Spin fluids in stationary axis-symmetric space-times
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The relations establishing the equivalence of an ordinary perfect fluid stress-energy tensor and
a spin fluid stress-energy tensor are derived for stationary axis-symmetric space-times in
general relativity. Spin fluid sources for the Godel cosmology and the van Stockum metric are

given.

I. INTRODUCTION

The search for new and significant solutions to the field
equations has long been an important aspect of general rela-
tivity. With the realization that the stress-energy content of a
given geometry is not unique, this aspect of general relativity
has grown to include the search for new and significant
sources to known geometries.

The relation between a viscous-heat conducting fluid
and a perfect fluid was derived by King and Ellis' in their
paper on tilted space-times. The equivalence of electromag-
netic fields and some viscous fluids has been discussed by
Tupper? and Raychaudhuri and Saha.? Tupper* has also de-
rived the equivalence relations for perfect fluid space-times
and space-times with viscous-magnetohydrodynamical mat-
ter content. Carot and Ibanez® have shown that the interior
of a Schwarzschild sphere could contain a viscous heat con-
ducting fluid as well as a simple perfect fluid.

In this paper we extend the possible alternatives to sim-
ple perfect fluid sources by considering the stress-energy ten-
sor for a perfect fluid with spin in a stationary axis-symmet-
ric space-time. The metric we treat is

ds? = —fdt* —2kdé dt +1dg* + e (dP +dz*). (1)

We do not assume that / is harmonic. This will allow us to
discuss the Gédel cosmology. In this space-time a simple
perfect fluid has a stress-energy tensor

T,, =&U,U, +P(g,, + U,U,), (2)
where € is the energy density, Pisthe pressure, and U, is the
fluid velocity. We work in the comoving frame, where U, is
the timelike component of the tetrad af;, that diagonalizes
the metric:

b =af. {3)

The tetrad is

as = (1/{ £,000), at = F,00k/f),
at = (0,e°200), a, = (0,"20,0),
a4 = (0,0e~420), a = (0,0e20),

@ =(—k/DJF00Jf/D), @ =(000D/f),

(4

where D? = f1 + k % Thetetrad indices are in parentheses or
are numerical indices. We use coordinate labels, i.e.,
(1,x,y,z) for the space-time indices. Tetrad indices are raised
and lowered by 7, = (— 1, + 1,4+ 1, + 1).

The general stress-energy tensor for a spin fluid was giv-
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en by Ray and Smalley®’ and has two parts:

T, =Tw(ﬁuid) + T,, (spin). (5)
The fluid portion of Eq. (5) is the spin-fluid counterpart of
Eq. (1):

T, (fluid) =€eU,U, +P(g,, +U,U,). 6)
The spin contribution to the stress-energy tensor is

T, (spin) = U,S,, .U+ [U,S, )

+ @4aSua + U,S,, U, (N
where UM = U,,, U" is the acceleration of the fluid and w,,,
is the angular velocity tensor associated with the spin. This

angular velocity is defined in terms of the tetrad given in Eq.
(4):

@, :%[d:f’a(a)v —ai®ag,, ] (8)
The spin density obeys the Weyssenhoff condition
u*s,, =0. %

In Sec. II we derive the equations that establish the equiv-
alence between the sources described by Egs. (1) and (5).
Some metric applications are given in Sec. III.

il. EQUIVALENCE RELATIONS

Equating the stress-energy tensors in Egs. (1) and (5),
we find

eu, U, +P(g,, +U,U,)
=eU,U, +P(g,, +U,U,) + (U,S, +US,)U’
+ WU W, +UW,) +14(8,°U,, +8,°U,.)

+ (S, %0, + 5,%0,, ), (10)
where W* is the spin divergence,
Wh= (N —g)N —8gS*),,. (11)

The equations to be satisfied are generated from (10) by
running through the possible index combinations. We will
eventually want some of the equivalence relations with tet-
rad indices, but several useful equations result from consid-
ering coordinate indices first.

The equivalence expressed by Eq. (10) assumes the
same fluid velocity in the perfect fluid as in the spin fluid. We
could have used different velocities as, for example, Tupper?
did in adding fluid viscosity and shear. This would introduce
more parameters into the equivalence description. Since the
spin-fluid stress-energy tensor is lengthy, we choose the sim-
plest workable equivalence.
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For the space-time described by Eq. (1), we find the
kinematic parameters of the spin fluid are

o, = ~f/Nf, o,=k/Nf, U =f/2f
W, = _'fz/2‘/79 W,y = kz/z\/_’ Uz =f./2/,

where f, = d, f, etc. The spin divergences are calculated to
be

W, = (&/D*S, (fk, — kf,)
+ (8°/D*)S,, (fk, —kf,),

W, =2[3,8; + 3,84 + (S, /2D*)If, — f1,)
+ (S,./2D*) (If, — f1,),

W, = (1/D)4,(¢"’DS,,),

W, = (1/D)d,(e°DS,,).

The r, tz, ré, and z¢ components of the stress-energy tensor
are

T, = (- f/2D)(@DS,,),, — 3/ F)f.&S,.,
T, = (—f/2D)(e"DS.,),, — (3/4/ f)f.&S,,,
T,, = — (k/2D{f)(@Ds,,),,

— (&S, /ALY (K f, + 2/%,),
T,, = (—k/2D f)(@DS,,),,

— (S, /42 (kf, + 2 /%,).

These stress-energy components are zero and Egs. (14) de-
termine S,, and set the condition for a consistent solution to
exist. We find

S,, =e’4/D [, (15)

with 4 #0if fis proportional to k and 4 = 0 otherwise. We
will find this is a very restrictive condition which eliminated
the §,, spin component in all of the examples we found. The
rz component of the stress-energy tensor establishes another
strong condition on the spins:

(12)

(13)

(14)

T.= (172D F)[S,4 (k. —kf)

+ 8,4 (fR, — k)], (16)
which is also zero. Many useful and symmetric solutions
depend only on one coordinate. Inthis case Eq. (16) causesa
second spin component to be zero. The stress-energy compo-
nents that are left are used to determine the remaining spin
density and matter content of the spin fluid:

— b =b
T,=ek—>85,° S 3 ¢zi
LA
_\/TW¢___£C___W”
2 2/ f
Tnzfe_\/?‘n,n (7

T, =P+ (k[ f/D?)S,y — (kf.,/D}f)S,,,
T, =P,e* + (k,\ f/D?S,, — (kf,/DN )S,,,
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k> P, D> kW, S,@

T,, = + — (kf. +2fk.),
TN T AR
S, e
—-2;—3,2(kf;+2sz).

We have allowed for anisotropic pressures in the spin fluid.

Equations (15) and (16) are useful as they stand. The
remaining stress-energy components are more convenient to
use with tetrad indices. Using Eq. (4) we find the tetrad
indexed stress-energy components are

Too=€—W/F, (18)
T,=P +S,@ /D) Sk, —kf), (19)
T22:Pz +Sz¢(éb/pzﬁ)(sz-k-f;)’ (20)
Tyy =P, + (S, /DY f)(kf, —fk,)
+ (S,.@/D* f)(kf, —fk.), (21)
— W, 3 8,8f 35,8,
TO3 :O: —— —————
2 4 pJyf 4 DJf
(22)
b
W, = € [(S¢'f),r+(—~—s¢2f),z] (23)
JF LU D D

The procedure is simply to check Egs. (15) and (16) for a
possible zero and then to use Egs. (18)~(23) to generate the
description of the spin fluid source.

ill. APPLICATIONS
A. The Godel cosmology
We have

ds’ = — (dt + ™ dy)* + dx* + 1*** dy* + dz*, (24)

with (t,,4,2) - (t,x,,2). This space-time has € =p = la°.
2a.

For this space-time we have f=1, k =e%, [ = — 1’
b =0, D? = e Clearly fis not proportional to k, so

S, =0. (25)
From Eq. (16),
s, =0. (26)

The only nonzero spin is S, a spin along the z axis of rota-

tion. Equation (22) determines the functional form of the
spin as

S, = Ae™. (27)
Using this spin and Eqgs. (18)~(21) we find the energy den-
sity and pressure to be

la* =€—2a4, la*=P, —2a4d,
la*=P,, la°=P,—2ad.

z

(28)

There is a rotational correction to the usual isotropic Godel
pressures. There is no pressure change along the rotational
axis. This spin fluid has a timelike divergence. The diver-
gence along the spatial tetrad components is zero.
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B. The Van Stockum soiution®

We have
ds* = — (dt — ap? dp)? + p* d#* + e~ “P'(dp® + dz2?),
f=1 k= —ap? I=p*—ap’, (29)
b= —a%? D?=p
This space-time has a zero pressure and & = 4a%"*".° We

have identified ¢ and o in €.
As in the previous example, we find

S, =S,, =0.

pz

(30)

The nonzero spin component is determined by the vanishing
of T3

S,.s = Ap. (31)
The pressures and energy densities are
€= €+ 2ade™", P, = 2ade®", (32)

P, =0, P,=2ade"".

The nonzero pressures can again be interpreted as the rota-
tional action of the spin about the axis of rotation. The Van
Stockum spin source has only a timelike tetrad divergence,
as in the G6del cosmology.

Both of the examples considered thus far have only a
timelike divergence component. The last example, whichisa
dust metric due to Hoenselaers and Vishveshwara,'® devel-
ops a spatial component to the spin divergence.

C. An example with spatial divergence

The rotating dust solution of Hoenselaers and Vishvesh-
wara'? has a metric

dS2 — e2(cx+d)(dx2 + dyZ) + _L(azxz . _1_) de
N4 2
+ 2[%(—-21— — azxz) -+ ax]dz dt

2 2
W dr? (1—““") _o)
2 2

(33)

2 2
f:g__..[l_...agx_} \Il’ [:.}_(azxz.__k),
v ¥ v 2
k= ﬂ(azxz - -}—) — ax,
¥
b=2(cx+d), (trz.e)—-(txy2),

where 1, W, ¢, and d are constants determined by boundary
matching. This metric, like the previous examples, has only a
single nonzero-spin component:
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S, =0, S,=0. (34)

The nonzero component .S,, is functionally determined by
the T,; component of the stress-energy tensor:

Ty = — W/2 + 3(S,, /4] fD) =0, (35)
S, =AD /2 (36)

This spin fluid is the first example to have a spatial diver-
gence component. The divergence is

W, = (S,.2%a/D*W)[Q*/2 + (¥ — alx)?],
W= —3S,.ef/fD).

The energy density is related to the perfect fluid energy den-
sity by

(37)

e=e+WNTF. (38)
The pressures are
Px:Pz, Py=03 (39)

P, = + 5, (/N f¥)[Q*+2(¥ — Qxa)?].

In summary, we have given the relations establishing spin
fluid sources for axis-symmetric stationary space-times. The
space-times used for illustration seem quite different, with
some, for example, having fluid accelerations and some not;
however, there are similarities between the spin fluid
sources. All of the source examples are polarized, have some
nonzero component of the spin divergence, and exhibit an-
isotropic pressure. All of the pressures are, however, sym-
metric about the axis of rotation. The spin density is in gen-
eral required to Fermi—Walker transport. For the three
space-times considered, this is equivalent to

§,. =0

The spin is constant along the flow lines. These examples
provide another alternative to simple perfect fluids or fluids
with viscosity and heat conduction.
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