of unsaturated hydrocarbons is based primarily on Huckel 
theory, it has been known for some time that Huckel theory 
is not useful in predicting the spin multiplicity of the ground 
state of molecules such as cyclobutadiene 10 and trimethy­
lenemethane 1. It appears in most cases that these systems 
obey the following simple rule: 

(30) 

where S is the total spin quantum number of the ground 
state, N * is the number of starred atoms, and N the number 
of unstarred atoms. It has also been shown that such a rule is 
a logical consequence of an HO spin Hamiltonian. 1,5 

The fact that both Huckel and HO Hamiltonians are 

100% ~----------------------------------

c 
o -o 
.!:! 
"0 
u 
.£ 
";!. 

2 4 6 8 10 
U (in-pi 

FIG. 4. Electron localization as a function of I U / PI for 9 and 13. The curves 
plotted are (IJIHubburd IP IIJIHubbunl) as a function of U /p. 13 shows a discon­
tinuous transition at U = - 2.795 P, 9 does not. Even at U = - 10 P, 
"'Hubburd is only 90% localized. 
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a b c 
PIE) 

Et 

FIG. 5. (a) The band filling ofa metal, (b) the traditional view of the band 
filling of an AF insulator, (c) the intermediate band filling where U is of the 
same order as band width w.1t should be noted that W"" - 2 m /3, where m 
is the average coordination number. In (c) we have taken a case where U is 
smaller than W. 

pertinent to the same set of compounds (i.e., the unsaturated 
hydrocarbons) seems peculiar, as the two Hamiltonians ap­
pear to be based on such different physical interactions. 

As has been well established previously I and as has been 
shown in the previous sections, the reason for this concur­
rence of results is due to the continuous changeover from the 
Hiickel to HD limits for the case of alternant hydrocarbons. 
It is therefore not that one of the two Hamiltonians more 
correctly accounts for the physical forces, but that both 
Hamiltonians are appropriate zeroth order models. 

Thus one may equally well use Huckel theory as a start­
ing point. 8 In this case one treats U as the perturbation. First 
order perturbation theory correctly places the triplet in the 
ground state of 1. For 10, one must resort to second order 
theory. 

Extended systems 

In the case of infinite systems, the changeover from the 
low spin configuration where electrons are localized to the 
low spin configuration where they are delocalized is termed 
an antiferromagnetic insulator-metal transition. The tradi­
tional view9 of these two forms of matter is that shown in Fig. 
5. This traditional view implies the changeover occurs in a 
discontinuous manner, like that we saw in Fig. 4. 

It is actually well known 10 that for the simplest of all 
infinite systems, i.e., the infinite chain, the Hubbard transi­
tion is of a continuous nature. It is generally believed6 that 
the continuous transition is due to the low dimensionality of 
the one-dimensional system. As we have shown in this paper, 
of equal if not greater importance is the presence or absence 
of odd-member rings. We have shown that even finite sys­
tems of the tiniest sort which contain odd member rings, 
indeed do undergo true transitions. 

It would be informative to study higher dimensional sol­
ids, in which there are no odd member rings and high homo­
geneity so as to determine whether there is a Hubbard phase 
transition. One recent numerical study of the square lattice 
indicates no such phase transition is to be found. II This again 

confirms the utility of our intuition garnered from the study 
of small systems. Another excellent candidate for study is 
the graphite sheet 14. 

14 
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