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The Wigner method of transforming quantum-mechanical operators into their phase-space analogs is 
reviewed with applications to scattering theory, as well as to descriptions of the equilibrium and dynamical 
states of many-particle systems. Inclusion of exchange effects is discussed. 

I. INTRODUCTION 

THE ensemble expectation value of a quantum~ 
mechanical operator A is expressed in the usual 

formulation of quantum statistics, as the trace of pA, 
namely, 

(A) = Tr pA, (1) 

where p is the von Neumann density matrixl defined by 

p = .I Wi l4>it))(4).(t)l, (2) 
i 

where Wi is the probability that the system will be in 
the state 14>,;(t». The density matrix satisfies the 
equation 

ili(op/ot) = Hp - pH, (3) 

where H is the Hamiltonian of the system under 
consideration. In equilibrium, for a canonical en­
semble one has 

p = e-PHITr e-fJH• (4) 

In calculating expectation values of physical 
interest one may choose any convenient representation 
in which to work. Wigner2 in 1932 introduced a 
method for evaluating expectation values which is 
particularly suitable for "almost classical" systems 
in that it expresses the expectation values as a power 
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authors (M. R.) presented to the University of Michigan in partial 
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Jersey. 

§ Present address: General Electric Company, TEMPO, Santa 
Barbara, California. 

II On sabbatical leave, academic year 1964-1965 at Middle East 
Technical University. Permanent address: Department of Nuclear 
Engineering, The University of Michigan, Ann Arbor, Michigan. 

1 J. von Neumann, Mathematical FOllndatioll of Qualltum Mechall­
ics (Princeton University Press, Princeton, New 1ersey, 1955). 

I E. Wigner, Phys. Rev. 40, 749 (1932). 

series expansion with respect to Planck's constant. 
For such systems the expansion may be expected to 
converge rapidly. Another important advantage of 
this method is that there are direct classical analogs 
of the quantities and operations used. In particular, 
the analog of classical phase space is introduced into 
quantum statistics. In this way the expectation values 
of physical variables may be expressed in terms of 
a phase-space integration. The purpose of the present 
study is to review various fields of application of this 
method.s 

In Sec. II, we demonstrate that the Wigner method 
can be defined as a means for associating a c-number 
function in phase space with every operator which is 
a function of position and momentum operators. 
This rule, in fact, is the inverse of Weyl's rule, 
which is used to calculate quantum-mechanical 
operators from classical quantities. However, it is 
interesting to observe that there are various equiva~ 
lent ways of stating the association which are, in many 
cases, simpler than Weyl's rule. Various properties 
and applications of this correspondence can be found 
in Sec. III. Section IV is devoted to the application 
to scattering theory. A method of inclusion of ex­
change effects in the previous results is given in Sec. 
V, where the second quantized formalism is also 
discussed. 

Application to the equilibrium case (for Boltzmann 
statistics) is given in Appendixes A and B, where the 
equation of state is derived up to the order Ii'. 

a There are several papers published which deal with the Wigner 
distribution function. Some of the basic references are: H. 1. 
Groenewold, Physica 11.405 (1946); 1. E. Moyal, Proc. Cambridge 
Phil. Soc. AI5, 99 (1949); 1. H. Irving and R. W. Zwanzig, 1. Chcm. 
Phys. 19. 1173 (1951); H. Mori, I. Oppenheim, and 1. Ross, in 
Studies ill Statistical Mechallics, J. de Boer and G. E. Uhlenbeck, 
Eds. (North-Holland Publishing Company, Amsterdam, 1962), 
Vol. 1. 
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n. WIGNER DISTRIBUTION FUNCTION 

We restrict ourselves to Boltzmann statistics in 
this section, so that exchange effects are ignored. Also, 
we assume that the Hamiltonian of our system depends 
only on the position and momentum operators R 
andP.f. 

WignerZ defines a distribution function Iw(r,p) as 
the Fourier transform of the off-diagonal elements of 
the density matrix 

!.(r, p) = (21Tlir3N f dz exp (ip . z/Ii) 

x (r - ~ I pi r +~) (5a) 

= (21T1i)-8N f dk exp ( - ir . k/ Ii) 

x (p - ~ I pip + ~> (5b) 

It is easily verified that Iw has the following properties: 

f dp!",(r, p) = (rl p Ir), (6a) 

f dr!w(r, p) = (pi pip), (6b) 

and, evidently 

f dr dp!w(r, p) = Tr p = 1. (6c) 

Corresponding to a quantum operator A(R, P), 
we define a function Aw(r, p) by an equation analogous 
to (5): 

A.(r, p) = f dz exp (ip' z/Ii)(r - ~ I A I r + ~) 
(7a) 

= f dk exp (-ir' k/Ii)(P - ~ I A I p + ~). 
(7b) 

which we call the Wigner equivalent of A. Thus we 
see that I. is simply (21T1i)-3N times the Wigner equiv­
alent of the density matrix p: 

Equation (9) is the key result of the Wigner method, 
since it expresses the ensemble average of an operator 
A as a phase space integral. 

The rules (5) or (7) for Wigner equivalent operators 
are actually equivalent to Weyl's rule5 for defining 
the classical analog of a quantum operator. This rule 
may be stated most conveniently starting with the 
Fourier transform of the classical function Aw(r,p): 

oc.(O", T) = f dr dp exp [-i(O" . r +T . p)/Ii)Aw(r, p). 

(lOa) 
Then A(R, P) is defined from 

A(R, P) = (2!1i)6N 

X f dO" dT exp [i(O" . R + T • P)/Ii]oc.(O", T). 

(lOb) 

That the Weyl rules (10) relating A and Aware 
identical with the Wigner rules, (7) is shown below. 
[Also, we show that Eqs. (10) "work both ways". 
Given Aw one may determine A, and vice versa.] 
There has apparently been some confusion in the 
literature, in which one frequently finds the statement 
that Eq. (9) holds with/w defined through Eq. (5) and 
AID through (10). 

The equivalence of (7) and (10) may be proved as 
follows. We begin by proving the completeness (and 
orthogonality) of the operators exp [i(O" . R + T • P)]/Ii 
in the space of operators of the form A = A(R, P). 
We first write 

exp [i(O" . R + T • P)/Ii] 

= exp [iO"' R/Ii] exp [iT' P/Ii] exp [iO"' T/21i], (11) 

by making use of the identity eA+B = eAeBel[B.A] 

(true if the commutator [B, A] commutes with both 
A and B). Since exp (iT' p/Ii) Ir) = Ir - T), we have 

(r'l exp [±i(O" . R + T • P)/Ii] Ir) 

= exp [±iO" . (r =t= t)/Ii]()(r' - r ± T), (12) 

which implies that 

Tr exp [-i(O" . R + T • P)/Ii] = (21T1i)3N()(0")()(T). (13) 

!w = (21T1i)-3N Pw . (8) Therefore 

Furthermore, from (5) and (7) 

Tr pA = f dr dpAw(r, p)!w(r, p). (9) 

10 In our notation, r, p represent 3N-dimensional vector c numbers 
for position and momentum variables and R. P represent the corre­
sponding vector operators. A 3N-dimensional scalar product is 
written as R.P or r.p. Also. R;. Pi: r I. Ph etc. denote ordinary 
~onal vectors associated with the ith particle. 

Tr exp [-i(O"' . R + T' • P)/Ii] exp [i(O"' R + T' P)/Ii] 

= Tr exp {-i[(O"' - O")R + (T' - T)P]/Ii} 

X exp [ - ~ i (T' . 0" - 0"' • T)} (14a) 

= (21T1i)3N()(0"' - O")()(T' - T). (14b) 

5 H. Weyl, The Theory of Groups and Quantum Mechanics (Dover 
Publications, New York, 19S0). 
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[Equation (14a) was obtained trivially using the 
identity below Eq. (11).] 

We thus have proved that the operators 

(271l0-SNI2 exp [i(O" R + T • p)fli] 

are orthonormal. To prove completeness we attempt 
to expand an arbitrary operator A(R, P) in terms of 
these functions: 

A(R,P) = f dO'dToc(O',T)exp [i(O" R + T' P)/Ii]. (15) 

If the expansion exists then the coefficient oc(O', T) 
can be calculated by multiplying Eq. (15) by 
exp [-i(O' . R' + T • pi)] and using Eq. (14): 

0(0', T) = (21TIi)-3N 

X Tr {A(R', Pi) exp [-i(O' . R' + T' P')/Ii]}. (16) 

To prove that the expansion (15) exists, i.e., to prove 
completeness, we substitute from (10) into (15) and 
prove that the result is an identity, say by taking 
matrix elements in the position representation. 

(rl Air') = (21T1i)-SN f dO' dT dr" dr'" (r"l Air"') 

x (r"'l exp [-i(O" R' + T' P')/Ii] Ir") 
x (rl exp [i(O" R + T' P)fli] Ir'). (17) 

Making use of Eq. (13) and carrying out the trivial 
integration, Eq. (l7) is seen to reduce to the identity 

(rl Air') = (rl A Ir'), (18) 

which proves completeness (in the weak topological 
sense at least). 

This proof permits us to consider Eqs. (10) to work 
in either direction, i.e., given A(R, P), then Aw(r,p) 
can be found and vice versa. Thus there exists a one­
to-one correspondence between A(R, P) and the 
c-number functions Aw(r, p). 

where Aw and Bw are related to A and B through 
Wigner's rule (7) or equivalently Weyl's rule (10). In 
particular, the Wigner distribution function, /w(r,p) 
is simply (21T1i)-sN Pw, where Pw is the Wigner equiv­
alent of the density matrix. 

m. WIGNER EQUIVALENT OF OPERATORS 

From the results of the previous section, we 
immediately deduce the following properties: 

(a) if A = A(P) (i.e., independent of R), 
then Aw = A(P); 

(b) if A = A(R), then Aw = A(r); 
(c) if A = const, then AW = A; 

(d) Tr A = (21T1i)-3N f dr dpAw(r, p); 

(e) f dpAw(r, p) = (21T1i)3N (rl Air); 

(f) f drAwer, p) = (21T1i)3N (pi Alp); 

(g) (rl Air') = (21T1i)-3N f dp exp rip . (r - r')/Ii] 

x AwO(r + r'), p) 

(20) 

= (21T1i)-6N f dO' exp [iO' . (r + r')/21i] 

x oc(O', r' - r); 

where oc(O', T) is the Fourier transform of Aw(r.p) as 
in Eq. (lOb). 

Wigner Equivalent of Products 

Next we consider the Wigner equivalent of a product 
of operators AB, and derive a formula which expresses 
(AB)w in terms of Aw and Bw' We have 

(AB)w = f dz exp (ip . zjli){r - lzl AB Ir + tz) 
(2la) 

= f dz dr' exp (ip . z/Ii) 

X (r - tzl A Ir')(r'l B Ir + lz), (2lb) 

Finally, it is trivial to prove now that definitions 
(7) and (10) are equivalent. It is only necessary to 
substitute the expansion (lOb) into (7a), use Eq. (12), 

or and carry out the trivial integration, whereupon the 
(AB)w = (21T1i)-12N f dz dr' exp (ip . z/Ii) Fourier inverse of (lOa) is obtained. 

In the next section we consider various properties 
of the correspondence between A(R, P) and Aw(r, p). 
In particular, we show a third rule for defining this 
equivalence (Groenewold's rule) which frequently is 
simpler to apply than either Wigner's or Weyl's rules 
[Eqs. (7) and (10), respectively]. In summarizing the 
results of the present section we have shown that 
given any two operators A(R, P) and B(R, P) that 

Tr AB = (21T1i)-3N f dr dpAw(r, p)Bw(r, p), (19) 

x f dO' dO" exp riO' . (r + r' - tZ)/21i] 

x cx(O', r' - r + lz) 
x exp riO"~ . (r' + r + tz)/21i] 

X P(O", r - r' + !z). (22) 

Here we have used Eq. (20g) for both A and B. Now, 
making the change of variables 

T = r' - r + lz, 7' = r - r' + lz, 
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we readily obtain 

(AB)", = (21T1i)-12N J d(l d(l' d'T d'T' 

x exp [i«(I . r + 'T' p)jli]rx«(I, 'T) 

X exp [i( (I' . 'T - (I . 'T')j2h]{J( (I', 'T') 

X exp [i«(I' . r + 'T' . p)jh]. (23) 

The factor exp [i(O" • T - 0" T')/2Ii] in the latter inte­
grand can be replaced by exp (1iA12i), where A is the 
Poisson bracket operator, i.e., 

L- ~ L- ~ 

A == V 1> • V r - V r • V"' (24) 

so that A",AB.,.. = (B",; A.,..) is the standard classical 
Poisson bracket. (The arrows on the 3N-dimensional 
gradient operators indicate the direction in which they 
operate.) We, therefore, obtain the formulas 

or 
oA",(t)/ot = (2/h)Hw sin (1iA12)AfD(t). (28b) 

Integration gives the formula 

A.,..(t) = exp [(2tjh)HfD sin (hA/2)]AtoCO). (29) 

To lowest order in h this is simply the classical 
equation of motion. 

Quantum Liouville and Bloch EqatioDs 

The so-called quantum Liouville equation, which 
determines the time evolution of the Wigner distribu­
tion function, can be deduced readily by forming the 
Wigner equivalent ofEq. (3) with the aid ofEq. (8). By 
similar manipulations used to obtain Eq. (28b), we 
get 

of.,..(t)/ot = -(2Ih)H.,.. sin (hAI2)/.C<t), (30) 

(AB).,.. = A.,..(r, p) exp (hAj2i)B.,..(r, p) (2Sa) which can be solved formally as 

= B.,..(r, p) exp (-hA/2i)A.,..(r, p) (2Sb) f.,..(t) = exp [-(2t/Ii)H.,.. sin (IiAj2)Jf.,..(0). (31) 

= Aw{r - (hj2i)V", p + (hJ2i)Vr)Bw(r, p). To the lowest order in h, the above equations reduce 
(2Sc) to the classical Liouville equation: 

The above result is due to Groenewold,' which, by of~/ot = -H.,..Af~ => f~ 
successive application, along with (20a)-{20c) permits = exp (-tHwA)f~(O). 
one to calculate the Wigner equivalent of any operator. 
This rule, then is equivalent to the two rules (Wigner's 
and Weyl's) described in the previous section. In 
particular, from Eq. (20d) 
"' 
Tr AB = (21T1i)-3N f drdpA.,..(r, p) exp (IiA/2i)B.,..(r, p) 

= (21Th)-3N f dr dpAw(r, p)B.,..(r, p). (26) 

To obtain the latter, we have performed 6N partial 
integrations on the former, which flip the arrows 
pointing to the left to the right, thus making A -+ O. 
This result thus agrees with Eq. (19). 

We see that A.,.. is expressed as a power series in Ii. 
Similarly fw is so expressed and, in particular, so are 
thermal expectation values. 

Wigner Equivalent of Heisenberg Operators 

(32) 

Equation (30) may be solved in powers of 1i2 starting 
from the classical distribution function. Such a 
procedure has, in fact, been followed by Wigner2 
and by Irving and Zwanzig.3 

For a canonical ensemble in equilibrium, one has 
[cf. Eq. (4)], 

(33) 

where n is the so-called unnormalized density matrix 
and Z{{J) is the partition function. Forming the Wigner 
equivalent, we get 

n - (e-PH) to - so' (34) 

which may be evaluated as a power series expansion 
with respect to an appropriate parameter. However, 
there is another way to handle this evaluation which 
is suitable for almost-classical systems, and which 
makes use of the equation? 

For A{t) = exp (itHjh)A(O) exp (-itHIIi), one has onlo{J = -Hn = -nH. (3S) 

oA(t)/ot = (i/Ii)(HA - AH). (27) The Wigner equivalent of the latter is 

Thus, upon forming the Wigner equivalent, we obtain 

oAw(t)/ot = (illi)[H.,.. exp (IiA/2i)Aw 

- Aw exp (hA/2i)Hw] 

= (i/Ii)[Hw exp (IiA/2i)A.,.. or 

- H.,.. exp (-hA/2i)A.,..1 (28a) 

an.,../o{J = -H.,.. exp (IiA/2i)n.,.. 

= -nw exp (hA/2i)HfII 

= - H w exp ( - hAI2i)n.,.. 

on.,../o{J = -HfII cos (liAj2)n"" 

(36) 

(37a) 

• H. J. Groenewold, Ref. 3; several properties of the Wigner 7 This approach has been used by I. Oppenheim and 1. Ross, 
method have been first given in this work. Phys. Rev. 107,28 (1957). 
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with 
0tiP = 0) = 1. (37b) 

Equation (37a) is known as the Bloch equation, 
which provides a means for calculating Ow (and thus 
/w) in powers of Iii, which calculation may be found 
in Appendix A. In this appendix, this method is 
employed to deduce the li4 correction in the equation 
of state. 

IV. APPUCATION TO SCATTERING THEORY 

The differential scattering cross section (in first 
Born approximation) for a system of interacting 
particles can be written in the forms 

(38) 

where C is a factor depending upon the momenta of 
the incoming and outgoing particles and upon the 
scattering potential for neutron scattering (which for 
neutron scattering may be taken as the Fermi pseudo­
potentiaI9). Also, E = liw and q = 1i'K are the energy 
and momentum changes in the scattering event. It is 
customary to express S(q, E) (called the "scattering 
law") in terms of Fourier transformed functions 
X(q, t) and/or G(r, t) as 

S(q, E) = (21f'1i)-lN J dt exp (-iEt/Ii)X(q, t) (39a) 

= (21f'1i)-lN J dSr dt 

x exp [i(q· r - Et)Ii]G(r, t). (39b) 

Thus X and G are related by 

X(q, t) = J d3r exp (iq • r)G(r, t) (40a) 

or 

G(r, t) = (21f'lirs J d3q exp (-iq • r)x(q, t). (40b) 

Explicitly X and G are related to the density fluctua­
tions of the scattering system: 

G(r, t) = (1. i Jd3r'<5(r + R.(O) - r') 
N i.i=l 

X <5(r' - R;(t»). (41a) 

X( q, t) == (1. I exp [- iq • ~(O)/Ii] 
N i; 

X exp [iq • Ri(t)/liJ). (41b) 

8 L. Van Hove, Phys. Rev. 95.249 (1954). 
• E. Fermi. Ric. Sci. 7, 13 (1938); G. C. Summerfield, Ann. Phys. 

(N.Y.) 16, 72 (1964). 

where R;(t) is the Heisenberg position operator 
corresponding to the jth scattering center (out of the 
total N). 

For almost classical systems, it is desirable to 
relate the cross section to the classical time-dependent 
correlation function 

GO(r, t) = 1. I (15(r + r.(O) - ril»)o, (42) 
N i,J 

where (t5(r + r.(O) - r;(t))o denotes the classical 
thermal average. (In this way, scattering data can 
be used to give a physical picture of the scattering 
systemlO or alternatively, cross sections can be calcu­
lated from a knowledge of the classical mechanics of 
the scattering system.ll) 

Following the approach of Aamodt et al.,12 we 
consider from Eq. (4tb) 

Xii( q, t) = Tr p exp [ - iq • RlO)/li] 

x exp [iq • R;(t)/IiJ (43a) 

= J dp' dr'Alr', p')Bir', p', t), (43b) 

where, from the application of the Wigner rules 
derived in the previous section, we have 

Ai(r,p) = /w(r,p) exp (IiA/2i) exp (-iq. rJli) (44a) 
= exp (-iq. rilli) exp (-!q. Vp;)/w(r,p), 

(44b) 
and 

B;(r,p, t) = exp [(2tlli)Hw sin (IiA/2)] exp (iq. r;IIi), 

-'" 
(45a) 

= exp {(t/m)p· Vr - (2t/li)4>(r) 
"- -'" 

X sin (liI2) V r • V 1J} exp (iq • r ;/Ii). (45b) 

[In the last line we have used a special form for the 
Hamiltonian, namely, Hw = pi/2m + 4>(r).] Further, 
we observe 

1 
X(q, t) = - I Xiiq, t). 

N i.J 
(46) 

Here we consider only the lowest-order contribu­
tions in li,13 so that /w can be taken proportional to 
e-PH", (cr. Appendix A). We then can write 

Ai(r, p) = /w exp (-{3q2/8m) 

X exp ({3q • Pi 12m) exp (-iq • rilli), (47) 

10 B. N. Brockhouse in Proceedings of the Symposium on Inelastic 
Scattering of Neutrons in Solids and Liquids (International Atomic 
Energy Commission, Vienna, 1960). 

11 R. Nossal, Phys. Rev. 135, A1579 (1964). 
12 R. Aamodt, K. M. Case, M. Rosenliaum. and P. F. Zweifel, 

Phys. Rev. 126, 1165 (1962). 
13 Higher-order corrections are studied in a paper by M. 

Rosenbaum and P. F. Zweifel, Phys. Rev. 137, B271 (1965); Also 
see M. Rosenbaum, Doctoral Thesis, University of Michigan (1964). 
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where we have used the Taylor's series property 

exp (-a. Vp)f(P) = f(P - a). (48) 

To the same order 

Bi(r,p, t) = exp (tHwA) exp (iq • rilli) (49a) 

= exp [iq • r;(t)/Ii]. (49b) 

Thus to lowest order 

x(q, t) = ~ ~ f dp' dr'fw exp (-(Jq2j8m) 

X exp «(Jq • p~/2m) exp (-iq • rilli) 

and 
X exp (iq • rit)IIi], (50) 

G(r, t) = ~ (21Tlir3 f d3q exp ( - iq • r) 

X exp (-(Jq2/8m)(exp «(Jq • p.12m) 

x exp (-iq • rilli) exp [iq • rj(t)/Ii]). (51) 

Suppose, in Eq. (51), we replace riCO) + ipi(0)(JliI2m 
by rlii(JIi), which is correct to order li2. Then 

G(r, t) = (21T1i)-SN-1 f d3q exp ( - iq • r) 

X exp (-(Jq2/8m)(exp [iq • rtCt)lli] 

Now let us consider the scattering law as Ii -- 0; 

Seq, E) = (21T1i)-lf dt exp (-iEt/Ii) 

x ! fdP drA,BJ • (55) 
.,:1 

Changing the dummy variable by t = li7', and utilizing 

(44) and (45), we obtain 

Seq, E) = exp (-(Jq2/8m) ~ f dp drfw 

x exp «(Jq • p./2m) exp ( - iq • ril Ii) 

x (21T)-1 f d7' exp (-iE7') 

x exp [iq . rl7'Ii)IIi]. (56) 

Assuming the limit Ii -+ 0 can be taken before the 
integrations, we can replace r kili) -- r:l + TliPJlm to 
get 

Seq, E) = exp (-(Jq~18m) exp ({JE/2) ~ f dp drfw 

where 

x exp [iq • (ri - ri)llil~(E - q • Pilm) (57a) 

= 1. sl(q, E) ! f drnN 
N i,:I 

X exp [iq • (ri - r,)/lil, (57b) 

x exp [- iq • ri(li(JIi)]) (52a) SO(q, E) = N(m(J121Tq2)! exp (-(Jq2/8m) 

= (21T1i)-3N-1 f d3q exp ( - iq • r) 

X exp (-(Jq2/8m)(exp [-iq • riO)] 

x exp [iq • rlt - ti(JIi)]). (52b) 

To obtain Eq. (52b) time-translational invariance has 
been employed. 

Referring now to (39b), we see, after some trivial 
manipulations, that 

Seq, E) = exp ({JE/2) exp (-(Jq2/8m)So(q, E), (53) 

where So(q, E) is related to Go(r, t) through Eq. (39b). 
This is the desired result (to lowest order in Ii) since 
it expresses the cross section in terms of the Fourier 
transform of the classical time-dependent correlation 
function. It is referred to as the "quasi-classical" 
approximation. 

The integration of Eqs. (52) can be carried out 
explicitly, to give 

1 (2m)! G(r,t) =- -
N 1T1i 

x ! (exp {-(2m/(Jli2)[r + riO) - rj(t - li(JIi)J}. 
ii 

(54) 

X exp ((JE/2) exp (-m(Je2/2q2) (58) 

is the scattering law corresponding to the ideal gas, 
and nN = J dpfw. It is noted that the "self-terms", 
i.e., i = j, give the ideal gas result. For the case of 
binary central potential we obtain (with p = Nlv) 

Seq, E) = sl(q, E)[ 1 + p-l f d3rn2(r, 0) 

X exp (iq • r/1i)] 

= SO(q, E)[ 1 + p f d3rg(r) exp (iq • rlli)} (59) 

where n.(rl, ... , r.) is the s-particle reduced distribu­
tion function in configuration space: 

n.(rl' .. " r.) = [N!/(N - S)l]f nN ~r'+l ... d3rN' 

(60) 

and g(r) = p-2n2(r,0) is the usual radial distribution 
function. In deriving (59), we have also used the 
translational invariance property, viz., for any a, 

n.(r, ... , r.) = n.(r + a, ... , r, + a), (61) 

which follows from the homogeneity of the scattering 
system. 
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For an ideal gas nN = V-N; nz = N(N - I)V-Z; 
thus Seq, €) = SO(q, €) if one drops the ~ontribution 
of the "distinct terms" (i ¢ j) which corresponds to 
the incident beam (q = 0, € = 0) in the first Born 
approximation.1u3 

The point here is that if the limit Ii - 0 is taken 
before the t (or 7) or (r, t) integrations are performed, 
one gets a manifestly incorrect result, i.e., basically 
the ideal gas result for any system. It is important to 
go to the limit correctly, i.e., to use the "quasi­
classical" approximation. 

V. SOME CONSIDERATIONS FOR THE 
INCLUSION OF EXCHANGE EFFECTS 

It can be verified that [II is Hermitian, and also that 

U p[1I = elPI[1I = [IIU p, (66a) 

[11[11 = [II, (66b) 

[IIA[II = AS[II = [liAS, (66c) 

where AS = (lIN!) Ip UpA. If A is symmetrical 
(that is, U pA = A, for all P) then AS = A (as is the 
case for all observable operators). We thus drop the 
superscript S. 

In this notation, the matrix elements 

lI(rl A Ir')11 = N! (rl [IIA[II Ir') 

= N! (rl A[II Ir'). 

(67a) 

(67b) 

In previous sections, we have assumed the Therefore, from Eq. (63), we obtain, using (2Sa), 

Boltzmann statistics to hold in the system at hand, All ( ) A ( ) (liA/2·)[II( ) ill r, P = w r, p exp 'w r, p , 
so that the exchange effects due to the symmetry of the 

(68) 

system have been ignored. We now outline a method 
which enables one to modify the previous results to 
include such effects. 

For simplicity, we assume that the particles in the 
system are all identical, so that the state vectors (for 
example, in the coordinate representation) can be 
written as 

Ir)8 = (N!)-t I eIPIIPr), (62) 
P 

where the summation is over all permutations P of 
r, ... , rN, IFI is the parity of P, and () = 1 for bosons 
and e = -1 for fermions. 

The symmetrized (or antisymmetrized) Wigner 
equivalent of an operator A is then written as 

A~(r, p) = I dz exp (ip· z/h) 

X \r-~IAlr+~)/N! 
= I dk exp (-ir. k/Ii) 

X \p - ~ I A I p +~) / Nl. (63) 

Our aim in this section is to express A~ in terms 
of the previously defined quantity Aw. 

Let us associate with every P an operator Up defined 
as 

Up Ir) = IPr). (64) 

It is readily seen that Up is unitary, namely U~ = 
Up - 1 = Upl. Also, let 

[II = (I/N!)!eIPlup. (65) 
p 

where [~(r, p) is the symmetrized Wigner equivalent 
of the identity operator [i.e., Eq. (63) for A = 1], or 
it is the ordinary Wigner equivalent of [II. 

In order to calculate the expectation value of an 
operator A, we consider the definition 

(A) = I Wi (<Pil A I<pi)' (69) 
i 

Because of the symmetry of the system, the state 
vectors in the position representation possess the 
invariance property 

(r I <Pi) = ()IPI (Pr I <Pi) 

for any P. Thus 
= ()IPI (rl U l' I <Pi) 

(A) = (I/N!)2 I I elPl+IP'1 I wiIdr dr'(Pr I <Pi) 
p' p i 

(70a) 

(70b) 

X (<Pi I P'r')(r'l Air), (71a) 

(A) = (liN!) I dr dr,lI(r'l p Ir/(rl Air'), (71 b) 

where we have used the definition (2). With Eq. (67), 
we thus have 

(72) 

since p is symmetrical. Using our previous results, 
we get 

where 

(A) = I dr dpj~(r, p)Aw(r, p), 

j~ = (2'TT1i)-3N pw(r, p) exp (liA/2i)[~(r, p) 

= (2'TTlir3N[~(r, p) cos liA pw(r, p). 
2 

(73) 

(74a) 

(74b) 

In the last step we have used the relation [lIp = p[lI. 

Alternatively we can write 

(A) = I dr dpjw(r, p)A~(r, p). (75) 
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We thus have reduced the calculation of the ex­
change effects to the evaluation of the quantity 

N!]~ = ~ O'P'f dz exp (ip' z/Ii) 

x <5(r - Pr - !z - !pz) (76a) 

= ~ OIPI f dk exp (-ik . r/Ii) 

x <5(p - Pp - !k - !Pk). (76b) 
Let us note that ]~ is an even function with respect 

to both rand p. This can be seen by using the property 
<5(r - Pr') = <5(r' - p-lr) and changing the dummy 
variables z __ -z, P -+ p-l in (76a). This manipulation 
shows that the factor exp (ip . z/Ii) in the integrand 
can be replaced by cos p . z/Ii (therefore I! is real). 
Similar manipulations on (76b) yield the symmetry 
property with respect to r. 

. Secondly, we observe that the term in Eqs. (76) 
corresponding to the identity permutation is 1, which 
corresponds in tum to Boltzmann statistics. [The 
factor N! is to be replaced by (1 !)N = 1 in the latter 
statistics, since all particles are distinct.] The evalua­
tion of I~ as a power series in Ii is not appropriate 
because of the essential singularity at Ii = O. One can 
reduce this evaluation to the calculation of the con­
tributions of cyclic permutations. 

Second Quantized Approach14 

An alternative way to handle the problem of 
inclusion of the exchange effects is to utilize the second 
quantized formalism. The (anti)symmetrized position 
ket vectors can be written as 

]lIlr) = (N!rt,/(rl) ... ,/(rN) 10), (77) 
where 1p{r) and its Hermitian conjugate ",t(r) are the 
annihilation and creation operators which satisfy the 
usual (anti)commutation relations corresponding to 
(fermions) bosons. The matrix elements 

lI(r'l A Ir)1I 

= (01 ",(rN-+l) ... 1p{rN-+l)A",t (rl) ... ",\rN) 10) (78a) 

= Tr A", t(rl) ... '" t(rN)1p{rN) ... 1p{r~), (78b) 
where we have used the fact that the total number of 
particles, N, in the system is constant. Substituting 
in Eq. (73), and utilizing (20g) we obtain 

(A) = f dr dpf~(r, p, t)Aw(r, p), 

where 

(79) 

f!(r, p, t) = (2rrli)-SN(N!rl f dz exp (ip' z/Ii) 

X Tr p(t)",t(rl + !Zl) ... ",t (rN + !ZN) 
X 1p{rN - !zN) ... 1p{rl - !Zl), (80) 

if For a general review, see W. E. Brittin and W. R. Chappell, 
Rev. Mod. Phys. 34, 620 (1962); also R. Balescu, Statistical Mechan­
ics of Charged Particles (Interscience Publishers, Inc., New York, 
1963), Part II. 

which represents the Wigner distribution function in 
the second quantized formalism. 

Equation (80) can also be written in the Heisenberg 
picture 

f~(r, p, t) = (N!)-1(2rrli)-SN f dz exp (ip . z/Ii) 

x Tr p(O)rt(r + !z, t)r(r - !z, t), (81) 
where 

r(r, t) = 1p{rN, t) •.• 1p{rl' t). (82) 

Let us assume, for simplicity, that 

HID = p2/2m + <I>(r), (83a) 

<I>(r) = I #,.ri - r /). (83b) 
i<i 

(We also assume that the interaction potential is real.) 
One then has 

ilio1p{r, t)/ot = -(li2/2m)V:1p{r, t) + $(r)1p{r, t), (84) 

where 

$(r) = f dBr' #,.r - r')",t(r')1p{r'). (85) 

Thus, r(r, t) obeys the equation (with V~ = Ii V:;), 

ilior(r, t)/ot = -(li2/2m)V~r(r, t) + <I>(r)r(r, t) 
N 

+ I $(r l)r(r, t)ON-I, (86) 
;=1 

where we have successively used the (anti)commutator 
relation 

[",(r), ¢er')], = 1p{r)#,.r' - r). (87) 

The last term in the right-hand side ofEq. (86) vanishes 
identically since there is no (N + I)-particle state. 
One readily finds 

ili.E. rt(r + !z, tW(r - !z, t) 
ot 

= [1i2/2mVz ' Vr - 2<1>(r) sinh !Vr ' z] 

xrt(r+~,t)r(r-~,t). (88) 

Equation (88) enables one to calculate the time rate 
of change of f~ to obtain 

(
01 2 liL.->.) -+-p.V - -,l.(r) sin-V 'V 
ot m r Ii 'f' 2 r fl 

x f!(r, p, t) = 0, (89) 

which is nothing but the quantum Liouville equation 
[cf. Eq. (30)]. 

In kinetic theory, one introduces the reduced 
distribution functions by integrating f! with respect 
to all state variables r, p but those belonging to one, 
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two, etc., particles. Let us define with i ~ (f., Pi), 

f '(1 ... S· t) = N! 
" " (N - S)! 

x f dSr.+1 •.. darN daP.+1 ..• dSpNf~, 

where we have used the "generic" normalization. 
By integrating Eq. (S9) one obtains the quantum 
BBGKY hierarchy: 

(! + .!. p' V,. - ~ ! ~fi - f i ) sin !IiV,.· t\) ot ~ Ii'<i~. 

X f~(1, ... , s; t) = ~ .i fdsr a+l d3pa+l ~f. - f,+1) 
Ii i=l 

X sin (lIiV,. . V,,)f!rl(1, ... , s + 1; t). (90) 

The right-hand side of Eq. (90) stems from the 
contribution of the last term in Eq. (S6) which does 
not vanish when s < N. 

Equation (90) [rather the first one (or two) of the 
chain] has been studied for various systems in which 
the radiation field, photon field, spin and relativistic 
effects are included.lli For further details, the reader 
is referred to Ref. 15.' 

ACKNOWLEDGMENTS 

Two of the authors (M. R. and P. F. Z.) gratefUlly 
acknowledge many stimulating discussions with 
Professor R. K. Osborn and Professor F. C. Shure 
during the early stages of this work. In addition, 
P. F. Z. wishes to express his gratitude to the Ford 
Foundation for financial support and to the C;ekmece 
Nuclear Center for its hospitality during the time this 
paper was being written. 

APPENDIX A 

Solution of Blodl Equation 

Although Eqs. (37) can be formally solved to 
obtain 

n .. = exp (-PH .. cos IiA/2), (AI) 

the evaluation of this resUlt is somewhat lengthy. 
Instead, here, for simplicity, we restrict ourselves to 
the case for which 

H .. = p2/2~ + W(r), (A2) 

where W(r) is the interaction potential which is usually 
assumed to be pairwise additive; i.e., 

W(r) =! ~Ifi - fi/)' (A3) 
i<i 

The Bloch equation for this case can be written as 

OX/oP = (1i2/S~)eP~V:e-P~x + tj>eP"I/2m 

X (1 - cos 1IiV,.· V")e-P,,I/2m, (A4) 

where we have set 
(AS) 

The first term in the right-hand side of (4) can be 
written as 

(1i2/S~)[V: - 2PV,.tj> • V,. - PV:tj> + P2(V,.tj»2]X' 

We also have 

exp (Pp2/2~) cos (!Ii)V,. . V" exp (_Pp2/2~) 
= exp (Pp2/2~) Re exp (!iIiV,.. V,,) exp (-Pp"/2~) 

'" = exp (Pp2/2~) Re exp [-P(p + !iIiV,,)/2~] 
L. ->. 

X exp (liIiV,. . V,,) 
'" L = exp (PIi2V:/S~) Re exp (-iPIiV,.· p/2~) 

.... .->. 

X exp (iIiV,,' V,,/2). (A6) 

Hence, one obtains, with X(P = 0) = 1, 

OX/oP = (1i2/S~)[V:X - 2PV"tj> • V"X 

- P(V:tj»X + p2(V,.tj»2X] + tj>X 

- [exp (1i2PV:/S~)tj>][cos (IiP/2~)V" 
L- .->. .... 

. p cos (l1i)V,,' V" + sin (IiP/2~)V" 
L .->. 

. p sin (!Ii)V,.· V,,]X. (A7) 

This equation can be solved by expanding X in 
powers of 1i2. To the lowest order, XO = 1, which 
corresponds to the classical case. To first order, one 
gets 

Xl = (Sm)-1[-(J2V2tj> + IP3(p' V)2tj>], (AS) 

which was first derived by Wigner.2 The second-order 
contribution can also be carried out although the 
calculation is somewhat lengthy. The result is 

X2 = ({J3/64m,,}{-lV'tj> + P[IV2(Vtj»2 

+ (l/3m)(p • V)2V2tj> + IVtj> • V(V2tj» + !(V2tj»2] 

- (J2[-hVtj> . V(Vtj»2 + (2/1Sm)Vtj>. V(p. V)2tj> 

+ 1(V2tj»(Vtj»2 + (l/3m)(V"tj»(p. V)2tj> 

+ (4/ISm)(V(p • Vtj»}2 + -h(p • V)'tj>] 

+ P3[-h(Vtj»' + (I/9m)(Vtj»"(p • V)"tj> 

+ (1/6~2)«(P • V)2tj>)2]}. (A9) 

In order to calcUlate the partition function Z 
we consider the relation 

(AI0) 

16 R. K. Osborn and E. H. Klevans, Ann. Phys. (N.Y.) 15, lOS or 
(1961); E. Ozizmir, Doctoral thesis, University of Michigan (1962); 

f dp drn .. = Z(2'TT1i)8N 

Z = (2'TT1i)-3N(x)o; R. K. Osborn, Phys. Rev. 130, 2142 (1963). 
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one obtains 

(All) 

where Zc is the classical partition function. One has 

Cl = (1/8m)[-{J2(V2rp)c + 1{J3«Vrp)2)c 

+ 1{J2(V2rp)cl 

= -([J2/24m)(V2rp)c. (AI2) 

and 

C2 = ({J3/4m~[L «Vrp)')c _ {J2 «V2rp)(Vrp)2)C 
288 72 

- ~~ (Vrp. V(Vrp)2)C + ~ «V2rp)2)C 

+ .f!.. (V rp • V(V2rp»C 
45 

+ 1:0 (V2(V cP)2)C - 6~ (V'rp)cl, 

= .L..[f!. «V2,J.i)· + 1... (V2(V Ji) 
144m2 8 'f' c 40 'f' C 

then the contribution to order 1i2 remains finite as 
N -+ 00. We now show that this is also the case for 
the term of order Ii'. 

To do this, we consider 

(Z/ZC)l/N = (1 + 1i2Cl + Ii'C2 + ... )l/N 

= 1 + 1i2(1/ N)Cl + 1i'[(I/ N)C2 

+ (1/2N)(I/N - l)C~] + 0(1i8
). (AI6) 

We have already seen that 

(1/N)C1 = -((J2/24mp) f cf1rnf(r, 0)V2rp(r), (AI7) 

which is bounded as N -+ 00, where r = Irl (not to 
be confused with 3N-dimensional vector r). 

We can write from (A13) (by making use of a 
vector identity and an integration by parts) 

(1/N)Cz = ({J3/1152m2N) 

X [{J«V2rp)2)C + 2: (rp(V . V)2rp)C - (V'rp)c 1 
(AI8) 

_ 2. (V'rp)cl. 
40 (A13) It is readily seen that 

The evaluation of Ca has been carried out by 
Goldberger and Adamsl8 using field theoretic methods. 
Our result, however, differs by a factor of i from 
theirs in the middle term of the last equation. 

The unsatisfactory part of the above analysis is 
that these coefficients blow up the limit N -+ 00. This 
can be seen by writing 

(V2rp)C = N p-l f d3rnf(r, 0)V2rp(r), (AI4) 

where nf(rl , ra) = nf(rl - r2 , 0) is the classical re­
duced distribution function in configuration space 
defined as in Eq. (60), and p = N/V (= finite). This 
difficulty was first observed by Mayer and BandY 

In order to remedy this difficulty, one can use the 
well-known property that the free energy per particle 
F/N is a finite quantity in this limit, as was shown by 
Kahn and Uhlenbeckl8 in general terms. In other 
words, Zl/N remains finite as N -+ 00 [cf. (A15)]. This 
can be observed to be true for the case of the harmonic 
oscillator; cf. Eq. (BIO). Greenl9 demonstrated that if 
one expands F/ N, instead of Z, to which it is related 
through the relation 

(AI5) 

18 M. L. Goldberger and E. N. Adams, II, J. Chern. Phys. 20, 
240 (19S2). 

17 J. E. Mayer and W. Band, J. Chern. Phys. 15, 141 (1947). 
18 B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938). 
18 H. S. Green, J. Chern. Phys. 19, 9SS (19S1). 

(AI9) 

and 

If L ~ +; d3r d3r'nf(r, r', O)[rp(r)(Vr • Vr ,)2tfo(r')]. (A20) 

Therefore these quantities are both finite. Finally, we 
calculate 

1.. «V2rp)2)C = ~ fd3rnf(r, 0)(V2rp(r»2 
N p 

+ ; f d3r d3r'nf(r, r', 0)V2rp(r)V2rp(r') 

+ ; f d3r d3r' d3r"nf'(r, r' + r", rIff, 0)V2rp(r)V2rp(r'). 

(A21) 

The last term in this equation contains a part 
which is proportional to N. This part, in fact, com­
pensates the term -(1/2N)q which also blows up 
as N -+ 00. 

To see this, we introduce the cluster development20 

so T. R. Hill, Statistical Mechanics (McGraw-Hill Book Company, 
Inc., New York, 19S6). 
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as (by dropping the superscript C) 

n1 = P = G1, 
n2(r1, r2) = G2(r1, r2) + p2, 

nS(r1, r2, rs) = GS(r1' r2, r3) + p[G2(r1 , r2) 

+ cyclic terms] + p3, (A22) 

etc., where G. is the s-particle correlation function 
which vanishes as Irl -+ 00. The last term in the right­
hand side of(A21) becomes, after some manipulations, 

= ; I dBr d3r' d3r"G,(r, r' + r", r", 0)\12#,.r)\124>(r') 

+ ; I d3r d3r' d3r"G2(r - r' - r", 0) 

X G2(r",0)\12#,.r)\124>(r') 

+ :lI dBrnf(r, 0)V'2#,.r)r· (A23) 

The last term is the contribution of the part of the 
double-pair correlations which divides nir, r' + r", 
r' + r", r", 0) as 

G2(r,0)G2(r' + r", r") = G2(r, 0)G2(r', 0). 

This term blows up linearly with N. When (A23) 
is substituted in (A16) one finds that this term 
cancels the term qj2N; therefore the coefficient of 
;,' remains finite. 

The free energy, F, can then be written as 

F = Fc - (NjP) In (ZjZd1
/
N 

= F c - (;,2jP)C1 - (/i'jP) 

X [(C 2 - tC~) - (l/N)C~] + 0(;'6), (A24) 

a result which may be used to calculate the quantum 
corrections to the equation of state. 

To do this, we consider the definition of pressure20 

p = -oFjoV 

;,2 oC~ /i' a =pc_--_--
P oV P aV 

x [(C2 - tc~) - ~ C~J + 0(;'6), (A25) 

where pC is the classical pressure which is to be 
calculated from the classical equation of state. 

To evaluate the volume differentiations, one can 
consider the spatial integrations to be carried out in a 
box of length Vi. By changing the dummy variable 
r = xV!, so that the volume of integration becomes 
unity, the differentiation can be performed on the 
integrand.20 In general, one has, for an integrable 

function h(r1' ... , r., V), 

= (s - 1) I dBrl '" dBr.h(r1'···, r., V) 

+ IdSr ... dSr V ~ her •.. r V) 
1 • oV 1> '.' 

+ ! f dBrl •.. dBr •• ~ Vr, • (r •. h(r1' ••• , r., V». 
(A26) 

The last term vanishes if h vanishes sufficiently rapidly 
for large Ir11. 

Here for simplicity, we consider dilute systems; 
that is we ignore correlations involving more than 
two particles. We thus obtain 

where 

Al = (pp2j24m) f d3rg(r)\12#,.r) 

A2 = -(P2p2j1152m2){2P f dSrg(r)(V'24»2 

+ 4Pp I dSr d3r'g(lr - r'I)V'2#,.r)\12#,.r') 

+ 6Pp2f d3r dSr' d3r"g(lr - r' - r"1) 

x g(r")V'2#,.r)V'2ep(r') + -tp f d3rg(r)[c/>(V . V)2ep] 

+ iPp f d3r d3r'g(lr - r'I)[#,.r)(Vr • \\.)2c/>(r')] 

- -tP I dSrg(r)V"ep - 4p[f dSrg(r)\12ep Jl (A27) 

Here g(r) is the radial distribution function defined as 
p2g(r) = n2(r,0). (We have also dropped the contri­
bution of the volume differentiation of correlations, 
which may be small for dilute systems.) 

Our result, to the order /i2, coincides with those 
given by Uhlenbeck and Beth21 and also by Green19 

if one further assumes that 

g(r) = exp [-peper}}, 

a relation which is valid in the low-density limit. III 
In the latter case, it is possible to simplify further the 
quantities in (A27). 

21 G. E. Uhlenbeck and E. Beth, Physica 3, 729 (1936); 4, 915 
(1937). For an excellent review of this subject, see J. de Boer, Rept. 
Progr. Phys. 12, 305 (1949). 
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APPENDIX B 

Harmonic OsciUator 

For the harmonic oscillator, which is characterized 
by the Hamiltonian 

H", = p2/2m + Imah2, (BI) 

the Bloch equation (37) reduces to 

oD.",/ofJ = -H",D.", + (li2/8m) 

X [V: + m2w2V!]D.",. (B2) 

We seek a solution of (B2) of the form 

D.", = exp [-A(fJ)H", + B(fJ)], (B3) 

which yields the following equation: 

-(dA/dfJ)H", + (dB/dfJ) 

= -H", - (!li2)w2A + (!li2)W2Hw. (B4) 

Since the only (r,p) dependence in (B4) occurs in 
H"" its coefficient must vanish separately. Thus, we 

obtain 
A = (2/liw) tanh liwfJ/2, 

B = -In cosh liwfJ/2, 

(B5) 

(B6) 

where the initial condition D.(fJ = 0) = I has been 
used. 

The partition function can now be calculated by 
using Eq. (AlO), which yields 

Z = (1/liwA)3N[1/cosh (liwfJ/2)], (B7) 

and, therefore 

j", = (1/27T1i)3N(ID.",) 
= (wA/27T)3Ne-A(/lIH... (BS) 

Let us note that the free energy per particle is 
bounded as N -+ 00, since 

(F/N) = -(l/fJ) In Z(l/Nl 

= (l/fJ) In (liwA)[cosh OliwfJ»)l/N (B9) 

as was pointed out in Appendix A. One obtains 

lim (F/N) = (l/fJ) In [2 tanh (lliwfJ)]· (B10) 
N ... oo 


