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TaBLE VI. Equivalent tube length AL.

Po Disk Oblate Sphere Prolate
0.1g 0.000849¢ 0.001411e¢ 0.002002a¢ 0.003231q
0.2a¢ 0.006809¢ 0.011332¢ 0.016107a ©0.026073a
0.3¢ 0.023135a¢ 0.038670a 0.055187a 0.09002¢
0.4a 0.05559a 0.093740a 0.134879a 0.22277a
0.5¢ 0.11124¢ 0.19044a 0.27767a 0.4664a
0.6a 0.2002q 0.35104a 0.52205a¢ 0.895a
0.7a 0.34a 0.618a 0.94634a 1.7a
0.8¢ 0.5¢ 1.10a 1.75124a
0.9 2.1a 3.7277a
0.95q 3.a 6.6207a

is applied to the line integral of (5), the result is
zero so the spheroid vortices contribute nothing.
The same operations, performed after substitution
of —K (ta)I,(tp)/1,(ta) for K,(ip) give zero except
when n = 0 so that the contribution of the wall
vortices, for all spheroids, is
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AL = ;! j v, dz = 3(2po/a)’Cic.

-~

(23)

This also gives the resistance increase of a solid
conducting cylinder due to the presence of a coaxial
nonconducting spheroid inside it in terms of the
equivalent additional cylinder length. The specifie
formulas for the cases treated are

Sphere and disk AL = 4p3C,/(30%),
Oblate (2 to 1) AL = 2030/ (3%,
Prolate (1 to 2) AL = 453C,/(3%a%).

The results appear in Table VI. Unfortunately C,
is so poorly determined in some cases, for reasons
already mentioned, that AL cannot be found. It is
probable, but not certain, that all the digits in
Table VI are significant.

i

(24)
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A hydraulic jump occurs in a layer of fluid flowing down the inner wall of a rotating cylinder when
the downstream conditions are adequate. The theory of these jumps is presented, together with sup-
porting experimental data. The results confirm the similarity between free-surface flows under
general rotation (and hence centripetal acceleration) and free-surface flows in the presence of a gravi-
tational field, and indicate that the hydraulic jump in a rotating fluid is just the counterpart of the

ordinary hydraulic jump.

1. INTRODUCTION

T has been generally recognized that the flows of

a rotating fluid are, in many respects, similar to
the flows of a stratified fluid in the presence of a
gravitational field. Since a free surface is a surface
of density discontinuity, which is a form of extreme
stratification, there is also a similarity of flows of a
rotating fluid with a free surface to free-surface
flows in the gravitational field. A free surface in the
rotating fluid is necessary to ensure similarity of its
flow to a free-surface flow in the gravitational field
because the quantity corresponding to a discon-
tinuity in specific weight in the latter is a discon-
tinuity in pI” in the former, p being the density
and T the circulation of the flow along any circle
in its domain located with axial symmetry. Thus the

counterpart of the ordinary hydraulic jump appears
to be a hydraulic jump in a layer of liquid flowing
down the inner wall of a rotating cylinder, and
rotating with it. The analytical and experimental
results are presented in this paper to provide yet
another instance of the similarity of rotating flows
and stratified flows.

The hydraulic jump in a swirling fluid has also
been observed by Binnie."! But the tube he used
was stationary, and his work was not primarily a
study of the jump.

2. ANALYSIS

With reference to Fig. 1, b is the inner radius of
the tube, d; is the depth of water upstream from

! A. M. Binnie, Proc. Roy. Soc. (London) A270, 452 (1962).
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the jump, and d, the downstream depth. The pres-
sure in the fluid upstream from the jump is

P = 3puwi(® — ab) (@ = w), L

in which w, is the angular speed of the rotating water
film, and is equal to the angular speed  of the
rotating cylinder, » is the radial distance from the
axis to the point at which the pressure is being con-
sidered, and a;, = b — d,. Downstream from the
jump, the angular speed w, of the fluid in general
varies from one radial position to another. Two
extreme situations may be considered. If viscous
and turbulent mixings are ignored, Kelvin’s theorem
on the conservation of circulation enable one to
compute w, ag a function of r, upon utilization of
the equation of continuity and the assumption that
the downstream velocity U, is constant. This would
be a very unrealistic situation, because there is
violent turbulent mixing at the jump, so that
Kelvin's theorem cannot be valid. The other extreme
condition is the condition of complete mixing, so
that after the jurop another uniform w, exists, which
can be computed from w, by use of the conservation
of the integrated angular momentum. Thus, on the
assumption that w, is uniform, the downstream pres-
sure distribution is given by

Py = dpwa(r® — a3), @

in which g3 = b — d,. The total axial force acting
at an upstream section (Section 1-1) is

]
P, = f p2mr dr = lomd (b° — ). 3)

The total axial force acting at downstream section
{Section 2-2) is

b
P, = f p2rr dr = lowaa(B® — a3). 4)
The discharge is given by
b 4
Q= f U.2xr dr = f Us2nr dr, 6)

which is the equation of continuity. The downstream
flow is very turbulent, so that ¥/, can be assumed
constant without appreciable error. If the upstream
flow is also turbulent, U, ean also be assumed con-
stant, thus the equation of continuity ean be written
as

U,(0" — @) = U(b" — a3). (©)
The momentum flux through Section 1-1 is
b
M, = [ oUlnrar, @
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and that through Section 2-2 is
b
M, = [ pUmr ar. 8)

Since U, and U, are assumed constant,
M, = pwUi(Y" — df), M, = pxUi(d* — a2). 9)

The fluxes of angular momenta are the same before
and after the jump, since the torque exerted by the
wall of the eylinder can be neglected. Thus

3 b
f (pr U 207 dr = f (oo™ Us2r dr.  (10)

Now w is constant, and as explained before U,, U,
and w, can be assumed constant. Thus (10) becomes

poUy (b — a)) = pw,Us(b* — af). (11)
which can be reduced to
w(®® + a}) = w® + a3) (12)

by the use of (6).
The momentum equation applied to the fluid
between Sections 1-1 and 2-2 is

P1""P2+W=M2'"Mh (13)

in which W is the weight of the body of fluid in the
region of change of depth. If the inner radius of
that body of fluid is assumed to vary linearly (with 3)
from a, t0 a,, and if the length of the jump is assumed



F1a. 2. A photograph of the apparatus used.

to be c(a; — a.), ¢ being a constant of proportionality,

W = gpr(a, — a)[b® — ¥a + a0, + @3)]

= gor(a, — @)[V* — a4, — (o, — @)].  (14)
Equation (13) then becomes
Tor[o’ (V' — i)’ — (b — a})]
+ gor(as — a)[b” — a: — 3@ — )]
= pr[U(0° — a3) — US(0" — a})]. (15)

Now if (6) is used on the right-hand side, (12) is
used to eliminate w, and for simplicity one writes

U,

T wh’ b

ay 42}
o = 5 012=—b—; F,

b H
One obtains, after simplifications,
A — de)(l — @) = Fi(1 ~ a)(1 + a3)

CG(I — ag)(l + (Xg)z[g(l - 0‘1“2) - (al — 0‘2)2]
3oy, + o)

This equation enables one to find «, for given values
of a;, Fi, G, and c.

In the experiments performed, d, and d, were
very small compared with b. Hence a, and a, were
nearly equal to b and so «; and «, were nearly equal
to 1. Putting &; and «, equal to 1 except where dif-
ferences are involved, one obtains from (16)

+ -(16)
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(1 - a1a2)(1 - az) = 2F?(1 - al)
+ cG(1 — a)[(1 — oo) — §loy — az)Z]-
Now with

n= d2/d1

17)

and F? = U?/u’bd,
one has
1 — oy = (d:/0)1 + ), (I — ) = (d/b)n,
Fi(l — &) = Fi(d,/b)
and
(@ — @)’ = (di/b")(n — 1)".
Thus (17) can be written as

d
b

The depth ratio » had a maximum value of 10.7
in one test, and less than 10 on all the other tests,
and d,/b was very small. Thus, under the experi-
mental conditions, the second term on the right-
hand side can be neglected. The resulting equation
can be solved simply. The solution is

S ET Ay
"‘dl“z[ T+ +7—% |

Equations (17) and (18) are identical in substance,

g + DA — @) + § T cGn(n — 1)* = 2F*.  (18)

(19)

Fic. 3. A photograph showing location of the jump and
streaks in the flow.
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and are approximations to (16). Equation (16) cor-
responds to the momentum equation in ordinary
hydraulic-jump theory, except that the weight of
the fluid in the region of variable depth plays a
part here, but not in the ordinary hydraulic jump.

3. APPARATUS AND METHOD OF MEASUREMENT

The apparatus is shown in Fig. 2. The working
section was a piece of transparent tube of polished
cast resin about 50 in. long and 9 in. o.d. The
wall was 1 in. thick. The innersurface diameter had a
variation of at most 0.012 in. The tube is supported
by a rigid hub at the top and a rigid ring at the
bottom. A rod running centrally from the top to the
bottom carried a movable point gauge for measuring
depths. A turntable fixed to the bottom ring sup-
porting the transparent tube was driven by a
variable-speed motor of 5 hp.

Water at 62°F was introduced into the tube
through a rotating union threaded into the top
hub from a head tank. The flow was regulated by
needle valves through flow meters of the type of
the Fischer—Porter rotometer. The flow meters were
calibrated under test conditions and the variation
of the discharge was within #19, in each run.
After entering the rotating union, the water was
spread onto the inner wall of the best cylinder by a
circular plate. Vertical uniform flow was established
after approximately one tube diameter and a half.

At the bottom of the tube were efflux ports which
could be opened or closed at will to adjust the loca-
tion of the jump. The jump could be moved up the
tube by reducing the opening at the bottom of the
tube.

The angular speed of the turntable was measured
electromagnetically and was maintained constant.
The variation in each run was no more than 1 r.p.m.,
or about 0.19, in the tests. This angular speed
is the same as w in the analysis. Figure 3 shows the
location of the jump and streaks in the flow both
upstream and downstream of the jump. Since w was
known and d, was small, the circumferential velocity
upstream from the jump was known. Assuming the
streaks were statistically the same as the stream-
lines, one could obtain the upstream surface velocity
U, of the fluid in the axial direction from the inclina-~
tion of the streaks.

(If the streaks are actually characteristics for
surface waves, the effect of the assumption made
here is to over-estimate U, and hence to under-
estimate d,. In that case the experimental points
in Fig. 4 should be shifted downward and to the
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Fra. 4. Comparison of theoretical and experimental results.

right. The error introduced by the assumption
would in that event increase with the speed of the
surface waves, which in turn would depend on and
probably increase with w and d,. If surface-wave
speed greatly overshadows the actual speed of the
fluid in determining the slope of the streaks, the
streaks prior to the jump cannot be much steeper
than those after it, since d, > d,, and , is nearly
equal to w for the tests performed, according to (12).
But the upstream streaks are much steeper than the
downstream ones. Hence we believe the assumption
made is not far wrong.)

From U, one can easily calculate d,. The mean
inclination of the streaks was obtained photo-
graphically with a variation of £0.50. Downstream
from the jump the inclination of the streaks were
too small to be useful as a reliable means of obtaining
d», which was therefore measured with the point
gauge. The error was approximately 4-0.007 in. The
upstream depth was so small that the waviness of
the free-surface would introduce a substantial per-
centage error in d, if measured with the point gauge.
That was why the streaks were utilized upstream
from the jump.

The length of the jump was observed to be be-
tween 0.5 and 1 in. in the tests.

4. DISCUSSION OF RESULTS

The results are shown in Table I and Fig. 4.
As explained in Sec. 3, U, was computed from the
inclination of the streaks on the upstream free
surface. Since the upstream flow was assumed to be
turbulent, this U, was considered to be the axial
velocity in the major part of the upstream flow.



642 YIH, GASCOIGNE, AND DEBLER
Tasre 1. Data for rotating hydraulic jump.
dz bwlz
[24 U1 d1 dz -_— -
Run rpm in3/sec deg tan o in./sec in. in. F dy K g
1 463 44 .4 21.0 0.38 79 0.021 0.18 5.5 8.8 1400 25.8
2 535 42.2 19.8 0.36 86 0.018 0.16 5.5 8.9 1300 34.6
3 535 29.8 17.0 0.31 72 0.015 0.12 5.2 8.0 900 34.6
4 430 33.0 21.0 0.38 73 0.017 0.18 6.1 10.7 1000 22.4
5 540 44 4 19.7 0.36 86 0.019 0.16 5.3 8.1 1400 35.2
6 622 31.6 16.0 0.29 79 0.015 0.11 4.9 7.2 1000 47.1
7 592 32.8 16.3 0.29 77 0.016 0.11 4.7 6.9 1000 42 .4
8 465 47.5 21.0 0.38 79 0.022 0.17 5.3 7.8 1500 26.2
9 565 47.5 18.8 0.34 86 0.021 0.15 4.9 7.2 1500 34.7
10 625 47.5 16.5 0.30 61 0.029 0.14 2.7 4.7 1500 47 .2
11 455 53.3 23.0 0.42 86 0.023 0.21 5.7 9.2 1700 25.0
12 610 53.3 17.5 0.32 86 0.023 0.14 4.2 6.1 1700 45.0
13 550 53.3 20.2 0.37 90 0.022 0.16 5.1 7.4 1700 36.5
14 450 59.0 23.7 0.44 88 0.025 0.21 5.7 8.5 1900 24.5
15 525 59.0 20.0 0.36 85 0.026 0.16 4.6 6.3 1900 33.2
16 600 59.0 17.8 0.32 86 0.026 0.14 4.1 5.5 1900 43.6
17 450 64.2 23.5 0.43 87 0.028 0.23 5.4 8.2 2000 24.5
18 525 64.2 19.8 0.36 84 0.029 0.18 4.4 6.2 2000 33.2
19 600 64.2 18.0 0.32 87 0.028 0.15 4.0 5.4 2000 43.6
20 440 71.0 24.0 0.44 87 0.030 0.23 5.3 7.7 2200 23.6
21 525 71.0 20.0 0.36 85 0.031 0.19 4.3 6.1 2200 33.2
22 625 71.0 16.5 0.30 82 0.032 0.16 3.4 4.8 2200 47.2
23 575 76.2 18.7 0.34 87 0.033 0.18 3.8 5.6 2400 40.0

The Reynolds number
R = U,d,/v

based on the surface velocity was recorded in Table I,
with v = 1.2 X 107° ft’/sec. The values of R show
that the judgment of turbulent upstream flow is not
an unrealistic one. It is known that plane Poiseuille
flow, which would be the upstream flow if it were
laminar and the slight curvature effect were neglec-
ted, is unstable at a value 2000 for the Reynolds
member based on the mean velocity, or 3000 for .
It is also known that a free surface tends to destabil-
ize the flow. But it is important to remember the dis-
tinction between stability against surface waves and
that against shear waves. For surface waves the
flow is unstable at any Reynolds number however
small, but at the same time it is shear-wave insta-
bility that is responsible for turbulence. In view of
the fact that the Reynolds numbers recorded are
from 930 to 2400, which are of the order of 3000,
and considering that the flow was not free from
turbulence as it entered the tube, the assumption
of turbulent upstream flow was not unrealistic. With

Q as the discharge in cubic inches per second, d,
was obtained from

d, = 0.0375 Q/U,,

U, being measured in inches per second.

In Fig. 4 the data are plotted in a chart with F
as the abscissa and d,/d, as the ordinate. Equation
(19) is plotted with ¢ = 0, and also, for best fit at
various values of G, for ¢ = 7. This value for ¢ is
the same as for the length of the ordinary hydraulic
jump. It ean be seen that the agreement between
the theoretical prediction and the experimental
results is quite satisfactory.

In none of the experiments did the tube run com-
pletely full of water downstream from the jump.
Choking downstream from jump can happen if the
discharge is great enough, or the pipe small enough,
or the downstream opening narrow enough. If that
happens, the situation is similar to the ordinary hy-
draulic jump when the water surface downstream
touches an upper lid, the thin-film approximation
is invalidated, and the radial variation of w, is
quite uncertain.



