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The diffusion equations of momentum, heat, and mass are solved for spiral flows of incompressible viscous
fluids. General exact solutions for the steady-state distributions of velocity, temperature, and concentration
are obtained through the use of the similarity transformation technique. Also described are two typical
boundary conditions which may be applied to determine the integration constants in the general exact

solutions.

INTRODUCTION

HE analytical studies on the classical problem of
the spiral flows of incompressible viscous fluids
have received considerable attention.'~8 By the simi-
larity transformation technique, the Navier-Stokes
equation of motion was reduced to an ordinary dif-
ferential equation®’ and the general integration was
performed.® Recently equations of heat and mass dif-
fusion in spiral flows have been reduced to ordinary
differential equations through the use of the similarity
transformation technique.® In addition, functions repre-
senting the velocity, temperature, and concentration
profiles in the logarithmic spiral channels are evaluated
with a digital computer. The purpose of this paper is to
present general exact solutions for the diffusion equa-
tions of momentum, heat, and mass in spiral flows.

ANALYSIS

Under the conditions of two-dimensional flow and
constant thermal properties, the diffusion equations of
momentum, heat, and mass in polar coordinates may be
written as!:

Momentum equation (or the Navier-Stokes equation
of motion):

V= (1/n)[8(V¥¥)/0(67)]; 1)
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Heat equation:
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where

v=y9/v, r=7/ry, u=1ry/v, T=CpTr¥/*, x=3%/x,,
Pr=v/a, S.=v/D, R=Rry/va,

and y is the Stokes stream function; 7, the radial dis-
tance in polar coordinate; 7, the characteristic length;
#, the fluid velocity; 7', the temperature variable; C,,
the specific heat; Z, the concentration variable; x,
the reference concentration; R, the rate of mass gen-
eration; Pr, the Prandtl number; S., the Schmidt
number; », the kinematic viscosity; e, the thermal dif-
fusivity; and D, the mass diffusivity. The subscripts 7
and 6 represent the radial and angular directions,
respectively.

Let the stream function ¢, temperature 7, and con-
centration « be expressed as

Y(r0)=F(n+4x, 4
T(r8)=H(n)/7, ()
x(r,0)=1"I (), (6)

where 4 is an arbitrary constant. The independent
variables n and x are defined as

n=—2(a lnr+456)/(a>-+5?), )
and
x=2(b Inr—ab)/ (a®4-5%), (8)
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where ¢ and b are arbitrary constants. They are two
isometric families of curves orthogonal to each other.??
It must be noted that in incompressible flows the con-
tinuity equation is equivalent to the introduction of the
stream function such that the velocity components are
= —(1/7)(3¢/36) and up=23y/dr. Equations (1), (2),
and (3) may then be reduced to

FYV4 Qa+A)F"+ (> + 0+ e A)F"+bF’-F” =0, (9)
H'+ 2a+ APrH'+[ a2+ 0+ (aA+bG)PrH

(@2 224G’ 24GG’
+4Pr[ +G+ A7+ ]: . (10)
a2+b2 aZ_Jr.bZ a2+ b2
1"~ (20— AS )+ [ a2+ (aA+G)S ]I
+1(a4+)S.R=0, (11)

respectively, where G=F’.
Through the substitution of G=F" and then inte-
grating once, Eq. (9) becomes

G"+ (2a+A4)G'+ (@®+8*4-ad)G+ (3/2)G=K, (12)

where K is an integration constant to be determined by
the flow rate. The velocity distribution is

w= (uud= DLG+49/ (@+WT. (13)

Olsson reduced Eq. (12),by a linear transformation of,

Gn)=Gm)+C, (14)
to the form
G"+(2a+4)G'+ (b/2)G*— D=0, (15)
where
C=—(a®+b*+ad)/b, (16)
D=K—C[a*+-8+adA+(b/2)C]. an
The integration of Eq. (15) gives
Ca)=X, Crorm, (18)
n=0
where C,, and \ are determined by
6/2)C¢—D=0, for n=0, (19)
#C N +n(2a-+ AYCA(b/2)
X[CoCrn+CiCrs+CoCrat -+
FCoaiC1HCiCo]=0, for w21, (20)
and C; and »o are arbitrary constants.
Equation (20) for n=1 gives
2a+4 86C, Tt
A= [-—1:&:[1— :I ], 21)
2 (2a+4)2

where — sign corresponds to 7—7o>0 and - sign to
7—710<0.
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The substitution of G(n) thus obtained into Egs. (10)
and (11) yields two equations of the form

¥+ Py +Q@)y=S(n), 22)
where,
for  ym)=H(), (23a)

P=2a+4Pr,
0 =@+ ¥+ [ad+bC+b S C e 1Py,
n=(
AN w
—S(n)=4APr [> #Cemh w2
&2_*_1}2 n=l
. 264N
+[C+Y CpeMr-m 4
n=0 aZ+ b2
na=]
2¢ =
+ [T CuerirwiC]
dz+bz n=y
X[\ i nC Mo ] ] ,
L e
for  y(m)=I(n),
P=AS¢-—20, (243)
Q) =a*+b*

~[0A+BC+BY Coem =S, (24b)
n=={)

=S =%(a>+b?)S. R. (24¢)

In order to obtain thé complementary solution of

Eq. (22), one assumes
y(n)=z(n)e ¥ (2, (25)

then the term involving the first derivative may be re-
moved. The results are easily found to be

2"+ T (1)z=0, (26)

where
T =B—{(APr/22—I[C+Y. Cre TPy},
=l

for H(y), (27a)

=B (4S0/2P— B[C+Y Cremmm]Se3,
Rl

for I(y). (27b)



DIFFUSION EQUATIONS OF MOMENTUM, HEAT, AND MASS

Equation (26) is integrated to give (11)

) =3 Valo), (29

n=0
where

Vo(m) =2(n0)+35'(no) (n—n0), for »n=0, (29)

Vo) = f )T OVaa(®ds for 121 (30)

With the first complementary solution of Eq. (22)
found as

)= *P"”""W'E Va(n), (1)
the second one may be obtained as!
n (e~ FEm)
R R e L
e @
@ v £
n=={) 0
[20 Va()T
n=)
The particular solution is'®
¥ ()= f Cy1(8)y2(n) = y2()y1(m) IS (§)eP €m0 .,
(33)

Therefore, the general exact solutions for diffusion
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equations of heat and mass may be written as

T(rf)= (/1) lElyx(n)-FEzyz(n)

x / (@ 9aln) =23 () 1S

XePG—no).dE}’ (34)

x(r,o>=r2{E3y1<n)+E4y2<n>

+ f Cyn(yan) — 2D IS @)
XeP(E-'"’)df;'], (35)

respectively, where E,, E,, E;, and E, are integration
constants to be determined by the appropriate bound-
ary conditions. For example, if A=0 and a two-dimen-
sional flow is confined in logarithmic spiral channels 7,
and 7,, then the following boundary conditions are to
be used in determining »o, C,, E1, Es, Es, and Ey:

G(n)=0 G(n2)=0
T(n)=0 T(n2)=0
x(n1)=0 x(n2)=0

for zero velocity, temperature, and concentration along
the channels. Another example is a flow along a loga-
rithmic spiral plate at which velocity, temperature, and
concentration are all zero. The boundary conditions
may be written as:

G(n2)=0 G (=)= constant
T(n)=0 T( )= constant
x(n)=0 x( o0 )= constant

for constant velocity, temperature, and concentration
in the free stream.

As a remark, special cases to which these analytical
results may apply include: (i) ¢=0, radial flows in
channels and (i) 6=0, circular Couette flows.



