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The singularity structure of the universal singular functions in local field theory is simply seen by the 
stationary-phase method applied to the Lorentz group manifold. 

I. INTRODUCTION 

The universal singular functions in local field theory 
were defined about twenty years ago. t.2 One assumes 
that it is important to know the set of vacuum expecta­
tion values of products of local field operators, in the 
sense that knowing all the moments of a field essentially 
characterizes the field itself. 3 In the Fourier analysis 
of these Wightman functions, a covariant decomposition 
of the momentum-space-support permits a group theo­
retic extraction of the "angular" part from the volume 
integral while leaving behind the "radial" (or scalar 
product) part where the dynamics enters. 

The extraction of the universal singular functions is 
done as follows. 2 Consider the (n + I)-fold product as a 
function of n 4-vectors, 

F(n) (t k ) -= <0 [At (Xt) ••• An+t (xn+t) [0), 'k =Xk+t - Xk , 

!? = 1, ... ,n, (1) 

= const . J Il dPk exp(- i"6 Pk ·l:k) C(") (Pl' ... ,Pn) 

(2) 

== const· J Il d(APk) exp[ - i"6 (APk) 0 'k] 

X c(n)(APt, ... , APn) 

=const· J dV(w) c(n)(w) A (i'vI). 

(3) 

(4) 

In going from (2) to (3), we emphasize the invariance 
under P - Ap; A is an element of the homogeneous proper 
orthochronous Lorentz group. The universal singular 
function A(M) is simply the properly written covariant 
expression of the "angular" integral of the Fourier ex­
ponential factors, namely 

A (M) = J d/-L (A) exp[- itr (AM)], (5) 

where d/-L(A) denotes the Haar measure on the Lorentz 
group, and}V[ is a matrix whose elements are formed 
by the mixed products of p and t, 

n 

/\;1'"" ="6 pt 'kv . 
k:l 

(6) 

The formalism can be set up for Lorentz spaces of 
arbitrary (m + 1) space-time dimensions where M and 
A are (m + 1) x (m + 1) matrices. For the cases n <S m, 
there is a certain economy in studying F(n) in a (n + 1)­
dimensional space-time, the nontrivial cases are 
therefore those for which the number of independent 
vectors equals the rank of the matrices, i. e., n = m + 1. 

Analytic structure and explicit evaluation of A(M) 
would be items of obvious interest. Let us first sum­
marize what is known on these. 

(a) Explicit forms of A(M) are known only for some 
special cases, namely n == 1, 2 for m = 3 t,2 and n <S 3 
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for m = 1. 2 There have been attempts to evaluate the 
integrals for higher nand m, but the results are by 
no means complete. 4 

(b) The analytic structure of A{!vI) of course can be 
read off in cases where the singularities of the inte­
grand can be suitably displayed. The Lorentz group 
manifold technique (4) is an alternate (and hopefully 
more transparent) approach to the analyticity of the 
vacuum expectation values. The other approach is the 
so-called generalized singular functions A~+l' 5_9 Of 
course, the A(M) function and the A;:"t(z;a) function are 
closely related, but the spirit and the techniques in­
volved are sufficiently different to warrant a separate 
analysis of A(M). The main result on the A~+l(z;a) func­
tions is that their singularity domains are given by the 
following trace manifold5- 9 

n 

"6 (±~) = real, 
k=1 

(7) 

where Tk'S are the eigenvalues of the product matrix 
Za, Z and a are the Gram matrices in the x space and 
P space respectively, 

(8) 

The present work is prompted by the desire of finding 
a simpler way to see the sources of singularities of 
A(M), namely the manifold 

Im{tr[± (K:l]vI)1/2]} = O. (9) 

,i(:'1 is the transpose with the built in metric, 

(M)'"v =Mv'"· 

In matrix notation, we have 

M=GMTG, 

(lOa) 

(lOb) 

where MT denotes the ordinary matrix transpose and 
G is the matrix of g,," (goo = 1, gji = - 1, and zero other­
wise). We note in passing that the result (9) stated 
above for A(}\;I) is consistent with the result (7) on A~+l 
by virtue of the following identity, 

tr(MM)=tr(Za). (11) 

The method of stationary phase is used here to es­
tablish the following relation, 

tr(AM).tat1onary = tr[± (MM)11 2]. (12) 
phalo 

In this way, the singularity source of Eq. (9) is viewed 
as that coming from the ceasing of the exponential 
damping subject to the stationary phase prescription. 
The present analysis shows that result (9) can be es­
tablished directly from (5) in a reasonably transparent 
manner 0 A simple way of visualizing result (12) is that 
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the right-hand side of (12) is actually a minimum as a 
consequence of the extremum principle. This minimum 
can perhaps be seen by invoking the Schwarz 
inequality. 10 

The motivation for the stationary phase method is 
briefly discussed in Sec. II. For the sake of readability, 
the parametrization of the Lorentz transformation A is 
stated in Sec. III. The two-dimensional case is reviewed 
in Seco IV where the result of the stationary phase 
method is compared with that obtained by the explicit 
evaluation. In Sec. V, higher rank cases are discussed 
with the aid of the diagonalization procedure on the 
matrix M. 

II. MOTIVATION FOR THE STATIONARY PHASE 
METHOD 

The method of stationary phasell is used here as a 
device of handling oscillatory exponential termso Tech­
nically, the applicability of the method requires a limit­
ing procedure such as a large parameter which enhances 
the oscillation. This may be understood by an appeal 
to the classical path integral by recovering a pz-1 factor 
in the exponential and taking the limit Pz - O. A similar 
approach to the Feynman integral was discussed by 
Nakanishi. 12 Application to the A~+l functions was studied 
by Faldt. 9 

,III. LORENTZ GROUP MANIFOLD: 
PARAMETRIZATION OF A AND dp(A) 

For a given space-time dimension m + 1, the parame­
trization of the Lorentz transformation A and the in­
variant volume element dll (A) can be worked out by 
standard procedure. One convenient scheme of param­
etrizing a general Lorentz transformation A is to de­
compose it into product form of a pure boost sandwiched 
between appropriate space rotations. 13 As is well known, 
this is a judicious generalization of the Euler angle de­
composition for the rotation in 3-space. Explicitly, we 
have 

(a) m = 1 (I-space, I-time) 

A = (COShX sinhX):; A 
sinhX coshX 01' 

d(2) J.L (A) == dx, - 00 < X < 00; 

(b) m =2 (2-space, I-time) 

A =R12 (e) A01 (X) R 12 (¢), 

(

1 0 
R12 = 0 cose 

o - sine 
si~e) 
cose 

(13a) 

(13b) 

(14a) 

(14b) 

A.(X) ~ (:~~~ ~~r:, n, (14,) 

d(3)1l(A) = sinhxdxded¢, 0<s8, ¢<S21T, _oo<X<oo; 

(14d) 

(c) m =3 (3-space, I-time) 

A = R 23 (e) R 13 (1/J) R23 (¢) A01 (X) R 13 (CI) R 23 ({3), (15a) 
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where Rij (e) denotes a rotation in the (Xi, xi) plane, 
e. g., 

R 23 (e) = (:00 ~O c}se Si~e)' (15b) 
- sine cose 

A01 (X) denotes a boost [like (14c)] except here it is 4x4, 
and 

O<X<oo, O<SCI,I/J<S1T, 0<se,{3,cp<s21T. 

(d) For general (m + l)-space-time, we may write 

(16a) 

where R1 denotes a rotation in m-space, R2 would be 
a rotation in m-space also except for two reasons. One 
reason is that this would yield ~(111 - 1)(111 - 2) excessive 
parameters. The other reason is that the A01 matrix 
has a (m - 1) x (m - 1) identity submatrix in it which 
permits a tunnelling of a rotation in (m - I)-space. 
These two situations can be reconciled if R2 is the 
quotient of Rm/Rm_1' which yields (111 - 1) parameterso 
[CL Eqo (15a).] The volume element may be written as 

d(m+1> Il (A) = sinhm-1X dX dll (Rm) dll (R m/Rm_1). (16b) 

In the next section, we study the simplest case m = 1, 
n=2o 

IV. A TWO-DIMENSIONAL EXAMPLE REVISITED: 
EXPLICIT EVALUATION VERSUS STATIONARY 
PHASE PRESCRIPTION 

For the sake of illustration, consider the following 
example m = 1, n = 2, namely, the case of a three-point 
function in two-dimensional space-timeo 

A. Explicit evaluation 

Write 

M= (~: ~:) , ",= (~ :), 
with A given by (13a), we have 

tr(AM) = (trM) coshX + tr(1v1u1) sinhX 

where 

= [(tr2VZ"j2 - (tr(2vlu1))2]1/2 cosh(X + Xo) 

= [trC~IM) + 2 detM]1/2 cosh(X + Xo) 

= tr[± 0\12\11)1/2] cosh(X + Xo), 

(17) 

(18) 

(19) 

(20) 

The Lorentz transpose M was defined in (10). In the 
last step leading to (19), use has been made of the trace 
identity for a rank two matrix, namely 

trA 2 - (trA)2 + 2 detA = 0, 

with A = OI1M) 1 12. 

In this case, evaluation of A(1VI) readily gives 

AP> (M) = 1: dx {expi(tr[± (MM)1/2])} cosh(x + Xo) 

(21) 

=i1TH~ll(tr[± (MM) 1 1 2». (22) 
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From (22) it is seen that the source of singularities 
is at those points where there is no damping for the 
Hankel function, and that is where the argument for the 
Hankel function becomes real and positive, which lies 
on the manifold (9). 

B. Stationary phase prescription 

We indicate here how the stationary phase method can 
be made to give the desired result. The zeros of 
(a/ax) tr(AAJ) may be found from (18) or (19). The 
stationary phase prescription gives 

x=- xo 
and 

tr(AJvI) isp =tr[± UWM)1/2], 

verifying (12) for this simple example. 

(23) 

(24) 

It is obvious that as (n, m) goes up, the control of the 
integration scheme becomes increasingly difficult. On 
the other hand, the stationary phase prescription which 
is easier to handle, hopefully will give the desired 
result on the singularity structure. 

We note in passing that on account of the extreme 
simplicity of the above example, there is no need to in­
voke the diagonalization of the 11'[ matrix in (18). How­
ever, the diagonalization technique will become highly 
desirable in the treatment of higher rank cases. 

IV. HIGHER RANK CASES 
A. Two lemmas on diagonalization 

To facilitate algebraic manipulations, it will be con­
venient to utilize two lemmas on matrix diagonaliza­
tion. The first is due to Hall, 14 and the second one is 
an obviously parallel statemenL 

LelJl mn 1 (HaZZ14 ): A 2 x 2 matrix }vI, i'vI ~" = 'j}k=l PkJl.Y/k"' 
with positive timelike Pk' Y/k can be diagonalized by two 
boosts 

,11' = A(X1) MA(X2), (25) 

where A is of the form (13a). 

Proof: We simply exhibit the angles that will render 
AI' diagonal. They are 

tanh2X1 = - tr (:l1ia2;vI)/tr (iiia3M) , 

tanh2X2 = tr(Mia21W)/tr (Ala3}W), 

where 

(26a) 

(26b) 

(26c) 

Remark: The timelike condition on Pk and Y/k guaran­
tees that such real A(X1) and A(X2) of the form (13a) 
exist. The usefulness of this lemma lies in the invari­
ance of the volume element and the integrand in (5) under 
(25)0 In applying this lemma to the configuration space 
difference vectors lying in the tube domain,15 it suffices 
to take ~k = - iY/k with Y/k positive timelike and to continue 
analytically from there. 

Lemma 2: A 2x2 matrix N can be diagonalized by two 
rotations [N is understood to consist of spatial indices 
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only] 

N' =R(e1)NR(e2), 

where R(e) is of the form 

(
cose - Sine) 
sine cose • 

(27) 

Proof: The diagonalization is achieved with the angles 
e1 and e2 given by 

tan2e1 =- tr(NTa1N)/tr(NTa3N), (28a) 

(28b) 

Remark: Actually, the spatial part N of the matrix 
M being a symmetric submatrix can be diagonalized 
by orthogonal similarity transformations (spatial rota­
tions). Then Lemma 1 can be repeatedly applied in the 
(Ok) planes to remove the nondiagonal elements in the 
first row and the first column. It should be realized 
that prior spatial diagonalization is essential because 
of the noncommutativity of boosts AOi and AOj in the 
different directions. 

B. Successive rotations and boosts 

As stated in Sec. III, a general Lorentz transforma­
tion in the (m + l)-dimensional space-time may be 
parametrized as a product of a pure boost [say in the 
(01) plane] sandwiched between two sets of spatial 
rotations. The latter may be decomposed into suitable 
products of plane rotations. We may utilize the rota­
tional freedom to effect first the block diagonalization 
of }'vi in the spatial indices in accordance with the re­
mark following Lemma 2. Thus 

tr (AiH) = tr (R 1 A01 R 2M) = tr (A 01 R21vIR1) 

= tr(A 01 R2 XIR1) = tr(R1 A01 R2 M) 
=tr(A,VI), 

where 

J.[ = R2 ,l,lR1 
is diagonal in the spatial indices 

~ ~ ~ 

A=R1 A 01 R2• 

(29) 

What remains to be done is to use Hall's lemma re­
peatedly to render 1M diagoanl in the time components 
also. 

We conclude that without loss of generality the M 

matrix in the integrand of (5) can be suitably 
diagonalized. 

C. Stationariness of the trace manifold 

Suitable parametrization of the Lorentz transforma­
tion and the proper diagonalization of the matrix "vI are 
thus two technical devices which considerably simplify 
the evaluation of the trace quantity. We have (the matrix 
i'vI below is understood to be diagonal) 

tr(AM) = tr(A01 Rl'vIS), R, S are rotations 

= (MOo + R\ lVlkJ SJ 1) coshX + tr(lBi 5), 
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where the double bar quantities denote the correspond­
ing (m - 2) x (m - 2) submatrices with indices running 
from 2 to m. The sinhX term is absent on account of the 
accomplished diagonalization of M. The demand of the 
stationary phase in each of the angle variable (Lorentz 
as well as Euclidean) then results in the following. 
First the stationariness in the boost angle X which im­
plies X = 0 gives 

tr(AM) Istat. boost =JI,,f)O +tr(R'M), (30) 

where the single bar quantities denote the correspond­
ing (m - 1 ) x (m - 1) submatrices with the indices run­
ning from 1 to m, and R' =SR. For the remaining 
spatial indices, it is obvious that the orthogonal mani­
fold for the rotational matrices would simply reduce the 
trace quantity in (30) to assume the value tr[± (MTM)1/2]. 
Hence 

tr(AM) Isp =tr[±(MM)1/2] 

which is the result stated in (12). 
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