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It is assumed in this paper that at the electrode-solution interface there is molecular order of the elec­
troactive species resembling solid-state order. Specifically, it is assumed that next to the electrode is a 
layer of adsorbed neutral solvent molecules which are also ligands coordinated to the ions found in the 
interface. The mechanism of electron transfer from the electrode to the ion or the reverse from the ion to 
the electrode is assumed initially to involve a transition from either the electrode or the ion to the solvent 
molecule. This is followed by a transition of the electron from the solvent molecule to either the ion or the 
electrode. The two transitions involved in the net transfer of an electron across the interface are considered 
analogous to the charge-transfer mechanism of spectroscopy. The wavefunctions representing the system 
at the interface are then of the same form as the charge-transfer wavefunctions given by Mulliken. 

By considering the radiationless transition probabilities for the electron transitions in the interface 
system at the electrode, it is found that the usual current expressions result. By imposing the condition of 
zero net current at equilibrium the Nernst equation results. By further considering the polarization of the 
electrode under nonequilibrium conditions as a perturbation of the energy levels of the system, it is found 
that with the proper identification of terms the current expression for the polarized electrode results. 

I. INTRODUCTION 

THE presence of an electrode in a solution of an 
electrolyte which is a redox system allows for the 

possibility of heterogeneous electron exchange between 
the two phases. The condition of thermodynamic equi­
librium requires that there be no excess charge in the 
interface, that there be equality of the chemical 
potential in both phases, and that the current in one 
direction equals the current in the reverse direction 
(exchange current). Within the interface there exists 
a potential gradient which is a result of the electrical 
potential difference between the two phases. This 
potential difference presents a potential barrier through 
which, or over which, the electron must pass in getting 
from one phase to the other'! 

The presently accepted model of the electrical double 
layer formed at the interface of the electrode and the 
solution consists in part of an oriented neutral adsorbed 
layer of solvent molecules which is at least one mono­
layer thick (in the absence of specific adsorption of 
the ions of the electrolyte).2 The distance of closest 
approach of a charged ionic species to the electrode is 
at the plane of the adsorbed neutral monolayer. The 
Gouy-Chapman theory, with modifications due to 
Stern, Frumkin, and others, predicts the potential and 
the differential capacitance in the double layer as a 
function of the distance from the electrode plane.2 

* This research was supported in part by grants from the 
National Science Foundation, Grant No. GP-4620 and the U.S. 
Army Research Office-Durham, Contract No. DA-31-124-ARO­
D-284. 

1 H. Gerischer, Z. Physik. Chem. (Frankfurt) 26, 223 (1960); 
27,48 (1961). 

2 See, for example, R. Parsons, in Modern Aspects of Electro­
chemistry, edited by J. O'M. Bockris (Butterworths Scientific 
Publications Ltd., London, 1954), Vol. 1. 

The expression for the current passing from one phase 
to the other is derived on the basis of a kinetic treat­
ment of the reacting species at the electrode.3 As this 
model is statistical in nature it does not consider the 
microscopic ordering of the molecules and ions at the 
interface and cannot explain the mechanism of elec­
tron transfer between the electrode and ion on a molec­
ular scale. 

Previously Gurney4 has treated the passage of the 
electron from one phase to the other through the poten­
tial barrier on the basis of a tunnel effect. Gerischerl 

has extended the treatment and presented current 
expressions for the simple reaction of the type 

From the above reaction the density of states of the 
occupied and unoccupied levels in the solvated ions 
can be determined by the work involved in converting 
one form to the other. The work needed to bring an 
electron from infinity and place it in solution to occupy 
the lowest state without change in the solvate structure 
defines the energy of the unoccupied states. The require­
ment that the solvent structure does not change is a 
result of the Franck-Condon principle. The energy 
levels of the occupied states are defined by the reverse 
process: that being the work needed to remove an 
electron from the solvated ion, without change in the 
solvate structure, and the subsequent removal o(the 
electron to infinity. 

Each ion in solution is surrounded by solvent mole­
cules which are associated with the ion through ion-

3 See, for example, J. O'M. Bockris, in Modern Aspects of Elec­
trochemistry, edited by J. O'M. Bockris (Butterworths Scientific 
Publications Ltd., London, 1954), Vol. 1. 

4 R. W. Gurney, Proc. Roy. Soc. (London) A134, 137 (1931). 

3291 



3292 P. P. SCHMIDT, JR., AND H. B. MARK, JR. 

dipole and other interactions. Due to thermal agitation 
the solvation structure can fluctuate, and the distribu­
tion of solvate structures can be represented by a 
Boltzmann distribution. With each structure of the 
solvated ion there is a corresponding energy state in 
the redox system, and, hence, the density-of-states 
functions for the redox system. 

As the electron-transfer process at the electrode is 
radiationless, the condition for tunneling is that the 
electron makes transitions between equi-energetic states 
in the electrode interface. If the density-of-states 
functions for the redox system are signified by Dox(E) , 
Dred (E), and the density-of-states functions for the 
metal electrode by No(E), Nu(E) for the occupied 
and unoccupied levels, respectively, the expressions for 
the total cathodic and anodic currents are given byl 

j-= eoi:-( E) No( E) Dox( E) dE 

and 

where ,,-(E) and ,,+(E) are the penetration coefficients 
in the anodic and cathodic directions, and eo is the 
electronic charge. By using the density-of-states func­
tions for the redox electrolyte defined above, Gerischer 
has shown that an electron in that system obeys the 
Fermi-Dirac statistics, and further that the Fermi 
level of the redox system is defined asl 

EF.redox= °EF.redox+kT In (Cred/Cox) , 

where 0 E,.redox is defined as the energy difference be­
tween the ground-state vibrational reduced ion level 
and the ground-state vibrational oxidized ion level. 

Although the barrier penetration model predicts the 
mode of the over-all electron transfer, it does not 
account explicitly for the effect of the geometry of the 
solvate molecules about the ion, nor does it account 
explicitly for the individual effect of the energy levels 
within the solvent upon the magnitude of electron 
transfer across the interface. In the following sections 
the nature of the solvate structure and the solvate 
energy levels is discussed, and a simple model pro­
posed which focuses upon the effects of these individual 
properties on the process of electron transfer at the 
electrode. 

II. SYSTEM 

In constructing a molecular model for the electrode 
interface which will explain the mechanism of electron 
transfer, it is assumed that there is molecular order 
resembling solid-state order in the neutral solvate 
species which, in the absence of other more preferen­
tially adsorbed substances, makes up the neutral ad­
sorbed layer. This molecular order is assumed to extend 

several monolayers out into the bulk. of the solution. 
The matrix of ordered solvate molecules at the electrode 
makes up the basis of a semiconductor material with 
the associated formation of conduction and valence 
states in the matrix. The ions to be reduced or oxidized 
occupy sites in the ordered matrix and behave as 
impurity sites. 

The semiconductor analogy is limited, however, be­
cause the dimensions of the ordered system extending 
out from the electrode are small. The order which is 
assumed to exist at the electrode will vanish rapidly 
as one moves away from the electrode. Thus, the direct 
application of the current expressions for the solid-state 
situation to electrode phenomena will break down and 
one must resort to a more limited approach to the 
problem. The approach to be taken in this paper is to 
consider the detailed order of the solvent molecules 
and ions at the electrode surface and then to consider 
the stepwise transference of the electron through the 
regions in the interface which presently is defined. 

Considering the detailed arrangement of the species 
in the ordered layer making up the interface, the 
assumption is made that the nature of the order is 
determined as a result of the combination of three 
factors. These three factors are (i) the adsorptive and 
(ii) electrostatic fields in the interface, and (iii) the 
geometry or coordination of the solvate molecules 
around the ions in the bulk. of the solution. In the inter­
face the order assumed by the solvate molecules and 
the ions is that order which minimizes the lattice energy 
under the equilibrium concentration conditions dictated 
by the Nernst equation. The geometry of the solvate 
spheres about the ions in the bulk of the solution is in 
effect an initial condition in determining the type of 
order of the species at the electrode. It is reasonable to 
assume that the coordination of the solvate sphere of 
the ion in excess under an equilibrium concentration 
for the entire system exerts the greatest influence upon 
the order of species in the interface. For the special 
equilibrium condition of equal concentrations of all 
ionic species, the order assumed at the interface is 
dependent upon the relative coordination energies of 
the ionic species. The coordination of that species 
having the lowest bulk.-solution-solvate-sphere coordi­
nation energy predominates. Although the same for 
both ionic species, the coordination of solvate spheres 
at the electrode is not the same as the coordination 
found in the bulk of the solution, due to the combined 
effect of the adsorptive and electrostatic fields. 

The process of forming the interface requires that 
the solvation spheres about the ions must change, as 
indicated, in order that the ions be incorporated into 
the ordered layer. The change in energy needed to 
accomplish this process can either be given up by, or to, 
the bulk of the solution. Under nonequilibrium condi­
tions the formation of an excess of either the oxidized 
or reduced species in the ordered layer creates a condi­
tion whereby an attempt is made by the system to 
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regain the equilibrium distribution. Thermal energy 
from the bulk of the solution can be exchanged with 
the ordered layer to change the solvate structure of the 
product species, which has just gained or lost an electron. 
This causes layer breakdown with subsequent departure 
of the product ion surrounded by solvate molecules 
with the coordination characteristic of that ion in the 
bulk of the solution. Once a product ion-with its new 
solvate structure--Ieaves the electrode, another reac­
tant ion can move in and change its solvation sphere to 
assume the equilibrium coordination found at the elec­
trode. 

As it has been assumed that the ionic species at the 
electrode-solution interface preserve a solvation en­
vironment, it is reasonable to expect that the neutral 
adsorbed layer of solvent molecules next to the electrode 
corresponds to a part of the solvation structure around 
the ions in the interface. It is further assumed in the 
treatment that metal-metal-ion association-which 
would be the case if the ions reacted directly at the 
metal surface of the electrode-does not take place. 
Establishing these conditions leads to a model for the 
electron transfer across the interface which can best 
be represented by analogy to the charge-transfer 
mechanism in spectroscopy. With such a model two 
charge-transfer transitions need to be considered. The 
first takes the electron from the electrode to the solvent 
sphere of the ion, and the second, from the solvent 
sphere of the ion to the ion itself. Under most circum­
stances the transitions are radiationless. 

III. ELECTRONIC STATES 

It is known from kinetic studies of reactions at the 
electrode that, in most instances, the barrier to electron 
transfer across the electrode interface is very low. 
It is reasonable that, for a low barrier, the associations 
between substituents in the interface are strong and 
that a mechanism analogous to the spectroscopic charge­
transfer mechanism is justified. The choice of wave­
functions for the low-barrier case is then 

Vtl= a4J( el)<t>(s) +b<t>( el+Hs-), 

Vtu= a'<t>(el+Hs-) -b'<t>( el)<t>(s), 

Vtm= c'<t>(i(a-H)+Hs-) -d'<t> (ia+) <t>(s) , 

the charge-transfer complex wavefunction. The func­
tions Vtu and Vtm are both excited-state wavefunctions, 
the former constructed with respect to the electrode, 
and the latter with respect to the ion. The reason for 
this particular choice of wavefunctions is seen as follows. 
Moving an electron from the ion or the electrode to 
the solvent molecule involves an expenditure of energy. 
The reverse movement of the electron from the solvent 
to the ion or the electrode results in the regaining of 
energy _ The existence of an electron in the solvent 
molecule as a result of a transition from either starting 
point-the electrode or the ion--constitutes a meta­
stable state. Furthermore, the continuity condition 
imposed by the choice of model requires that the link 
between the two transitions involved be through the 
excited state. 

The wavefunctions, <t>( el), <t>(s) , <t>(ia+) , <t>(i(a+1l+) 
and <t>(i(a+l)+Hg-), which are used as basis functions in 
the charge-transfer wavefunctions [Eq. (III.1)], are 
perturbation corrected. The electrode wavefunctions 
are eigenfunctions of the Hamiltonian 

(III.2) 

where Helo is the Hamiltonian of the unperturbed sur­
face-state wavefunctions of the metal electrode. VI is 
the electrostatic potential due to the ions at the elec­
trode and is given by E;(z"eO/rel,;) , where Z is the 
charge on Ion j, and rei,; is the ion-electrode distance. 
Finally, the perturbation due to the adsorption of the 
solvent (or any other substance) on the electrode is 
given by Vad •• Likewise, the Hamiltonian for the solvent 
layer molecules is 

(III.3) 

where H.o is the Hamiltonian of the free solvent mole­
cule the eigenfunction for which is the lowest unfilled 
MO of the solvent. The effect of the electrostatic 
potential of the electrode is given by Vel which is due 
only to the metal atoms on the surface of the electrode 
in the absence of external polarization of the electrode. 
Finally, the crystal-field orbitals are perturbed by the 
electrostatic potential of the metal ions on the surface 
of the electrode and the Hamiltonian is 

VtIV= c<t>(ia+)<t>(s) +d<P(i(a+ll+Hs-). (III.1) where Hio is the Hamiltonian for the free coordinated 

These wavefunctions are of the form used by Mulliken 
in his treatment of charge-transfer spectra.6 The basis 
functions for the above charge-transfer functions 
(perturbation corrected) are <t>C el), the surface-state 
metal wavefunction for the electrode; <t> C s), the lowest 
unfilled molecular orbital (MO) of the solvent; I/> (i(a+1l+) 
and <t>Cia+) , the crystal-field orbitals of the oxidized 
and reduced states of the ion; and <t>(i(a+l)+Hg-) IS 

I R. S. Mulliken, J. Am. Chern. Soc. 74,811 (1953). 

ion. 

IV. ELECTRON TRANSFER-DETAILED 
MECHANISM 

The magnitude of the current passed in either direc­
tion (anodic or cathodic) at the electrode depends upon 
the transition probability per second for the charge 
transfer from the solvent to the ion or the electrode. 
The probability that an electron occupies a MO of the 
solvent molecule as a result of a transition from the 
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Distonce from the Electrode Surface 

FIG. 1. The potential function at the electrode in the absence 
of an external electric field. 

electrode is PI. The probability per second that the 
electron is then transferred to the ion is PlI. The proba­
bility that a solvent MO is occupied by an electron as 
a result of a transition from the ion is Pm, and the 
probability per second of a transition of that electron 
to the electrode is Plv. The net transition probability 
per second is given by 

and 
(IV.t) 

(IV.2) 

The total number of electrons making transitions in 
either direction is given by 

and 
(IV.3) 

(IV.4) 

where Nor. is the number of ions in the oxidized state and 
Nr• d is the number of ions in the reduced state. It is 
more convenient for the purposes of studying electrode 
processes to express these total transition probabilities 
in terms of concentrations; thus 

and 
(IV.S) 

(IV.6) 

where Cox and Cred are the concentrations of the oxidized 
and reduced species in moles per liter. The current, 
then, in either direction is given by 

and 
(IV.7) 

(IV.S) 

where A is the area of the electrode surface in square 
decimeters and fT is the Faraday constant. The total 
current is 

j=j,+j,. (IV.9) 

The exact nature of the transition probabilities PI 
and P, depends upon the particular set of wavefunc­
tions used. In general, however, the forward and reverse 
transition probabilities can be expressed in terms of 
the Einstein transition coefficients and the Boltzmann 
equation for the population of a particular state. The 
various probabilities can be written 

PI= exp( -nwI2/kT), 

PlI=B34P(W43) +A 34, 

PlI = exp( -nw43/kT) , 

Pxv= B2lP( W12) + A 21 • (IV.tO) 

These relations hold for either photon- or phonon­
induced transitions. The current expressions can now 
be written 

jn=co"AfT( exp( -nwI2/kT) [B34j>(W43) +A34]}, (IV.ll) 

j,= -cr.dAfT( exp( -nw43/kT) [B21P(WI2) +A21]}. 

(IV.t2) 

In order to evaluate these expressions it is necessary 
to evaluate the Einstein transition coefficients for 
either the photon- or phonon-induced transitions. In 
this paper, though, we concern ourselves only with the 
phonon-induced transitions, leaving the discussion of 
photon-induced transitions for a future paper. 

In general, the term which links the vibrational and 
electronic motion is given by6 

B/intl/! (xa) l/!(rl) 

= - LAh2/ma)i¥(xa)/axai¥(rl)/aXa, (IV. 13) 
a 

where Xa is the nuclear coordinant and rl the electronic 
coordinate of the particle a. From this interaction term 
one can construct the matrix elements of interest in 
the transition probabilities. These matrix elements are 
given by 

(r, l/B/int/S, j) 

= - ~ f dxa (h2/ma)l/!1"(xa)l/!.(rl) 

xal/!.(xa ) !aXaa1/l;(rl) /axa. (IV.14) 

It is found that in practice matrix elements of the 
type given by Eq. (IV.14) are difficult to evaluate. 
Ziman6 has introduced a treatment, based on an intui­
tive approach, in which it is assumed the lattice vibra­
tions move the molecules making up the lattice and 
hence change the lattice potential U by an amount 
BU. It is possible then to write the change in the lattice 

8 J. M. Ziman, Electrons and Plwnons (Oxford University Press, 
London, 1962), Chap. 5. 
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potential as 

aU = ~'I/l,baU(ri) /a'l/l,b, (IV.1S) 
I,b 

where 7J I,b is the displacement of the ion and (l, b) is 
its position. The variation in the potential is now treated 
as a perturbation equivalent to the perturbation caused 
by the interaction operator Eq. (IV.13). Gouterman7 

makes use of the perturbation 

H'int= L7J"x"F" cos(wt+K·r,,) , (IV.16) 

" 
where 7J" is the coupling constant with the phonon field, 
Xa is the displacement of Particle a, Fa is the force 
analogous to eE in the electric case, the cosine term 
gives the interaction in terms of a phonon plane wave 
polarized along the unit vector t. The relation between 
wand K is given by w=c,1 K I, where c, is the speed 
of sound. Gouterman's perturbation term corresponds 
to an explicit statement of the interaction aU. The 
total Hamiltonian is now 

(IV.17) 

where Ho is the total Hamiltonian for the free molecule. 
Using the semiclassical treatment of radiation Gouter­
man gives the probability of the excitation to a state 
m from a state n as 

Cm*Cm=[F",2 sin2!(wmn-w)t/h2(wmn-w)] 

X If dXlfmL7J"X" exp( -iK·r,,)!fn 12

, 

Wmn=Wm-Wn _ (IV.18) 

The energy density of the phonon field is given by 
F",2/47r, and in analogy to the photon case one can write 

F",~!(87rHe2 f dwp.(w) , (IV.19) 

where the factor i arises due to longitudinally polarized 
phonons and e2 is inserted to make the units work out 
correctly. The Einstein coefficient Bnm is found to be 

(IV.20) 

where Vmn' is given by 

t'mn'=e J dXlfm *[~7J"ra exp( -iK·r,,)!fn]. (IV.21) 
" 

The analogy to the Planck formula for the energy 
density of a phonon field is found in the Debye theory 
for the determination of the specific heat, and is given 
by 

for w<wmax 

(IV.22) 

7 M. Gouterman, J. Chem. Phys. 36, 2846 (1962). 

and 
P.(w) =0 (IV.23) 

where Wmax is the cutoff frequency for phonon radiation. 
The number of states making the transition from m to 
n (where Em<En) is equal to the number of states 
making the reverse transition at equilibrium and 

Nn[Bnmp.(w) +Anm]=NmBmnP.(W). (IV.24) 

From the Boltzmann distribution law 

Nn/Nm= exp( -hw/kT) , 

and from Eq. (IV.24) one finds 

(IV.2S) 

P.(w) = Anm/Bnm[exp(hw/kT) -lJ-l. (IV.26) 

From Eqs. (IV.20), (IV.22), and (IV.26) the Einstein 
spontaneous emission coefficient is 

for w<wmax 

=0 for w>wma,x. (IV.27) 

Substituting the values of the Einstein coefficients 
[Eqs. IV.20), (IV.27)] into the expressions for the 
currents [Eqs. (IV.11), (IV.12)] one finds 

h=coxA'J(4w4N3hc.3) \ t'43·\2 

(IV.28) 

and 

j,= -CredA'J( 4wl N3hc.3) \ V12,\2 

Xexp( -hw 3/kT) {[exp(hw12/kT) -lJ-l+l}. (IV.29) 

Making use of the approximation for high tempera­
tures (hw<kT) of 

[exp (hw/k T) -lJ-l::::kT /hw 
one gets 

h= coxA'J( 4w432/3h2C.S) \ t'43,\2(kT) 

Xexp[h(w4S-W12)/kTJ (IV.30) 
and 

j,= -credA'J(4wlN3h2c.3) \ V12,\2(kT) 

Xexp[h(w43-W12)kT]. (IV.31) 

The net current is given by the sum of the forward 
and reverse currents and is 

j= (4A'J/3h2c.3) (kT) {W432 \ V43 B \2cox 

Xexp[h(W4S- W12)/kT]-W122\ V12,\2Cred 

Xexp[-h(W43-W12)/kT]L (IV.32) 
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Distance from the Electrode Surfaci 

FIG. 2. The potential function at the electrode in the presence 
of an external electric field which is a result of the polarization 
of the electrode. 

where 

and 

are equivalent to the forward and reverse rate constants. 

V. ELECTROCHEMICAL EQUILIBRIUM 

Electrochemical equilibrium is realized when the sum 
of the two currents is zero. Equating the two currents, 
as the equilibrium condition implies, gives from Eq. 
(IV.32) 

CoxW4s21lks'I2 exp[li(w4S-W12)/kT] 

=CredWl22 I tal2'12 exp[ -Ii (w4s-wu)/kT]. (V.l) 

Rearranging and identifying 2NIi(W43-WU), where N is 
the Avogadro number, with the free energy of activa­
tion, and, from the fact that -ilFo=nff8°, one gets 

R RTl ~"I""I' RT ,~ 8"=- n -+-In-
nff Wl22 ta12' 2 nff Cred ' 

(V.2) 

which is precisely the Nernst equilibrium condition. 

VI. EFFECT OF EXTERNALLY APPLIED 
ELECTRIC FIELDS 

The application of an electric field at the electrode 
other than the fields which exist under equilibrium 
conditions results in the net flow of current in either 
the anodic or cathodic direction, providing the equilib­
rium concentration ratio at the electrode Cox/Cred, as de­
fined by the Nernst equation, remains the same. Under 
the effect of an externally applied field at the electrode 
the bulk concentration of ion species changes after a 
long enough period of time. This change in concentra­
tion is in the direction of the equilibrium concentration 
ratio given by the Nernst equation with an equilibrium 
potential equal to the applied potential. When the new 
equilibrium is attained the current will once again 
become zero. The tendency of the system to move to 
an equilibrium situation is the essence of the diffusion­
controlled kinetic treatment of electrode processes 
given by many authors.s 

In Fig. 2 the distribution of the potential function 
at the electrode in an applied electric field is shown. 
In comparison with Fig. 1 it is seen that the external 
field decreases the energy separation between States 1 
and 2 and increases the separation between States 3 
and 4. If the biasing, given by eE in Fig. 2, were re­
versed the energy separation between States 3 and 4 
would be decreased and between States land 2 
increased. 

We can rewrite Eq. (IV.32) in terms of the energy 
separations between levels in the system for any 
situation: 

j= (4A/31i2c,S) (kT) {W432 I ta43'12cox exp[(E43- Eu)/kT] 

-W122 I tal2'12cred exp[ - (E43- El2)/kT]}, (VI.l) 

where Emn=Emno+E', and E' is the correction to the 
unperturbed energy. The externally applied field will 
introduce correction terms of the form - tal2" E and 
lkse• E, where tae is the electric transition dipole moment 
and E the electric field. The external field will not be 
of a magnitude to force corrections to be added to the 
Wmn terms in the pre-exponential factor which then 
remains the same. The current expression, including 
the external field, is 

J = (4A/31i2c,3) (kT) (W4s2llks'12cox exp{[(E43L E120) + (lk3'+tal2") ·EJ/kTI 

-Wl22 I ta12'12Cred exp{ - [(E43 - El20) + (ta4SB+tal2e) • EJ/kT}). (VI.2) 

The cathodic free energy of activation under a potential change of il8 is9 

ilFc* = ilFo*-anffilS 
and the anodic free energy is 

(VI.3) 

(VI.4) 

8 See, for example, P. Delahay, New Instrumental Methods in Electrochemistry (Interscience Publishers, Inc., New York, 1954). 
e H. A. Laitinen, Chemical Analysi3 (McGraw-Hill Book Company, Inc., New York, 1960), p. 306. 
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We can identify !:i.Fc: with 

This leads to 

j= (4A/3fi2c.8) (kT) {W432 \1k3"\2cox exp[(!:i.FoLan~M8)/RT]-WI22\ VI2'\2Cred exp[!:i.Fo:+ (1-a) n5!:i.8/RT]} 

= (4A/3fi2c.3) (kT) {W432 \ V43" \ 'cox exp[ -an5(8-8L)/RT]-WI22 \ VI2,\2Cred exp[(1-a)n5(8-8°)/RT]}. (VI.S) 

We can solve Eqs. (VI.3) and (VI.4) for a giving 

a= (!:i.Fot-!:i.Fct )/n5M. (VI.6) 

Substituting the values for !:i.Fot and !:i.Fct into (VI.6) 

leads to 

a= [N(EI2LE430) +N( V43e+VI2') ·E]/n5!:i.8. (VI.7) 

vn. SUMMARY 

A treatment of the passage of current at an electrode 
by assuming a detailed ordering of the solvent and 
ionic species as a model has been presented. This treat­
ment considered the specific transitions of the electron 
from the electrode, to the solvent, and then to the ion, 
and the reverse transitions from the ion back to the 
electrode. The assumption of a detailed model, used in 
this work, is the major difference between this work 
and others which have preceded it. A detailed discussion 
of the differences between this theory and the adi-

abatic theories of RushIO and Marcusll will be pre­
sented in a subsequent paper. Formerly, the ion with 
its solvate sphere was treated as a single entity for 
which density-of-energy-states functions could be 
approximated and the electronic transitions considered 
on the basis of a tunneling model. 

It has been shown that the detailed model leads 
directly to the classical expressions for the current 
passed at the electrode and to the Nernst equation 
when the identification of the energy difference between 
states in the electrode interface system is made with 
the free energies of activation for the anodic and 
cathodic currents. The expressions for the current 
developed in this paper indicate that a priori calcula­
tions of the magnitude of the current are possible. 

10 N. S. Hush, Z. Elektrochern. 61, 734 (1957) j J. Chern. Phys. 
28, 962 (1958). 

11 R. A. Marcus, Can. J. Chern. 37, 155 (1959) j in Symposium 
on Electrode Processes, edited by E. Yeager (John Wiley & Sons, 
Inc., New York, 1961), p. 239. 


