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The nonrelativistic Coulomb Green’s function G *(r,,r,,k ) is evaluated by explicit summation
over discrete and continuum eigenstates in parabolic coordinates. This completes the derivation
of Meixner, who was able to obtain only the r, = 0 and r,— oo limiting forms of the Green’s
function. Further progress is made possible by an integral representation for a product of two
Whittaker functions given by Buchholz. We obtain the closed form for the Coulomb Green’s
function previously derived by Hostler, via an analogous summation in spherical polar
coordinates. The Rutherford scattering limit of the Green’s function is also demonstrated,
starting with an integral representation in parabolic coordinates.

PACS numbers: 03.65.Db, 02.30.Hq, 02.30.Gp

1. INTRODUCTION

The nonrelativistic Coulomb Green’s function
G (ry,ry,k)[G (1,2,k) forshort] is the solution under specified
boundary conditions of the equation

(k2 + Vi 42Z/r)G(r,rpk) =6(r, — ). (1.1

Atomic units: 1 = m = e = 1, are employed for conve-
nience. Any Green’s function can, in principle, be construct-
ed from its spectral representation

%

G(1,2,k)= zw, (1.2)
& k°—e¢,

the summation running over the complete set of discrete and
continuum eigenstates. Meixner' in 1933 attempted to
evaluate the Coulomb Green’s function by explicit summa-
tion over eigenfunctions in parabolic coordinates. He was
able, however, to obtain closed forms only in the special
casesr, = 0 and r,— o . Hostler? first worked out the gener-
al closed-form expression for G (1,2,k ) by summing over
Coulomb eigenfunctions in spherical polar coordinates. A
key element in Hostler’s derivation was an integral represen-
tation for a product of two Whittaker functions given by
Buchholz.*

We shall demonstrate in this paper that Hostler’s result
can also be derived by working in parabolic coordinates. We
will thus explicitly complete the work of Meixner. In addi-
tion, we shall obtain in straightforward fashion the Ruther-
ford scattering limit of the Green’s function and also a possi-
ble starting point for a compact treatment of the Stark effect.

2. COULOMB EIGENFUNCTIONS IN PARABOLIC
COORDINATES

Parabolic coordinates ( £,77,¢ ) can be defined in terms
of spherical polar coordinates (r,8,¢ ) and Cartesian coordi-
nates (x,y,z) by the relations

E=r(14+cosf)=r+z,

n=nrl—cosf)=r—z,

¢ = ¢ = tan”'(p/x). @2.1)
Conversely

x = (£n)"/? cosp, y=(&n)'"" sing,
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z=)E—m) r=HE&+) 22

The volume element is given by
dr=YE+n)dEdndp (0<£,7< ®,0<4<27),(2.3)
and the Laplacian operator by

vt (Lely 9,0, Lo

E+n\oE” 3 am In) én s>
24)

The Coulomb Schrodinger equation
(€+V*42Z/Np=0, e=2E=k? 2.5

is separable in parabolic coordinates as well as spherical po-
lar coordinates. The factorization

l/’( §y7l’¢) =f1( é—)fz(,’])eimd” m= 0’ =+ 19 + 2r"'r (26)

leads to the ordinary differential equations*

A (D) + (24 LE- M) por=o

dt dé 4 4¢
QN
d ( daf K om? _
dy (" dn) + (22 t 3 417)13(’7) 0
where
Z,+2Z,=2 2.8)

Either Z, or Z, labels the one-parameter family of degener-
ate eigenstates for each value of € = k 2.
The subtitutions

Fx) = x"*M (— ikx),

X = 5’779 = — lkx’ Vl.ZEZI.Z/k9 (29)
bring (2.7) into the form of Whittaker’s differential equation
. _ 2
M)+ (—i+ L l—;-"—)M(z)zo. (2.10)
4 z 4z

The solutions to (2.10) regular at x = 0 are the Whittaker
functions M /7, ( F ikx).” For m>0

M3 (F ikx)
= (m!)-‘( F ikx)m D72 o F ikx/2
X Fi((m +1)/2 + iv; m + 15+ ikx), (2.11)

where (F, is a confluent hypergeometric function. For m <0,
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the corresponding Whittaker functions are given through
the identity
(1 —m)/2 —iv) M ;™ — ikx)
=TI ((1 +m)/2 — vy M7? (— ikx). (2.12)

The functions (2.11) with alternative choice of signs are re-
lated by

M™% (ikx) = ™™+ V2 M ™2 — ikx), 2.13)
which shows incidentally that e™™ + VM 7/*( — jkx)is a
real function.

The asymptotic form for M as x— oo is given by®:

(kx) - ive — ikx/2
L ((n +1)/2 —iv)
(kx)iveikx/l
T'((m+ 172+ )

M7 — ihx)yme = ™72 [

+e—i7r(m+1)/2

].(2.14)

For positive energy, the wavenumber X is real; to avoid di-
vergences in the wavefunctions (2.9) we must require that

(2.15)

Positive-energy eigenstates can be specified by the two
continuous quantum numbers

Imv| <4

vi=Z,/k and v,=Z,/k. (2.16)
Thus, Eq. (2.8) implies
k=Z/(v)+v,). .17

It is sufficient to assume k>0 and to choose real values for v,
and v,. Then both v, and v, can run over the range

( — o, + o) but, by virtue of (2.17), their sum must be
nonnegative:

Vi +v,20. (2.18)

For compactness, we shall continue to write & in the argu-
ments of Whittaker functions, understanding & to be a func-
tion of v, and v, via (2.17).

The foregoing considerations lead to the following posi-
tive-energy Coulomb eigenfunctions in parabolic
coordinates:

o EB) = &7+ D22y 327 Vgt vr2
X T ((m +1)/2 — iv)| [T ((m + 1)/2 — i) | €y 2
XM 2 — k€)Y M — ikp)e™. (2.19)

v,
The phase factor e * 2 is retained for later convenience.
These continuum eigenfunctions are orthonormalized ac-
cording to

[ [ttt b e (bt + my dt an o

=6(v, —v{) (v, — v3)8,,1n . (2.20)
Meixner' and other authors employed eigenfunctions normal-
izedto8(k — k )6(5 — £ '), in which £ corresponds to our vari-
able (v, — v,)/2. The more symmetrical normalization
scheme we have introduced will facilitate evaluation of the
Green’s function.

Equation (2.20) can be demonstrated with the help of the
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following integrals over Whittaker functions:
f M 77— ikx)M 7% — ik 'x) dx
0

= d4qe ~ T F V20— Sk k’y’]“(m ;_ L_ iv)
@.21)

2

'

:47Te—~iﬂ(m+l)/2e777v6(v_ V,/’F(m ;-1 —I.V)
2.22)

Equation (2.21) also occurs in the normalization of spherical
eigenfunctions. Both (2.21) and (2.22) can be demonstrated
from integral representations of Whittaker functions in terms
of Bessel functions’ with use of an integral given by Watson.®
More simply, by virtue of the fact that the principal contribu-
tions to (2.21) and (2.22) come from the asymptotic region
x— o0, it suffices to approximate the Whittaker functions by
their asymptotic forms (2.14). Using (2.16),

8(vy = v)B(k — k") = (Z/k*)8(v, — v} )(v, — v3),
8(vy —v3)8k — k') = (Z,/k)S(v, — v )8(v; —v3), (2.23)

which completes the required normalization.
The negative-energy parabolic eigenfunctions are quite
standard.® Expressed in terms of Whittaker functions'®;

and
J. M7 — ikx)M 72— ikx)x" dx
0

2

'ﬁn,nzm (§!779¢ )
_Z 2 ([m] +n )’([m{ + 1)1 1172 ny
- 2 [ ’;1!”2! ] (&m 2

XM‘,,':’LL/%[,,,] + 12 V43 /”)MLTKZ(}W + 12 (Zﬂ/”)eim¢’ (2.24)
nny, =012, m=0,4+ 1, +2,..;
n=n+n,+|m+1=123,..

We shall also require Whittaker functions of the second
kind, W"*( — ikx), which represent solutions to (2.10) hav-
ing the form of outgoing waves. Specifically we note the
transformation'’

W2 (ikx)
T'{(m+1)/2—iv)
W™ — ikx) ]
r((m+12+iv)l’

M::/Z(_ikx)zem'[

+ e~ im+ )m/2

(2.25)
the identity'?
W o = ikx) = W ikx), 2.26)
and the asymptotic form as x— o0 '?
W (— ikx) ~( — ikx)"e*2, 2.27)

Note that Eq. (2.14) also follows from (2.25) with (2.27).

For values of v occurring in the discrete spectrum [cf.
(2.24)] the two types of Whittaker functions become propor-
tional.’ Specifically

Wz 2@ =(=) (" +mM i o+ 2@ (2.28)

S.M. Blinder 307



A key result, both in Hostler’s derivation and in the
present work, is an integral representation for a product of
two Whittaker functions given by Buchholz.®> With appro-
priate specialization of the variables, we write

T((m + 1)/2 — iM% — iky)W /% — ikx)

=(—i"* 'k (xy)'? f ds exp[ + %k {x + p) coshs
(¢]

xJ,, (k Jxp sinh s) [coth(s/2)1*",

Re((m + 1)/2 —iv)>0, Imk>0, x>y. (2.29)

3. EVALUATION OF THE GREEN’S FUNCTION

The summation (1.2) explicitly written out in terms of
discrete and continuum parabolic quantum numbers
becomes

G2k)= ¥ [Z 3 (k2+ %)qtﬁ,,‘nzm(l)

m= — oo n=0n,=0

><¢:,n2,,,(2>+f dv.J dv, (v, +v)

X k2=, W (DY (2)] . 3.H
The Heaviside function
1, for x>0,
o= {O, for x <0. (.2)

has been introduced to take account of the condition (2.18).
The wavenumber in the eigenfunctions has been redesignat-
ed «, to reserve k for the Green’s function. Putting in the
eigenfunctions (2.19) and (2.24), we obtain

x oM — 62
Gzl = m =Z» w (§1§2771772)]/2

x| $ 5 (2 5) L () + 1)(Im| + ny)!

n =0n,=0 mhn n,!nzl
X szz(tml +1/2 (Z¢, /n)MlTL/Z(\nﬂ +172 (Z£,/n)
XMinm:z(w +1)/2 Zn/n)M nmL{2(|m| + 12 (Zn,/n)

8773k f dvlf dv,0 (v +v,)
X (v +vo)2 — Zk?] " Tem™+d
— ivz)

2
‘F(m—i-l —ivl) (m+1
iK€ )M 73— ikE,)

X M~ ikn M3 — i)

4 emmn

2

XM~
(3.3)

The M function of the argument £ (the greater of £}, £,)
can be transformed to a sum of W functions using (2.25). We
find

eiﬂim+ l)/Zevrw ll“(m '2*_ 1 — ivl)
XM 7 — i€ )M 7P (— k)

=r(’";rl +wl)Mm’.a (kE YW, (kE.)

2
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Z f~s] o0
WJ. dv, f dv, [(v, + V2)2 -

m+1

+F( —t'vl)M{f,l’z(——iK§<)W,’-S‘/z(—il(§’>).

{3.4)
We have made use of (2.13) to get M ™7, to multiply W "7, .

Now the first term "M Win (3.4) can be transformed into the
second by the substitutions

Vi— — V), Vo—>— 7V,

(3.5)

By applying this in the continuum integral and noting the
identity
Ovi+v)+0(—v,—v)=1,
the Heaviside function is eliminated.
The functions of 77, and 7, are transformed in an analo-
gous way. Under the double integration, the two terms
I'MW make equal contributions. The continuum part of the
Green’s function thus reduces to the compact form

(3.6)

ZZ/kZ] -1

><r(m—f—l
2

XF<m+1
2

—iv,)M}’v'(z( — k€ YW — iK€ )

- ivz) M2 — ik W — ik )
(3.7)

The integrals in (3.7) can be most readily evaluated by
interpreting them as contour integrals in the complex planes
of v, and v,. The integrand is an analytic function of each
variable in its lower half-plane with the exception of a set of
simple poles. One should verify this, in particular, forv, = 0
and v,—0 with Imv, < 0. This correspondstok = Z /v~
with Imx > 0. From (2.23) and (2.27) we find the relevant
asymptotic dependence

L'(m+10)/2 —iv)M(—ixx YW~

~ei;c(x =X, )/2’ (38)
which approaches zero as || — oo with Imk > 0. By virtue of
(2.12) and (2.26), m in the functions "MW can be replaced
by |m|. This will make more explicit the poles of the
integrand.

We note also the asymptotic behavior as v,— o« with v,
fixed. As k—0"°

iKkx )

C{(m +1)/2 —iv)M 7Y — k)W — ikxy~k.  (3.9)
Thus each factor TMW ~v,~'. Including the energy de-
nominator (~ v, ~?), the entire integrand behaves as v, ~*
when |V1 |—-> 0.

Evidently, the v, integral can be evaluated by applica-
tion of the residue theorem after the contour is closed from
below with a semicircle at infinity. As |v,|-— oo, the contri-
bution from the semicircle approaches zero as a result of the
asymptotic behavior discussed above. The singular points in
the integrand arise from the factors I" ((|m| +1)/2 — iv{)
and[(v, + v,)* — Z */k *I"". The gamma function has polesat

the points
v,= —i(m| +1)/2+n), n, =012, (3.10)

with the corresponding residues i( — )"'/n,!. The energy de-
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nominator has a pole in the lower half-plane atx = k + iSor
vw=—w+Z/k—id, (3.11)

with residue k /2Z. Imk > Q is taken, such that the resulting
Green’s function will correspond to G*(1,2,k ).

The v, integral thereby reduces to ( — 277) times the
sum of the residues in the lower half-plane. The continuum
integral (3.7) can thereby be expressed as a sum of two con-
tributions: (3.12) plus (3.13). From the poles of the gamma
function [cf. (3.10)]:

. Z = (=)
—2
™ 4173k2 ,,lzzo nl!
0 Z2 1
X f dvz[(v; Fuy— k—]

Xt - i oW —iwg r (L )
(3.12)
X MV — k' YW~ i),
V= — l(—lm—|2-ﬂ +n, ), K'=Z /(v +v,).

From the energy factor [cf. (3.11)]:
Zz k J“‘ (|m| +1 . )
— dv, | ——— — v+ iv
ark: 22 .. 2 2

— 2

G( o k 1 . eim(¢. —¢)
1,2,k)= ——
(1.2.5) drtik = EE o)

2

xI (IL"%J"—I- - ivz) MmNV ik )

v,

XW\H —ikn. ) (v=Z/k). (3.13)

The second integration in (3.12) can be carried out in an
exactly analogous way. The v, contour, again closed by an
infinite semicircle in the lower half-plane, encloses only the
poles of " ((jm| + 1)/2 — iv,), at the points

vo= —il(lm| 4+ 1)/2 +n,), n,=0,12,.. (3.14)
Thus, in Eq. (3.12),

V= —i(ni+n,+ m|+D=—in, n=123..,
K'=Z/V =iZ/n, (3.15)

and (3.12) becomes

(—2mp 3

n=0n=0

l‘2(_)n,+n2 Z 2 ZZ -1
— N — —
ark? e

XML'."KZ(tm[ w2 (ZE_/n) WL’:‘L/Z(,,,,, +un2 (€, /n)

nn,!

XMLTL/qu{ 2 /”)WLTL/Z(\m\ +1)/2 (Z”I) /n).
(3.16)

Application of (2.28) shows now that (3.16) exactly cancels
the sum over the discrete spectrum in (3.3). The Green’s
function is thus reduced to the contribution containing
(3.13). Writing A in place of v, and reintroducing m in place

I of [m]:

xf dA [r(”“rl v tid )M,TZ’_Z,.A(——z’k§<)W,'-Z/f,-,1(~ik§>)]
m+

X [F( L —M)M,Z{/z(—ik17<)W§j{/2(—ik77>)]. 3.17)
This can also be expressed in the form
G 12k)= = 5 eme e ( - —17) f dZ, ¢\ 6£"Z ~ Z,)8. (', Zy), (3.18)
27 2 2w/ J -
in which
8. (x,x", Z, 5) = (ikx) " *(tkx'y "2 (E—;—I— — vy, )M."v',/f( —tkx YW (—ikx)) (Z,, =kv,,). (3.19)

The convolution integral in {3.17) or (3.18) is standard for Green’s functions of separable operators. In the present case, a
contour can be closed by an infinite semicircle in the lower half-plane such as to enclose the poles of I"((m + 1)/2 — iA ) but
exclude those of I" (m + 1)/2 — iv + il ). Equation (3.19) represents the Green’s function for the differential 'equation (2.7)

obtained after separation of variables, viz.,

ad ad k2x mz)
Zp+ 2L x 2 _n
( l2-’{_<9)cxébc-+_ 4 4x

& X', Z ) = (x — x).

(3.20)

Note that Z, , rather than E now plays the role of eigenvalue. This formulation of the separated Schrodinger equation is
convenient for treatment of the Stark effect.'® Reduced Green’s functions derived from (3.19) can provide an elegant alterna-

tive for computation of Stark-effect perturbation energies.

Returning now to Eq. (3.17), Buchholz’s integral representation (2.29) can be applied to each factor 'MW giving, after

some rearrangement:

% [
G H(1,2k) =%
( ) art ) _
X i e™® =B (k (§16,)"? sinhs) J,, ( — k (n,77,)"/? sinhe).
309 J. Math. Phys,, Vol. 22, No. 2, February 1981

dA j dS f dre— ik/2(6, + &) coshse — itk /2{n, + 7,) cosht [COth(S/2)] 2iv — 2iA [COth(t /2)]2i/1
o (] (]

(3.21)
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We have now been able to revert to the original parabolic
coordinates §,,%,,£,,%,. In the sum over Bessel functions we
have noted thatJ _ ,,(z2) = J,,( — 2) = (—)"J,,(2). The in-
tegral over A gives a delta function:

fm dA [coth(s/2)] ~2* [coth(t /2)]**

= 7é(In coth(t /2) — In coth(s/2))
= 77 sinhs 8 (t — s). (3.22)

The integral over ¢ is thus immediate. The sum is in the form
of Graf’s addition theorem'”:

S TP gk,

m= — oo

r=(p"+q" —2pgcosp)'’?

where we identify

p=k(£:£)" *sinhs,

9= — "(771772)”2 sinhs, ¢=¢,—4¢,,
r=k[&& +nm+2 §1§2"71772)”2 cos(¢, — $,)]'/? sinh s.

Jolr) =

(3.23)

(3.24)
The Green’s function thus reduces to
G'*(1,2,k) = —l-k—j ds sinh 5 e’ coshs
4mr Jo
X Jy(ku sinhs)[ coth (s/2)]%", (3.25)
where {cf. (2.1)]
v=E+ S+ )=+ n=ix+y),
u=[£,& +n1m +2( §1§2”1ﬂ2)l/2 cos(é, — ¢2)]1/2
=(2rr, + 2"1’2)1/2 = (x.V)]/Z’ (3.26)
in terms of the variables
X=r+ 1+ 1y, Y=+ HhL T (3.27)

To complete the derivation, we make use of the identity

1. 9 uJ(ku sinh s),
ku sinhs du

in conjunction with the integral representation (2.29) with
m = 1. We obtain thereby

1 d 1/2

Jofku sinh s) = (3.28)

G (L2k) = ———— (1 —iv)M J*(— iky)
4siku Jdu
X W A — ikx). 3.29)
Noting, finally, that [cf. (3.26), (3.27)]
19 ___2 (i_ i)
u du x—y \odx ady
- _ L(_Q__ i), (3.30)
Fi2 \Ox dy

we obtain Hostler’s expression for the Coulomb Green’s

function [2]
1 a a .
GH(1,2,k)= — (—-—— ——)Fluzv
( ) 4mikr,, \dx dy ( )
XM Y2 — ikpy)W ( — ikx). (3.31)
The Green’s function (3.31) applies to both attractive
and repulsive Coulomb interactions. Most generally one can
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redefine
=-—-Z7Z'/k, (3.32)

in which Z and Z’ are the charges (in atomic units) of the
interacting particles. For an electron interacting with a nu-
cleus, the problem we have considered explicitly, Z' = — 1.

4. RUTHERFORD SCATTERING LIMIT

The continuum eigenfunction (2.19) with quantum
numbers m =0, v, = — /2, v,=v+i/2(v= —ZZ'/k)
represents scattering of an incident plane wave by a nucleus
(Rutherford scattering). With use of (2.11) we obtain'8:

I,ZIJ;UTH(I') — eikg/ze — tkny/2 lFl(iV;l;ikﬂ)

= e"** \F\(iv;1;ikn) 4.1
normalized such that ¥/0) = 1. It is of interest to obtain this
Rutherford scattering limit in an alternative way, by reduc-
tion of the Coulomb Green’s function. G *(R,r,k ) can be
interpreted as the amplitude at point r for scattering of a
spherical wave originating at R by the nucleusatr = 0. AsR
is moved to infinity along the negative z axis, the spherical
wave approaches modified plane-wave behavior in the vicin-
ity of the origin. The Rutherford scattering wave function
(4.1) can thereby be represented as a limiting form of the
Green’s function as follows:

oty _ i O RIEK)
Y A G POR0kL)
The denominator G ¢+ (R,0,k ) is obtained readily from
(3.31) with x = 2R, y = 0. From the limiting forms of
M 172 — iky) and its derivative'® we obtain

GUOROK) = — — I'(1 — i)W /(—2ikR).
47R

(4.2)

4.3)

To evaluate the limiting form of G ¢ 7 (R,r,k ) we make use of
the integral formula (3.17) with the following specialization
of the parabolic coordinates:

£, =61=r+z=R—-—R=e>0,

7, =N =r —2z =2R—>w,

§.=56=& 1. =m=1. 4.4)
For the factor in (3.17) containing £ . = €'
lim e'2M 72, (— ike) = (— ik)"28,,0, 4.5)

e—0
which eliminates all but the m = 0 term of the summation.
With use of (4.3)-(4.5), the wavefunction (4.2) reduces to

vt g L (% TG = iv 4 A G —id)
Y = lim o | A )
MY (—ikn) W, _,(—ikE)
(—dkm)?  (— k€)'
o W&(—zikR)] »
X [(—2th) e ey | (4.6)

From the asymptotic form of the W functions [cf. (2.27)], the
bracket in (4.6) can be reduced to

( —2ikR )1/2—iv+i/1. (47)
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Note that (4.7) approaches zero as R— o for ImA > 0.
Thus the integral (4.6) can be evaluated by closing a contour
with a semicircle in the upper half of the complex A plane.
Theintegrand, specifically I" ( — iv + id ), possessespolesin
the upper half-plane at the points where

J—iv+id= —n, n=0,1.2,-. (4.8)
However, the limit of the factor (4.7) as R— oo will approach

zero unless n = 0. Thus (4.6) reduces to 27 times the residue
atd =v +i/2 (il = iv+ 1)), viz,

M _ — jkn) WO, (—ik&)
%UTH(r) = _1/2( 1,2 7 l_/_z ; l/f (49)
(— ikm) (— k&)
Now'®
WS (— k&) = (— k&)™ 72, (4.10)
while [cf. (2.11)]
M3, _ o — ikn) = (— iky)'/%e = %72 \F\(iv;Liikn), (4.11)

which results in the Rutherford eigenfunction (4.1).
The Rutherford scattering cross section follows from
the asymptotic form (2.14):

lﬁfUTH(r) = gkt /2 M?v —_in (—ikmn)

(= k)"
o= TV/2gikE N2 [ (kq) " o~ k72
r'(l—iv)
—1i Ml_ eikvﬂ]
r'@v)

_ e 2 [eikz — ivloglk(r — )}

r'd-—mw

. o ikr + ivlog[k (r — 2)]

_ird-me ] 4.12)

k (v (r—2
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This corresponds to a scattering amplitude
—ir(1 —iv)

8)= , 4.13
/6) kI (iv)(1 — cos@) (4.13)
which leads to the famous Rutherford formula
V2 Z3%Z"%* o
9 = 9 2 = = 4 -
7O =1/ON = 5oy 16EZ ¢ 7
“4.14)
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