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The NMR (nuclear magnetic resonance) paramagnetic relaxation enhancement (NMR-
PRE) that is produced by paramagnetic solutes in solution has been investigated theoretically
with respect to the influence of zero field splitting (zfs) interactions in the electron spin
Hamiltonian, in particular with respect to the effects of anisotropy in the zfs tensor. These
effects are a physical consequence of the influence of the zfs on the motion of the
electron spin vector S. When the zfs energy is large compared to the Zeeman energy (the zfs
limit), the precessional motion of S is quantized in the molecule-fixed coordinate system
that diagonalizes the zfs tensor. The uniaxial portion of the zfs tensor influences the NMR-
PRE primarily through its influence on the quantization axes of 5; the characteristic
behavior of the NMR-PRE under the influence of a uniaxial zfs has been described in detail
previously. Anisotropy in the zfs tensor induces oscillatory motion in S. This motion has a
profound influence on the NMR-PRE, the major part of which normally arises from low fre-
quency components of the local magnetic field that are associated with S2, rather than from
the rapidly precessing local fields that are associated with the transverse components S. . For
this reason, the NMR-PRE is a sensitive function of zfs anisotropy, which acts to lower the
NMR-PRE below the value that occurs in the uniaxial situation. The magnitude of this effect
depends on the ratio (EID) of the anisotropic and uniaxial zfs parameters, on the reduced
dipolar correlation time, and on the location of the nuclear spin in the molecular coordinate
frame. A second physical effect of zfs anisotropy on the NMR-PRE arises from a resonance
between the electron spin precessional motion in the transverse plane with the precessional
motion that is perpendicular to the transverse plane (the latter due to zfs anisotropy). Reso-
nance of these motions, which occurs spin energy levels crossings, gives rise to low frequency
transverse components of S which result in a resonant increase in the NMR-PRE within a
restricted range of EID ratios.

1. INTRODUCTION

Dissolved paramagnetic metal ions in solution often
produce profound enhancements of the spin relaxation
rates of nuclei on coordinating ligands and on solvent mol-
ecules. This effect, which is termed the NMR paramagnetic
relaxation enhancement or NMR-PRE, has been widely
used to study the chemical and magnetic environment of
paramagnetic metal ions in solutions. The classical theory
of the NMR-PRE is due to Solomon,' Bloembergen,2 and
Morgan.2 '3 This theory (SBM theory), in its original form
or modified slightly to describe g-tensor anisotropy or to
differentiate electron spin T, and T2 relaxation times,4 is
almost universally employed in the analysis of nmr relax-
ation data in paramagnetic solutions.

However, SBM theory is a limiting theory in that it
assumes that the electron spin Hamiltonian Hs=h A's of
the paramagnetic metal ion is the Zeeman Hamiltonian,
As = 2Z, i.e., the theory neglects zero field splitting in-
teractions. The neglect of the zfs Hamiltonian is in many
cases physically inappropriate for ions with S> 1, particu-
larly for ions other than Mn(II) and Gd(III), for which
the zfs is atypically small. In the presence of a large zfs
interaction, the electron spin precessional motion is quan-
tized along molecule-fixed coordinate axes rather than
along the external magnetic field axis, as occurs in the

Zeeman limit. This change in quantization axis has impor-
tant consequences for the behavior of the NMR-PRE. In
the zfs limit, the local dipolar magnetic field of the electron
spin S is fixed in the molecular coordinate system. In con-
sequence, the magnitude of the NMR-PRE depends
strongly on the position of the nuclear spin in the molec-
ular coordinate frame, axial positions being more strongly
relaxing than equatorial positions. Two other important
physical effects are also associated with the spin requanti-
zation phenomenon. These are (1) a change in definition of
the reorientational correlation time from r~) in the zfs
limit to r(2) in the Zeeman limit, where (1) is the reorien-
tational correlation time for an Ith rank molecule-fixed
spherical tensor, and (2) effects of level crossings and near
level crossings of the energy levels. Each of these physical
phenomena gives rise to characteristic qualitative features
in the magnetic field dispersion profile of the PRE (i.e., in
plots of the magnetic field dependence of the PRE at con-
stant temperature). The features that are characteristic of
zfs-limit ions have been discussed systematically for S= 1
(Ref. 5) and for S> 1.6

In previous work I have derived theoretical expressions
which parallel the form of the SBM results but describe
intramolecular 7 and intermolecular8 relaxation in the zfs
limit. Subsequently, a generalized theory that is appropri-
ate to the intermediate regime was developed.9 A principal
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focus of this work, in addition to the development of real-
istic quantitative theory, has been the development of
clear, qualitative physical descriptions of the phenomena
that underlie the NMR-PRE for spin systems that are out-
side the Zeeman limit. Alternate, rather different, theoret-
ical approaches that are based primarily on solutions of the
stochastic Liouville equation have also been described. 10-26

These earlier approaches have for the most part provided a
framework for the numerical evaluation of spin relaxation
rates, but have not provided much insight concerning the
physical situation in the zfs limit.

All previous theoretical work in this area has assumed
uniaxial symmetry in the zfs Hamiltonian. It seemed that
the effects of zfs anisotropy could be treated as a quantita-
tive correction to the uniaxial case, mathematically more
complex but involving no qualitatively new phenomena. In
the present study, we show that this is not the case; the
presence of anisotropy in the zfs exerts an influence on the
motion of the spin vector 3 that has profound conse-
quences for the NMR-PRE. These are associated with the
fact that anisotropy in the zfs (unlike the uniaxial portion
of the zfs) induces oscillatory behavior in the z component
of 3. The NMR-PRE is very sensitive to time dependence
in S7, much more so than to alterations in the precessional
time dependence of the transverse components, S.. Thus
the effects of zfs anisotropy require special consideration.

In the following sections, I first describe the physical
effects of zfs anisotropy on the motion of S and on the
NMR-PRE (Sec. II). Section III develops formal zfs-limit
theory of the NMR-PRE which is based on a spin Hamil-
tonian that accounts for zfs anisotropy. The fourth section
describes the results of theoretical calculations which ex-
plore systematically and quantitatively the implications of
the theory. And finally, the fifth section discusses limita-
tions of the theory, especially the neglect of effects of the
external magnetic field, as well as problems involved with
the experimental investigation of these phenomena.

II. PHYSICAL EFFECTS OF ZFS ANISOTROPY

To describe the effects of zfs anisotropy on the NMR-
PRE, we first consider the motion of the spin vector 3
under the influence of the static spin Hamiltonian

--Ys=eVz+e-Yzfs C (la)

where A7dz is the Zeeman Hamiltonian,

adz= isthe )stai, ( lb)

and zfg, is the static zfs Hamiltonian,

(ic

In Eq. (lb), g is the electron spin g value, j3 is the Bohr
magneton, and Bo is the static magnetic field strength. In
Eq. ( lc), COD and WE are the zero field splitting parameters
D and E (cnm') expressed in rad s- . The zfs Hamil-
tonian in Eq. (lc) includes terms that are quadratic in the
electron spin operators; for S;2, higher order terms are in

general present. The spin variables in Eqs. (1) are first and
second rank spherical tensor operators constructed from
the component operators of S,2 7

(2a)

(2b)
s - i=2'

s' =~6-' 1 2[3s-.s'1)

(2c)

S(2- 2-'S S±~=sMsMfl (2d)

In the Zeeman limit (tz ) A'zfs), the motion of 3 is
familiar: the spin Hamiltonian A's equals the Zeeman
Hamiltonian Fez, which is diagonal in the laboratory co-
ordinate frame (xy,z). Since [A'Szj = 0, Sz is time in-
variant, (Sz) = mi, and the precessional motion of S occurs
entirely in the transverse plane.

In the zfs limit (`"zfs > A'z), the precessional motion
of S is quantized along the molecule-fixed coordinate axes
(xf,2) which diagonalize the zfs tensor. [In the following
and in Eq. (1c), variables that are defined with respect to
the molecule-fixed coordinate frame are denoted by a su-
perscripting karat (i.e., R), and variables defined in the
laboratory frame are written without a karat.] For simplic-
ity, we restrict consideration to S= 1, for which the matrix
representation of 'zfs, written in the molecule-fixed co-
ordinate frame, can be written

0 0)

0 0 1 ( 0 0

+COE o 01 + 0 0 o). (3)
0 0 0 1 0 0

When the zfs tensor is uniaxial (E= 0), [;'zfsSj = 0, and
Sz is a constant of the motion. As in the Zeeman limit, the
precessional motion of S occurs entirely in the transverse
plane, although in the zfs limit this is the transverse plane
of the molecular coordinate frame rather than the labora-
tory frame. S§ is time invariant with (Ski = mS.

In the presence of zfs anisotropy, Jnzfs is not diagonal,
and Sz, like SS, undergoes precessional motion in the
molecular frame. The spin variables S§(2 in the anisotropic
term of *`zfs connect states with Ams= -42. Thus for
S= 1, the anisotropy has no effect on the ms=0 state, but
mixes the ms= i I states. The effect of this on the motion
of S. can be illustrated by plotting the time evolution of the
density matrix, p(t), under the influence of the static
Hamiltonian Ags. This has been done for S= I by inte-
grating numerically the equation of motion of p(t),

d ( t)
dt -i Zfq(),

(4)

using selected values of WD and WE. The initial state was
taken to be Pl~l(O)=l, PO0 (0)=O, and P-i-i(O)=O.
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FIG. 1. Time evolution of the diagonal elements P l and P - of the
density matrix of an S= 1 spin system under the influence of an aniso-
tropic zero field splitting Hamiltonian. The time evolution of P was cal-
culated numerically from the equation of motion of the density matrix
assuming initial conditions P1,I(0)=l, Poo(0) =P -- (0)=0. The as-
sumed zfs parameters were D= I cm- I and E/D=0. 1, and the step size
of the calculation was 0.5 ps.

Thus the spin system is assumed to have been prepared in
the ms= + 1 state at t=O. Under the influence of zfs an-
isotropy, the diagonal elements Pf,, and P _,-I oscillate
sinusoidally in time with angular frequency 2 oE, while the
pO,O element remains constant. The time dependence of PI,,
and P-I,-1 are illustrated in Figs. I and 2, which show
results for D=1 cm-, with E/D=O.l (Fig. 1) and EID
= 0.05 (Fig. 2). (The fact that the pij exceed + 1 and fall
below zero at long time in Figs. I and 2 is an artifact of the
finite step size of the calculation.) The corresponding time
correlation function, Gz(t) = (Sz(O) Sz(t) >, is likewise an
oscillating function of time with angular frequency 2 OE
(Fig. 3).

The influence of these precessional phenomena on the
NMR-PRE can be summarized as follows. The largest part
of the PRE normally results from the low frequency mo-
tions of S, since these generally give rise to local fields with
relatively large Fourier components at the nuclear preces-
sion frequency, wj. In the Zeeman limit, as well as in the
zfs limit with uniaxial symmetry, Sz (or Sz) and the asso-

1.0

0.8 p1, P41,-I

0.6

0.4

0.2

0.0
100 200 soo 400 500

t (ps)

FIG. 2. Time evolution of the diagonal elements p and p_ _ of the
density matrix of an S= 1 spin system under the influence of an aniso-
tropic zero field splitting Hamiltonian. The conditions are the same as for
Fig. I except E/D=0.05.

FIG. 3. The time correlation function G,(t) =Tr{S,(O) S§(t)} corre-
sponding to the density matrix p(t) of Fig. 2.

ciated components of the local dipolar magnetic field that
arise from S. (or S§) are static with respect to spin preces-
sion. (Although S. does not precess, it still undergoes sto-
chastic time dependence due to electron spin relaxation
and molecular reorientation.) The motion of S. appears in
the theory of the NMR-PRE in a spectral density function
which is, in the zfs limit,

(5a)

S(S 1) exp -t/r,)expf 1 iot)dt,

(5b)

S(S+ 1)
= 3 j(Oa)) (5c)

with j (w) =-/ ( 1 + o2 r2) . In Eq. (5b), the effects of the
stochastic time dependence of S, are described as an expo-
nential decay with time constant i-.

The transverse components of S oscillate due to spin
precession. Their contributions to the NMR-PRE are pro-
portional to spectral density terms j(o) P 4,CO+), where the
cu, are transition frequencies of the electronic spin system.
In the Zeeman limit, these are the terms j(cos-4) in
SBM theory. When (o,,i-> 1 (a common situation in the
zfs limit), these terms are much smaller than j(w.). Thus
the "low frequency" terms described by Eqs. (5) usually
comprise the largest part of Rlp.

The principal physical effect of zfs anisotropy is to
produce sinusoidal time dependence in the time correlation
function (Sz(O)) *S(t)) in Eq. (5a). This results in the
replacement of j(co) in Eq. (5c) by a higher frequency
term which, for S=l, is j(coi, 4t2

(OE). j(C)O-.
2
(OE) is in

general smaller than j (w)), significantly so when 2
coE7-C

> 1. Anisotropy in the zfs tensor thus acts to reduce the
NMR-PRE below the value that would occur for E/D=O.
Its effects are important when S. undergoes significant pre-
cessional motion on the time scale of i-, i.e., when 2

o)ET-

>1.

In addition to its effect on (Sz(O) . Sz(t) >, the zfs an-
isotropy also affects the motion of the transverse compo-
nents of S in a manner which significantly influences the
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NMR-PRE. This second phenomenon is reflected in the
behavior of the matrix elements (S. (0) SF(t)) and re-
sults from a resonance between the precessional motion
due to D and that due to E. Resonance between these
precessions produces low frequency components in the
transverse magnetization which can provide a significant
contribution to the NMR-PRE. This phenomenon has the
functional form of a resonance and acts to enhance the
NMR-PRE in a relatively narrow range of E/D ratios. Its
properties are described at greater length below.

111. THEORETICAL

In this section, anisotropic zfs-limit expressions de-
scribing the paramagnetic relaxation increment due to
electron-nuclear magnetic dipole coupling are derived.
The precessional motion of the electron spin is governed by
the Hamiltonian defined in Eq. (Ic) above. The electron-
nuclear magnetic dipole-dipole coupling Hamiltonian can
be written in spherical tensor form as

,*d-d = K 3-1/2(-I)l-qI(1)F(1) (6)
q~~~~~ q

where

K 30 1/2yjf(/O)P (7)(T7r )I

where r is the interspin I-S distance, yj is the proton mag-
netogyric ratio, and Ito is the magnetic permeability of free
space. 4 ) are the nuclear spin variables in spherical tensor
form [see Eqs. (2a) and (2b)]. The lattice variables are
contained in the spherical tensor Ft1 ), which is a function
of the spatial variables ( and the electron spin vari-
ables 5(). F(') can be constructed27 by contracting the first
rank spherical tensor of the spin variables with the second
rank spherical tensor of the spatial variables, Ce2 )(q,0),

F" 1) = {S") S C(2)}1 (1). (8)

The components of C(2 ) are

C: 2 (9,3,) = ( )12 Y2, In(90¢O), (9)

where the Y2m(9,a) are the usual spherical harmonics.
Explicit forms of the components of F 1

l) are

P=l

where

cl l =c.. 1 ._ I = 10/2, ( la)

/3 \ 1/2

co.] =co.I = -co= -c1,o=( ) , (1lb)

Cl,_ I =C_ 1,l = (3 ) , (1 lc)

12 1/2

Co0o=-- } (I I d)

In the zfs limit, the precessional motion of the electron
spin is quantized with respect to molecular coordinate
axes, and it is convenient in this situation to express the
lattice functions, i.e, the components of F(l), in the molec-
ular coordinate frame which diagonalizes the zfs tensor.
This transformation is effected by the Wigner rotation ma-
trix elements,

F") --= X l P7 (t 1~ 3),q q q q,ql al ) (12)

where af3y are the Euler angles which rotate the laboratory
frame to the molecular frame.

The density matrix theory of nuclear spin relaxation
gives, for the dipolar paramagnetic relaxation increment,

Rl1,dip= -6 3-{ f dt((F(" (t) .F(I)(0)eiW( t

+ (FI(l) (t) Fl) (0))-"| , (13)
sp av

where the curly brackets represent an average over molec-
ular orientations in the laboratory frame (i.e., over the
Euler angles afly), and the square brackets indicate a trace
over the electron spin operators. After transforming the
components of F'l) to the molecular coordinate frame, the
products in the integrand of Eq. (13) become

(F(') (t) F(') (0) )e Fwit"

= I (aFfl(ty) t

X q ,q o~t

(14)

where the transformed tensor components of FP l) are given
by Eq. (10)

Po1) = I cm (pS ')C I(E) ).
=-1 PP -

( 15)

In the transformed expression Eq. (15), the spin operators
'M1) and the spatial functions e(2) (0$) are expressed rel-

ative to molecular axes. The functions C&2) (0, t) de-
scribe the (fixed) orientation of the I-S vector in the mo-
lecular coordinate frame in terms of its polar angles 0,$D.
When the precessional motion of the electron spin is in the
zfs limit, S's is given by Eq. (Ic), and the precessional
motion is independent of molecular orientation. Thus in
the zfs limit the components of the lattice tensor Fr( l) con-
tain no explicit or implicit dependence on the Euler angles
afly. The spatial average over molecular orientations can
then be evaluated analytically by spatially averaging the
products of the rotation matrix elements. For a molecule
undergoing classical isotropic reorientational diffusion, the
spatial average is

Iq (1)q, - I (a 'fl',y'; 0 9 (1) I (COYM Isp avql,+

= ( _ 1 ) q+ I I g (1) I 1 2
q'_ exp [ - tlr(l) ] 5q', - q,

= ( _ I)q+'3-' exp[ -tl ( )]bql,-q,TRI
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where r( is the reorientational correlation time of a first
rank molecule-fixed tensor.

Equations (14), (15), and (16) give

' (FI)(t)F(I)(0) ( 1 )q+ P[ R] EwinIt
q

=3-1 exp, t/ l)Ie' it E (Srp (t)S, (O))
PIP,

(17)X _- _11 + ~~

(23a)

Using Eq. (18) to evaluate the trace gives

(=) = X dt exp ( -iolt) exp - tl()] exp (- trs)

X (2S+l) -' E (tL I "') Iv)
SP,

In the sum over pp', certain terms are identically zero due
to the symmetry of 'vz,. This point is discussed in the
Appendix, where it is shown that nonzero terms for an
isotropic zfs tensor are those with p+p'=O, and for an
anisotropic zfs tensor, those with p+p' even.

As has been shown previously,9 the time dependence of
the trace (S") (t)S,2)(0) can be expressed in a form that
is suitable for numerical calculations when it is evaluated
in the eigenbasis of A"zf5 In this basis, assuming the high
temperature limit for the S spin,

Tr{Sp'l)(t)S'p,2)(O) =(25+ 1 )-I e'(m-w,)te-t/s
81,V

(18)

where coaLcov are eigenvalues and I It), I vy eigenvectors of
'Xzfs& rs is the electron spin relaxation time, assumed to be

isotropic with respect to molecular axes. When S> 1, the
use of a single parameter rs is an approximation since
electron spin relaxation is then a multiexponential pro-
cess28. For an isotropic zfs tensor (E=0), A's is diagonal,
and the matrix elements can be written in a simple analyt-
ical form.7 In the more general situation where Es&0, the
matrix elements of SP1) must be evaluated numerically by
diagonalizing 'R'zfs,

After inserting Eq. (17) into Eq. (13), expanding the
sum, and evaluating the spatial average according to Eqs.
(16), Rlpdip can be written

RlPdiP=4() 2 (j )2 {T1+T 2+(T 3+T*)} (19)

with

Tj=[3 (20a)

=3-1[l+P2(CoS0))]mOO ^=) (20b)

-1 2) C02) 2- 1,2) (:2) C2) d2)T2 = [6- 0 -2 +1 1+ +2 -21

X [tL) +rh(-l)l] (21a)

=3-1[I-2-1 P 2 (cos 0)] [rh(zj+)h( j) 1 ],
(21b)

T3= [d+1 +)-4 -6- /2co2)d+22]m(4) (22)

The functions are defined

(23b)

/A'V

)< j (&au, - 0) 4 )) (23c)

where r 1= lrs + [1r )]
Equation (19) represents a generalization of the zfs-

limit result of Ref. 7, which was derived for a uniaxial zfs
tensor. When E=0 in Eq. (lc), T3 =0, V"S is diagonal,
and the functions th(i,) can be written in analytical form.

PIP,
The expression for Rlp,dip then reduces to

R 1p~p = f)20 )21S 1) i ± +P2 (cos®)]j(o,)

+2(S+1)-'[l-2-'P2 (cos 0)]

(24)

which is identical to the previous zfs-limit result. When the
zfs tensor is anisotropic, Rlp can be evaluated numerically
from Eqs. (19)-(23).

IV. THEORETICAL RESULTS

Calculations illustrating the effect of zfs anisotropy on
the NMR-PRE have been carried out for an electron spin
S= 1, and the results are displayed in Figs. (4)-(12). Fig-
ure 4 shows the variation of R lp,dip as a function of the El D
ratio for a nuclear spin I located in an axial (0=0) and
equatorial (E) = ir/2) positions in the molecular coordinate
frame. The azimuthal angle 1D was taken to be zero. To
suppress the effects of scaling factors such as the interspin
distance ris, the results are plotted as the ratio of R1 P(El
D), calculated at the specified EID ratio, over Rjp(0),
calculated for E/D=O. The results depend on the dimen-
sionless quantity oaDTrC the reduced dipolar correlation
time, which was taken to be 11.7.

With increasing EID, RIP declines in magnitude, this
decline being interrupted by a resonant local maximum in
R near EID= 1. Rlp falls off somewhat more rapidly for
0 =0 than for 0 =ir/2. As described above, the physical
origin of this decreasing phase is precessional motion in
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FIG. 4. The NMR paramagnetic relaxation enhancement for a spin S= 1,
evolving under the anisotropic zfs Hamiltonian of Eq. (Ic), as a function
of E/D (E and D are zfs parameters). Results have been normalized to
the calculated RI, at E/D=O. The reduced dipolar correlation time 6

DrC
= 11.7. 0 and (1 are polar angles which specify the nuclear position in the
molecular coordinate frame that diagonalizes the zfs tensor. 0=0 or 1r/2,

and =0.

Set) that is induced by the zfs anisotropy. This motion
becomes significant when 2coETr; 1; the point 2 coETr= I is
denoted by the arrow in Fig. 6.

The resonant increase in RIp, which interrupts the de-
creasing phase at EID= 1, coincides with a level crossing
of the spin system. This is shown in Fig. 5, where the
energy levels for an S= 1 spin system, subject to the qua-
dratic zfs Hamiltonian of Eq. (3), are plotted vs EID. The
effect of the level crossings appears in the theory of Sec. III
in the functions ,ht~1 , which play an analogous role in
the generalized theory to the spectral density functions
i(ws 4-c) in Zeeman-limit theory and the functions j (Io
+X 1) in the uniaxial zfs-limit theory. The functions
thfl) like the functions j(w,4w1 ), contain energy de-
nominators which become small in the vicinity of Ams
= - 1 level crossings. An alternative, somewhat more
mechanistic, view of this phenomenon is as a resonance of
the precessional motions about z (D-type precession) and
about the axis of E-type precession in the perpendicular
plane. At resonance, the two precessional motions interfere

*1I

0

E (D)

E/D

1.5 2

FIG. 5. Energy levels of a spin S= I under the influence of an anisotropic
quadratic 2ero field splitting Hamiltonian. The Zeeman energy is zero.

Rlp(ED) i \ /

R, p) 1 2p(E-T

.001

.0001
.0 01 .0 1 .1 I 10

E/D

FIG. 6. Contributions to the dipolar NMR-PRE for S= I arising from
the motion of G,(t) =Tr{S,(O) S§(t)}(T1) and from the motion of
G,(t)=Tr{SJ,(O) S,(t)}(T 2 ). The calculated relaxation enhance-
ments assume 0=0, 4D=O, oDTC=ll.

7 , and are normalized to RIP at
E/D=O, where D is the uniaxial and E the anisotropic zfs parameters.

in a way which produces a time-invariant component of
the projection Sl, of S in the transverse plane. Thus the
resonance phenomenon is a property specifically of the
terms T2 and T3 of Eq. ( 19), which describes the motion of
the transverse components of S. This is illustrated in Fig.
6, which shows calculations of T, and T2 plotted as a
function of E/D for 0=0, q>=O with o)DrS=ll. 7 . The
term T3 vanishes at (P=0 and thus is not shown. The
plotted values of Tl and T2 are normalized to T1 (0),
which is the value at E/D=O. The calculations of Fig. 6
confirm that the contribution to RIp of (Sz(0) . Set) ) falls
off monotonically with EID and that the resonance origi-
nates entirely in the behavior of (S, (0) S,(t)).

Figure 7 shows the overall dependence of the NMR-
PRE on the reduced correlation time coD-rc. As the reduced
correlation time lengthens, the normalized enhancements
become increasingly sensitive to the effects of zfs anisot-
ropy. In line with the above discussion, this is due physi-
cally to the fact that longer (oDrc values correspond to a
lengthened time scale over which coherent precessional
motion of S,( t) can develop, thus increasing its importance
in the integrand of Eq. (5a). The width of the resonant
contribution likewise depends strongly on the reduced cor-
relation time. The theory developed above does not give
G. (t) in analytical form, but it seems clear from physical
considerations discussed above that for S= 1, where there
is only a single oscillatory component of Sz(t), that the
spectral density function of the resonant contribution has
the form i((OD- 2

(OEd41). In this case, the resonance is
centered at COD= 2 coE, and its width at half-height varies as

1r" . The calculations confirm that the resonance narrows
as expected with increasing o)D-rc.

Figure 8 further illustrates the functional dependence
of the longitudinal and transverse components to Rip. For
this purpose the notation RIP(OA) has been employed,
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FIG. 7. Dependence of the dipolar NMR-PRE, normalized to E/D=O,
on the reduced dipolar correlation time &0

)Dr, The calculations assume
S= I, 0=0, 4=0.

which specifies R1p as a function of nuclear position (0,Q )
in the molecular frame. RIp is plotted in reduced form,
Rjp(O(A)/R 1p(O,O), as a function of 0 with 4D=0. It is
seen that for EID far from the resonance condition, i.e.,
E/D 1 or E/D). 1, RIP is largest at axial positions and
smallest at equatorial positions. This behavior is character-
istic of a uniaxial zfs and has been discussed in some detail
previously.4 '5 Physically, this behavior reflects the fact that,
for the nonresonant contribution to RIp (i.e., the contribu-
tion due to Se), the mean-squared local dipolar magnetic
field due to Sz is larger at axial positions than at equatorial
positions. For the uniaxial zfs limit (the curve E/D=O in
Fig. 8), this dependence is described mathematically by the

2

I .0

Rip(Et3O)

R, p(OO )

0 3

0.0. ,
0~~~~~0.o 0 10 2. 0 3. 0

FIG. 8. Dependence of the dipolar R,, on the polar angle 0 of the nuclear
spin in the molecular coordinate frame. The curves assume S= 1, oJDTr
= 11.7, 4>=O, and the specified EID values. Relaxation enhancements are
normalized to the calculated values at 0=0, q)=Q.

A

x

FIG. 9. Polar plots of the nonresonant (TI) and resonant (T2 ) contri-
butions to R,, These plots were constructed from numerical calculations
using Eqs. (19)-(22) and (23c) with S=l, E/D=1, 0= ir/4.

function [1 +P2 (cos 0))] which appears in Eqs. (20b) and
(24).

The resonant contribution to R Ip [that due to the trans-
verse spin components, (S, (0) 4S. (t) >] has the opposite
0 dependence, largest at equatorial positions and smallest
at axial. In Fig. 8, this contribution is most pronounced for
the curve with EID= 1.0. Physically, the functional depen-
dence of the resonant contribution is a result of the local
geometry of a mean-squared dipolar field that has its larg-
est components at positions in the transverse plane, rather
than along the molecular 2 axis. The resonant enhancement
shown in Fig. 8 reflects this altered orientation.

The anisotropy in the NMR-PRE is illustrated by the
polar plots of Fig. 9, which show the 0 variation of the
nonresonant (T1 ) and resonant (T2 ) contributions to RIp
for D = ir/4 [at this 4 value, the terms (T3 + T* ) vanish].
Clearly the mean-squared magnetic fields that are associ-
ated with the nonresonant term are directed principally
along the molecular 2 axis, while the mean-squared fields
that are associated with the resonant term are largest in the
transverse plane. Mathematically, the T1 and T2 ellipsoids
are given by

T, cc [ I +P 2 (cos ))],

T 2 cc [I-2-P 2 (cos 0)].

The contributions of both T, and T2 to Rip are isotropic
with respect to the molecular i.9 plane.

The terms (T 3 +TT*) arise from G,(t) and thus con-
tribute to the resonant part of R p. This sum gives rise to
Rlp anisotropy in the if plane. Figure 10 shows the overall
dependence of RIp on 4D at various values of EID, with
0 =,i/2. Far from resonance (E/D<I or E/D 1), the
reduced Rlp(ir/2,$) is independent of (. Physically, this
describes the fact that the nonresonant contribution (T 1)
to Rp, which is associated with G,(t), is isotropic in the 29
plane. Near resonance, the terms that arise from G. (t),
namely, T2 and (T3 + T*), become important, and the lat-
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FIG. 10. Dependence of the dipolar R,, on the azimuthal angle (P of the
nuclear spin in the molecular coordinate frame. The curves assume S= 1,
WoDTr= 11.7, 0= 7r/2, and the specified EID values. Relaxation enhance-
ments are normalized to the calculated values at 0 =ir/2, 4= 0.

ter gives rise to the 4D anisotropy of Rip. Figure 11 shows
polar plots of the resonant part of R lp (that due to T2 +T 3

+ Ti') in the .xP plane. The orientation of the (b anisotropy
depends on the sign of EID. When EID> 0, the largest
mean-squared fields associated with (T3 +T T) lie along
the molecular y axis (O=ir/2,$ =ir/2 ); when E/D>O,
they lie along the molecular x axis. The 4) anisotropy due
to (T3+Tt') transforms as =F (Xi2_f 2) the sign of the
function depending on the EID ratio. The appropriate
functional dependence of the sum is illustrated in Fig. 12.

Y~~~~~~

/ ~~E/D> 0

FIG. I1. Polar plots of the variation of the resonant part of R,, (that due
to T2 +T,+Tt) in the molecular xy plane. The plots are based on nu-
merical calculations using Eq. (19) with S= 1, E/D= 1, and the T, term
ignored. The two T2 ellipsoids correspond to positive and negative values
of the El D ratio.

I - k. \/'. . k, AI ~~~~~~X

FIG. 12. Polar plot of the variation of the anisotropic part of R,, (that
due to T 3 +TT) in the molecular xy plane. The signs correspond to pos-
itive (negative) values of EID.

V. DISCUSSION

In summary, the presence of anisotropy in the zfs ten-
sor profoundly affects the NMR-PRE in the zfs limit. This
influence results physically from the effects of the off-
diagonal terms of Vzfs on the motion of S_(t), which, in
the presence of zfs anisotropy, undergoes precessional mo-
tion about an axis perpendicular to i. This motion can lead
to a profound decrease in the low frequency components of
the time correlation function G,(t). These components are
normally responsible for the largest part of Rlp, and thus
the presence of zfs anisotropy acts to lessen the magnitude
of the NMR-PRE. A second related phenomenon occurs
when the precessional motion of S,(t) comes into reso-
nance with the precessional motion of the transverse com-
ponents of S. This resonance can produce a static (or low
frequency) component of S in the transverse plane, which
can provide a highly efficient relaxation pathway within a
relatively narrow range of EID ratios.

The calculations presented above were carried out for
S= 1. Further studies are needed to determine whether
parallel phenomena occur for other spin values. For S> 1,
the effect of terms in Vs which join states of Ams= 42
will create precessional oscillations in S, thereby shorten-
ing G.(t) and decreasing R1p in a manner that is similar to
that described above for S= 1. However, the precessional
motions will not simply be sinusoidal, but rather more
complicated functions of time. Resonances in the trans-
verse components of the magnetization are likewise ex-
pected to occur for S > 1. However, the detailed functional
dependence of the resonances on EID will certainly differ
from that for S= 1 in a manner that depends on the details
of the level crossings of the spin system. The R lp behavior
that is characteristic of different spin values can readily be
calculated from the theory of Sec. III, which is valid for
all S.

Importance of zfs anisotropy on the practical analysis of
NMR-PRE data. The effects of zfs anisotropy have rather
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profound implications for the analysis of NMR-PRE data
in the zfs limit. When the zfs is isotropic ( DAO,E=O), the
magnitude of the NMR-PRE is nearly independent of the
magnitude of the zfs splitting. This is true because the zfs
splitting parameter D, which determines the transition fre-
quencies of the S spin system, affects only the high fre-
quency terms of RIP [those proportional to j(osa/o 1 )],
not the low frequency term [that proportional to j(a))].
However, it is the low frequency term that is normally
responsible for the largest part of the NMR-PRE. The high
frequency terms are small when coDrC> 1, which is very
frequently the situation in the zfs limit. Also, I have shown
previously that when (0 Dir < 1, the NMR-PRE is well de-
scribed by Zeeman limit theory, even in situations where

e~zfs>A'Z. Thus the magnitude and properties of the
NMR-PRE in the uniaxial zfs limit are largely independent
of the specific numerical value of D.

The presence of a uniaxial zfs has a profound effect on
the NMR-PRE in the zfs limit due to the effect of A'zfs in
determining the quantization axes of the spin precessional
motion (molecule-fixed vs laboratory). However, in the zfs
limit, the magnitude of the uniaxial part of Azf, has little
influence on the R P. In contrast, the anisotropic part of
A"'& induces precessional motion in S§ which can, as de-
scribed above, dramatically shorten the time correlation
function G2(t), thereby lowering the magnitude of the
PRE. This effect is important when 2 oETC> 1 (for S= 1),
and its magnitude is quite sensitive to the specific value
of E.

It should be emphasized that the theory developed
here assumes that the spin system is in the zfs limit and
neglects entirely effects of the external magnetic field on
the motion of S. These assumptions are appropriate for the
present purpose, which is to understand the physical phe-
nomena that are associated with zfs anisotropy and its in-
fluence on the NMR-PRE. However, an external magnetic
field that has components perpendicular to the principal
axis of the zfs tensor may well have important effects on
the spin energy levels in the vicinity of the level crossings.
This is true in the zfs limit as well as in the intermediate
and Zeeman regimes. Thus it seems likely that the quanti-
tative behavior of the resonant component of R p may be
significantly altered by a static magnetic field even when
VZ < 4 ZfS However, the inclusion of Az in the theory of

Sec. III adds substantially to the mathematical complexity
of the analysis and has not yet been attempted.

Experimental investigations that are sufficiently de-
tailed to examine systematically the phenomena described
in Sec. IV are not currently available in the literature. Such
studies are less straightforward to carry out than for the
Zeeman limit, where the spin energy levels can be varied
continuously as a function of external magnetic field
strength. In the zfs limit, the level spacings are determined
primarily by the zfs parameters D and E, which depend on
the chemical environment of the metal ion and cannot be
continuously varied. It is possible that a useful variation in
the EID ratio could be achieved through a careful choice
of chemical system, for example, in a series of asymmetri-
cally substituted metalloporphyrins. In such a study, com-

panion static magnetic susceptibility measurements of D
and E would be needed. For one Mn( III)-porphyrin com-
plex, that of Mn(III) with tetraphenylsulfanyl porphy-
rin,2 9 the magnetic field dispersion profiles of the NMR-
PRE exhibit unique qualitative features that are highly
interesting though poorly understood. The zfs is known to
be rather large for Mn(III) porphyrins,30 '3 1 and the zfs
interaction undoubtedly exerts a major influence on the
behavior of the NMR-PRE. This and other porphyrin
complexes may in the future provide useful model systems
for studying the phenomena described here, but at present
the data base is insufficient for this purpose.

Other experimental approaches can also be suggested.
For example, the 0 and (D anisotropies of R p could be
probed through the study of chemically distinct nuclear
sites within a given complex ion of known molecular struc-
ture. To be useful in the present context, this approach
requires an accurate knowledge of molecular structure as
well as companion measurements of the zfs parameters D
and E. Thus the construction of a data base that is useful
for systematic examination of the phenomena described in
Sec. IV will require considerable care in experimental de-
sign and in the selection of appropriate chemical systems.

APPENDIX

We wish to show that the trace

TrJS(') (t)Sp( ) (0)}=Tr{exp(i,;st)S( 1 )
P p'P

Xexp( -iA't)SP1 I (Al)

with As given by Eq. (lc) vanishes unless p+p' is even.
Writing the exponential factors as series,

- {i[ (2/3) "/2 DS02) +±E(S(2+S(22) ] t}
exp(i,~St) = 2, +2 -

n=0 n.
(A2)

and expanding each product in Eq. (Al) gives an infinite
sum of terms. Each term in the sum has the form

(A3)

where the individual spin operators are written explicitly
and pjpj, = 4 2,0, and pp' = i 1,0. The Sq) are spherical
tensor operators and transform under rotations as the
spherical harmonics Yq,,r(,a) of the corresponding rank
and order. The spatial averages of the terms T are re-
quired, and these are most readily evaluated by writing the
spherical harmonics in equivalent form as special cases of
the Wigner rotation matrix elements,

Yq,m(fla) = (i 1) O'M(a,4,,y).

Thus each pairwise product 5 r ) 5 r(q) transforms as the
product
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