The thermophoretic force in the Knudsen regime near a wall

M. M. R. Williams

Nuclear Engineering Department, The University of Michigan, Ann Arbor, Michigan 48109
(Received 12 November 1987; accepted 12 January 1988)

The thermophoretic forces acting on a small Knudsen particle in the neighborhood of a
boundary have been investigated. The applied temperature gradient is constant, but it is not
normal to the wall, thereby leading to thermophoretic forces both normal to and parallel with
the wall. Using the velocity distribution of the gas atoms for this problem it has been possible
to obtain the variation of the thermophoretic force as a function of distance from the
boundary. It is noted that, for equal temperature gradients, the force is greater in the direction
normal to the wall than along it. In addition, it is observed that the velocity dependence of the
mean free path has a significant effect on the force in the neighborhood of the wall. In contrast
to the normal force, which is in the direction of decreasing temperature, the mass flow induced
by thermal creep along the wall leads to a parallel wall force that moves the particle in the
direction of increasing temperature. When these two forces are compounded they indicate that
particles can move in curved paths en route to the wall surface. As a by-product of the
calculation, an exact expression for the thermal creep velocity as a function of distance from
the wall for the case of constant collision cross section is presented.

I. INTRODUCTION

The phenomenon of thermophoresis arises when a small
particle, situated in a fluid in which there exists a tempera-
ture gradient, moves in the direction opposite to the tem-
perature gradient. An analogous situation exists when a gas
isin contact with an unequally heated solid boundary. In this
case a shear stress is exerted by the gas on the wall and a
correspondingly equal and opposite shear stress is exerted by
the wall upon the gas leading to a flow of gas adjacent to the
wall. This is called thermal creep. In this case the gas moves
in the direction of increasing temperature. The physical rea-
sons for this behavior were explained by Maxwell and an
excellent description is given by Kennard.' Basically, there
is an unequal transfer of tangential momentum at the surface
of the solid body with a greater contribution coming from
the hotter side than the colder one.

As far as the motion of small particles in temperature
gradients is concerned, there have been many attempts to
explain the situation theoretically. The method of approach
depends crucially on the relative size of the particle com-
pared to a mean free path of a gas atom. For Knudsen
numbers (Kn) that are small, hydrodynamic theory can be
used with slip boundary conditions. Brock? has made exten-
sive calculations in this respect for a single particle in an
infinite medium and his results are considered to be valid for
Kn<O0.1. Other authors have extended the range of validity
as described by Talbot et al.® in their review. For very small
particles, where the Knudsen number is large, hydrodynam-
ic theory even with slip boundary conditions fails. In princi-
ple, one should employ the Boltzmann equation with appro-
priate gas—particle boundary conditions for the particle but
this is difficult to do. An alternative procedure, when the
particle is very small, is to use free-molecular theory in
which the gas atom velocity distribution is assumed to be
unaffected by the presence of the particle. Waldmann and
Schmitt* have reviewed this procedure in detail.

In many practical situations the particle is not in a gas of
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infinite extent, but near a boundary. Thus the additional
complication of a gas—particle~solid boundary interaction
arises. The work described above does not address this prob-
lem. The earliest work to account for the.presence of a
boundary was performed by Reed and Morrison® and later
by Williams® who examined, in the slip regime, the effect of a
boundary on particles moving normally toward a heated
wall. Far away from the wall the standard results of Brock
are obtained but as the wall is approached there is a marked
change in the thermophoretic force. It would be very diffi-
cult to extend these results into the transition regime of larg-
er Knudsen numbers but in the free-molecule limit some
progress can be made. In this region, as we have stated
above, the particle does not affect the gas and so the gas
distribution function may be calculated by standard kinetic
theory methods and used to compute the net force on the
particle. Many kinetic theory problems can be solved exactly
in linear transport theory, such as the temperature slip, ther-
mal creep, and slip flow problems as well as sound wave and
related drag problems. Thus in principle, once the velocity
distributions of gas atoms for these problems are known, it is
possible to calculate the force on the particle. Even some
nonlinear problems are amenable to treatement such as, for
example, the plane shock wave using the Mott-Smith ap-
proach.” In a previous publication, the author® has calculat-
ed the force on a small particle (i.e., Kn— ) in the case
where a temperature gradient exists normal to a solid wall.
At some distances from the wall, i.e., several mean free
paths, the classical Waldmann—Schmitt results arise but
near to the wall the thermophoretic force is modified and
there is a small reduction. The effect is not large but never-
theless indicates that some care must be exercised in employ-
ing infinite medium results when boundaries are present.

In the present work we wish to extend our investigation
of thermophoresis near a wall for small particles in the free-
molecule limit by considering the more general case of a
temperature gradient that is not normal to the wall. In fact,
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since we already have the result of the normal case, it will
only be necessary to consider the problem of a temperature
gradient parallel to the wall and obtain the net result by
superposition. We will, however, clarify some of the points
that arise in the normal case. When a temperature gradient
exists parallel to a wall, we have what is essentially the ther-
mal creep problem discussed above. This has been discussed
in some detail by the author® for the generalized BGK mod-
el'® of scattering and so many of the results are already avail-
able. The outcome will be an expression for the thermophor-
etic force on the particle as a function of distance from the
boundary and as a function of the gas, wall, and particle
scattering properties.

Ii. FORCE ON A PARTICLE IN A GAS

As we have shown in Ref. 11, the force on a small parti-
cle in a gas can be written as

F= —mfdvv(g) , (1N
Ot /con
where
of .
(E) = — vaf(v,r) +fdv o(vV-v)flvr), (2)
coll

Jf(v,r) is the velocity distribution function of the gas atoms,
and o(v' - v) is the global scattering kernel for the gas—par-
ticle interaction. Here, o is the total cross section for interac-
tion and is simply 7a* where “a” is the radius of the particle.
Values of o(v' —v) have been obtained for a variety of gas—
surface interactions by the author.?

In terms of the angular moments of the global scattering
kernel, we can write the force as

F= maf dv v“fd Q Qf(v,n:0,7)
0

- mf dv v3f dv' v’zal(v’—»v)fd Q' f(v,nQ,r) .
0 0
(3)

Here we have written the velocity as v = v and n is a unit
vector in the direction of particle motion. Therefore, the
problem reduces to a calculation of f for the particular case
of interest.

lil. THE TRANSPORT EQUATION

The Boltzmann transport equation may be written in
the form'®

VYAV =nI( £ 1), (4)

where J( £, f}) is a nonlinear collision term. An implicit as-
sumption in our work on rarefied gases is that any deviations
from the local Maxwellian distribution must be smalil. Thus
we write

f(v,r) =f0(v,r)[1 +h(V,l‘)] 5 (5)
where f; is the local Maxwellian and # is, in an average sense,
small compared with unity.

In the present problem, we consider a plane surface ly-
ing in the plane x = 0 so that x is the coordinate normal to
the wall. Here, z is the coordinate along the wall and since we

1052 Phys. Fiuids, Vol. 31, No. 5, May 1988

are only concerned with two-dimensional variations at this
moment, we shall not require a third coordinate. The local
Maxwellian is therefore

Sour) = n(x,z) [m/2rkT(x,2)]*?

xexp{ — [mv?/2kT(x,2)1}, 6)
where the total particle density
n(xz) =ny[ 1+ (n,/ny)x + (n,/ny)z] (7
and the temperature is
T(xz2) = To[1 + (T,/To)x + (T,/Tp)z] . (8)

The subscript x or z indicates gradient with respect to that
direction. Assuming the perfect gas law, p = nkT, where p is
constant, we eventually find for small perturbations

fotvr) = no fu(){1 + (mv?/2kT, — ) (K, x + K,2) },
(9)
where K, =T,/To, K, = T,/T,, and
fo(v) = (m/27kT,)% % exp[ — (mv*/2kT,)].  (10)

Inserting Egs. (9) and (5) into Eq. (4) and neglecting sec-
ond-order terms, leads to

5 5
K.c, (c2 — —) + chz(c2 — —)
2 2

dh{e,x)
* x

+c + V(cYh(e,x)

(11)

In arriving at Eq. (10) we have set ¢ = mv*/2kT,and noted
that the perturbation varies only in the direction normal to
the plane. Here, V(c¢) is the collision frequency and K(¢,¢")
the scattering kernel between gas atoms.'?

Following standard procedure, we change ¢ = (c,u,y)
to polar coordinates, where 4 = cos € and define

= Jdc’ K(e,e)e “h(c' x) .

27
gleux) = if dy cos yh(c,x), (12)
m Jo

27
plex) =—!—f dy h(ce,x) (13)
27 Jo

where Eq. (11) decouples for p and g in the following way:
K,cc(c2 - i),u +cu Gplepx) V(c)p(ep,x)
2 ox
2L +1

=L§0 2
1

X | dp' P (u)p(c ' x)
-1

P, (u )J de' ¢%e= K, (¢,')
(1]

(14)
and
K,C(c2 — %)(1 — ' teu a—g(%ﬂ + V(c)g(ep,x)

& 2L+1
Zh2L(L+ 1)

1
X j du' PO (u)g(c gt x) -
—1

The angular moments K (c,c’') are defined in Ref. 13.
The gas—wall boundary condition is taken for simplicity

Py (,u)J. dc' ¢~ K, (¢,")
(¢]

(15)
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to be perfectly accommodating with diffuse reemission. This
leads to'?

glepu,x) =0, pu>0, (16)

plep,0) = 4f du' p f dc' c®e=<'p(¢, —u'\0), p>0.
(17)
Although it does not appear to be possible to solve these
equations as they stand, it is useful to extract as much phys-
ical information as possible from them before introducing

further approximations. Thus it is readily shown that the
solutions can be written as

plep,x) = Bo(? —3) — K ca(e)p — p,(cpu,x) (18)

and
glepx) = c[4o— K,a(e) ] (1 —p?)'? — p, (%)
(19)

where p, and p, are functions that tend rapidly to zero as x
increases. Here, B, and 4, are constants to be found and a(¢)
is the solution of the Chapman—Enskog thermal conductiv-
ity equations,'® viz.,

- c(c2 - —;—) + cv(c)a(c)

=_f dC' Clse_clzKl(C,C’)a(C’) , (20)
0

where

f dcc¢ e“za(c) =
(]

Therefore, at distances several mean free paths from the wall
the asymptotic parts of Eqgs. (18) and (19) will describe the
distribution function.

We can also write the force on the particle in terms of g
and p by means of Eq. (3). Thus the force arising from the
component of temperature gradient perpendicular to the
wall is

o 1
F (x) = AkenoTo (af dccle~ czf cp up(c,pt,x)
Jr o -1

—f dccf de'c*e= 5, (c' —¢)

X f du' ,u’p(C',,u’,x)) )
-1

(21)

(22)
where

(kTy/m)o, (V' -v) . (23)
Similarly, the force resulting from the parallel gradient is

= ZknTo (afwdc cle=¢
Jr o

1

X d,u(l

&](C'—’C) =

Fy(x)

— 1) 2gleux)

J. dec? f de' ¢~ ",(c'~c)

XJ du'(1 —,u")”zg(c",;t‘,x)) .
-1

In the remaining sections we will solve the equations for

(24)
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p and g under various assumptions and hence obtain expres-
sions for F, and F.

IV. SPECIAL SOLUTIONS

Equations (14) and (15), with their associated bound-
ary conditions (16) and (17), have been studied extensively
in the context of rarefied gas dynamics.'®' For example, Eq.
(14) describes the temperature slip problem that leads to a
knowledge of gas behavior in the neighborhood of a heated
wall. Equation (16) is also well known; it describes the phe-
nomenon of thermal creep, i.e., the movement of a gas along
a wall because of local stresses in the gas at the wall surface.
In the present problem we are making use of these solutions
to calculate the force on a small particle. For purposes of
illustration, therefore, it will only be necessary to obtain sim-
ple solutions to find general trends. More accurate solutions
would require extensive numerical studies that we wish to
avoid here. Also, in order to avoid the use of complex gas—
particle scattering laws, we will assume a mixture of specular
and diffuse reflection. Then, the form of o,(¢’—c) be-
comes'?

— (80/9)acc'e= <, (25)

where a is the thermal accommodation coefficient. With this
assumption, we may write

4kn0T00 « 4 2 !
F (x)=—22—| dcce duup(cux), (26)
Jr o -1

o,(c'-c) =

where we have made use of the relation

o 1
f dece=<| dupp(cux) =0, (27)
0 —1
which can be derived from Eq. (14)."
Also we have
Fi(x) = ———anOT"af dec (c + ___a\/_)
Jr o
1
><e-°’f du(l — ) Pglepx). (28
-1

Knowledge of p and g will enable the forces on the particle to
be obtained.

A. The force normal to the surface

The problem involving F, has been solved by the author
in an earlier publication® using a simple BGK model with a
constant cross-section. Thus we assumed that X, (c,c’) =0
for/>1and

K, (c,c'y=yec'V(eYV(C),

where

- =f dece=“V(c) .
0

For the constant cross-section model we further assume that
V(c) = ¢X where X is a constant and is related to the ther-
mal conductivity of the gas by the relation

i-_-.z_\/iill_(L)m
3 3 nk \2kT,/

(29)

(30)
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The resulting transport equation may be solved exactly
and the force given by

4nyokT, (ﬁﬁ _g_p“(x))’
N

F (x)= — 31)

64 X 3

where § = 3(1 — 817/256) and p,,(x) arises from the na-
ture of the solution of the equation, which we have been able
to write as

plep,x) = po(.x) + cpi(.x) + ¢*py(p,x)
and

(32)

1
Pu(x) =J dp up,(p.x) . (33)
-1

An exact expression for p,,(x) can be obtained by the
Wiener—Hopf technique' but we have found that the follow-
ing simpler expression is accurate to better than 0.5%, viz.,

(x) = —5"—(—4— 3 (zx)) (34)
pll - 2 9\/; 8 4 ’

where E,(x) is an exponential integral.'>
Inserting this into Eq. (31) and using (30) leads to

32 ( m )‘/ 2dr
oAr —_—
2T 2kT, dx

9
X(l - if E,(Ex)).

We observe that as x2— o, F, becomes equal to the
classical infinite medium value of Schmidt and Waldmann
for a constant mean free path. It is interesting to note that the
ratio of the force at infinity to that at the surface is 1.003.
Thus there is a very small variation indeed in the force as the
surface is approached. How much this depends on the as-
sumption of a constant mean free path can only be decided
by solving for p(c,u,x) with other scattering laws. Unfortu-
nately, only the constant cross-section case of the tempera-
ture jump problem has been solved completely although nu-
merical results do exist for other cases. Thus in order to
obtain an estimate of the effect of a velocity-dependent colli-
sion cross section we shall adopt an approximate method
suggested by Kladnik and Kuscer'® for a problem in neutron
transport theory. This method enables an approximate value
of the force at the surface to be obtained.

We note that the boundary condition (17) relates the
values of p( 4 u) at the wall for ¢ > 0. Kladnik and Kuscer
assume that for u <0 the value of p takes on its asymptotic
value, viz.,

F (x)= —

(35)

plep,x) =By(* —3) — K. ca(cly, p<0.  (36)
Now using Eq. (27) we may show that
P(C,/-‘,O) = —%Bo’ ﬂ>0- (37)

Also using another relationship derivable from Eq. (14),
viz.,

1 ©
J dp,uf de e = “p(cu,x)
-1 0

= —inf de a(c)e= (38)
3 o
we obtain
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B(,=—§-Kxf de c®a(c)e=< . (39)
0

From its definition, therefore, we find

SknoToo Kxjwdc 05(1 + £ c)a(c)e‘cz .
kN o 16 )

The corresponding expression for F, (0 ), which uses
no approximation to p, is

F (0) = —

MKXJ dcca(c)e< .
(¢]

3w
Since F, (0) is an approximation, it is useful to estimate its
accuracy by comparison with the exact result that we have
for constant cross section, viz.,

F (0) = — (neToo/Nm) (K. /2) .

For this case, the approximate value of F, (0) is given by

F(0)= — nOTOaf}_( 8 +9\/E).
Jr 2 \9/r 32

The value of the quantity in round brackets in Eq. (43)
is equal to 1.000 005 and so our approximation is extremely
good. It can be expected that the results for other scattering
models will be of high accuracy. Thus if we now assume that
the collision frequency is constant, viz., ¥(c) = A, then we
find that

F (o) = — (4n,Teo/3\m)(K,/A)

and

Fi(0)=— (41)

(42)

(43)

(44)

F (0) = — (2nokTy0/3Jm) (1 + 907/256) (K, /A) . (45)

The quantity F, (0 )/F, (0) =0.950 36 is of interest be-
cause it indicates that the ratio of the force at the surface to
that at infinity is sensitive to the scattering law. For constant
cross section there is a very small reduction in the force at the
surface of 0.3%. On the other hand, for constant collision
frequency, which is a more realistic variation, the surface
force is some 5% greater than the value at infinity. Using the
correct form for ¥(c¢), viz.,"?

V(c) = (e~ “/Jm) + (¢ + 1/2¢) erf(c) (46)

it may be shown that F, (o0 )/F, (0) = 0.977 23. Thus it
does seem, on the basis of the BGK model at least, that the
force increases as the particle approaches the surface but
only by about 3%. The constant cross-section model is
therefore somewhat misleading in this respect. However, de-
finitive conclusions cannot be drawn until a more realistic
energy exchange model is employed for the gas. Experience
shows, however, that the velocity dependence of the mean
free path is far more important in determining the transport
behavior near a wall than the detailed energy exchange pro-
cess.

B. The force parallel to the surface

Before dealing in detail with this case, it is useful to look
at the value of F () using the asymptotic solution of Eq.
(15), viz.,

asy (%) = c[ Ao — K,a(c) ] (1 —p?)'/2. (47)
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From Eq. (28) we observe that

Fi(o0) = 2KTo00 [A0<1 + E’L)
Wr 8

- K,fwdc cSe“za(c)] , (48)
0

where, as yet, A, is unknown. To obtain an estimate of the
surface force F (0) we can use the same approximate device
as before, viz.,

glepux) =0, u>0, (49)
= [4o— K.a(c)]e(1 —p®)'"?, p<0. (50)

From this we obtain
Fy(0) =4F) () . (51)

Thus the force decreases towards the surface quite markedly
in contrast to F, (x), which changes by only a small amount.

To make further progress it will be necessary to obtain a
solution of the equation for g(c,u,x). Advances in this direc-
tion have been made by Williams® where an exact solution
has been obtained for the velocity-dependent BGK model as
defined by Eq. (29). In that work, the primary goal was the
calculation of the thermal creep velocity of the gas along the
wall, viz.,

© ) 1
q(x) = —Lf dec cﬂe‘“J du(l —u®)%glepu,x) .
Jr Jo -1
(52)
Using the representation of Eq. (19), we can write Eq. (52)
as

1 1 J“ s @2
x)=—A,—— | dccle
q(x) 2 0 \/; A

1
xf a1 =), (o) (53)

where p, tends rapidly to zero as x — o . Thus the asymptotic
creep velocity of the gas past the wall is

Gusy =14, (54)

Therefore, the gas moves in the direction of increasing tem-
perature. Now we have shown in Ref. 9 that for the constant
cross-section model

Ay, =2K,/33m, (55)
and for constant collision frequency
K, ( 0% 1 )
A, = —+—], 56
0= ) + 2 (36)

where g, = 0.7662,... . Using these values we can write the
forces as follows from Eq. (48). For constant cross section

Fy () = § nokTooa(K, /%) (57)
- 4‘[’70(1/1,( i )Vzii—T— (58)
27 2T,/  dz

and for constant collision frequency

K, [{ %
Fi () _ BknoToo A2 [(_L+L)(1 +ﬂ) ~L]
Wr A 2 4 8 2
(59)
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__32 (,,1( m )mﬂ
15y \2kT, /) dz

<|(Z+5)(+) -]

where A ;- is the thermal conductivity of the gas. The ratio of
the two values of F} (o ) for constant cross section and con-
stant collision frequency is 0.848 98 for o = 1.

While the general form of g(c,u,x) can be obtained by
means of the Wiener—Hopf technique® the result is complex
and no simple expression is available for F (x), exceptinthe
case of constant cross section. Then it may be shown that the
exact solution is

glepux) = — (K,72)(1 _#2)1/2(02__% )
X[1—e~*"*H(p)],

where H(u) is the Heaviside unit function.
From this we can obtain a very simple expression for the
creep velocity, viz.,

(60)

(61)

K,
a0 =—=(1- HEEn -EE01), @)
KNS 4
2 Ar dT( 3 )
=— - |1—- = [E,(2Zx) — E, (= . (63
S p dz 4[2( X) 4(Zx)] (63)
Thus
A
Gasy =£_T.£, (64)
9 p dz
where p is the gas pressure, and
q(0) =44, - (65)

While the limiting cases g,,, and ¢(0) have been given be-
fore,® we present for the first time the complete solution for
q(x) over the whole range of x. From this expression we may
conclude that the asymptotic velocity is reached very rapid-
ly, i.e., within about two mean free paths from the surface.

For a constant collision frequency two simple results
emerge, viz.,

a2 T
qasy =(._0_+_1_)£.4__£

2 4/5 P dz (%6
and
q(0) =(.ﬂ’_ - .l_)ii_T_iT_ (67)
2 25 p dz’

In this case g,,, = 3.54(0).
Using Eq. (61), we can now calculate the force and find

m. \V*dT

2kT, ) dz

x{1 —3[E,(Zx) — E,(2x)]}, (68)
which has the same functional dependence on x as does the
creep velocity. Clearly, F (0 ) = 2F) (0) confirming the ac-
curacy of the approximate method. We also note, in contrast
to the normal force F|, that F) is in the same direction as the
temperature increase. At first sight this is curious because we
expect particles to move in the direction of decreasing tem-
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perature. However, in this case there is a mass motion of the
gas with velocity g(x) that carries the particle along. A more
realistic measure of the thermophoretic force would be to
refer the particle to a system in which the particle is at rest
with respect to the mass motion caused by thermal creep.
This can be done by calculating the drag force on the particle
caused by the creep velocity g(x).

As we have shown in Ref. 8, the drag on a small particle
moving with velocity U is

8mny, (ZkTo )"2U
3Jr \ m

u= —

X(O’—J. dcc3f dc c’3c'r,(c'—.c)e—"2). (69)
(4] (¢}
In terms of the specular-diffuse model, this becomes
172
Fy= — ma(1+ﬂ)(ﬁ) U. (70)
KN 8 m
Thus the net force on the particle when U = ¢(x) will be
F=Fy +F, an
which, from Eqs. (62) and (68), leads to
172
27 2kT, dz T
x{1—3[E,(3x) — E,(3x)]}. (72)

This force is always negative and is consistent with conven-
tional thinking about thermophoresis.

In practice, if the particle is allowed to move, it will
acquire a constant velocity U, given by setting F = 0, viz.,

3r a /1_1_41
108 1+ a(#/8) P dz
x{1 - i[Ez(zx) - EA(ZX)]} .

Uy(x) =

(73)

Thus there is net motion in the direction of increasing tem-
perature. We might also enquire about the velocity of the
particle normal to the wall arising from F, (x). Since the
particle is moving in the x direction, it will experience accel-
eration and thus it will be necessary to solve the equation

dU
m—=F, (x)—Fy(x),
7 1 (x) — Fy(x)
where U, = dx/dt. However, since F, (x) varies so slowly
over the range x =0 to «, it seems not unreasonable to

neglect the acceleration term and obtain

(74)

9 p 1+an/8 dx
X [1— (987 /32)E(3x)] . (75)
Thus in terms of absolute magnitude, we find that
|U) (0)/U, ()| = a(a/8)|T,/T,| (76)
and
|U, (0)/U,(0)| = a(Na/N|T,/T,|, (77)
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where we have used the exact value of F, (0) to calculate
U, (0), viz.,

FLOoy=2 a/lT( m )1’2 ar
3 2kT, dx

and we have writtend7T/dx =T, anddT /dz=T,.

We observe that the relative magnitudes of U, and U
depend on the respective temperature gradients, but if these
are equal then |U, | > |U; |. The general shape of the trajec-
tory of the particle as it moves towards the wall can be ob-
tained by integrating the equations of motion. In general the
particles will not move normally to the wall but rather in a
curve tending to positive z.

(78)

V. SUMMARY AND CONCLUSIONS

The forces acting on a small particle situated in a gas
with a constant temperature gradient have been investigat-
ed. The gas is bounded by a plane wall and therefore it has
been necessary to account for the simultaneous action of
wall-gas and particle~gas interaction. It is found that the
presence of the wall affects the conventional value of the
thermophoretic force within a few mean free paths of the
wall. It is also found that the gas atom scattering law has a
non-negligible influence. Thus for a temperature gradient
normal to the wall, a velocity-independent collision cross
section predicts that the force at the wall will be less than
that at infinity, whereas a velocity-independent collision fre-
quency predicts the reverse situation. The change in the lat-
ter case is around 5%.

If the temperature gradient is parallel to the wall, then,
owing to the existence of thermal creep, the particle will
move in the direction of increasing temperature. Although
this is at first glance inconsistent with our understanding of
thermophoresis, it is in fact a result of the mass motion of the
gas. If the latter is accounted for by working in a system of
coordinates moving with the creep velocity then a net force
in the direction of decreasing temperature is found. Never-
theless, in practice, the direction of motion of the particle
will be governed by compounding the normal and transverse
forces and will lead to curved paths as the particles approach
the wall. The precise form of these paths will depend upon
the relative magnitudes of the normal and transverse tem-
perature gradients.

While the phenomenon of thermophoresis has been
studied for many years, it is only recently that the influence
of a wall has been included in the calculation of the force. In
fact, the motion of a particle paraliel to a wall has hitherto
received no attention and it is of some interest to note its
particular behavior especially in view of its possible effect on
deposition onto surfaces. In most calculations of thermo-
phoretic deposition it is tacitly assumed that the temperature
gradient acts normally to the surface, whereas in many engi-
neering situations this may not be the case. While this effect
is a relatively small one in the Knudsen regime, it could be
more influential for smaller Knudsen numbers and a study
of this effect in the hydrodynamic regime, analogous to the
work of Reed and Morrison® and Williams,® would be profit-
able.

Finally, we comment on the effect of diffusion on the

M. M. R. Williams 1056



motion of the particle. It is clear that a particle of such small
dimensions is likely to be strongly influenced by Brownian
motion unless it is exceptionally massive. Thus the actual
concentration of particles in the neighborhood of a boundary
has to be determined by a diffusion equation as discussed by
Chandrasekhar.!” Therefore, if C(r) is the steady-state con-
centration of aerosol particles, we have the following balance
equation:

DV3C(r) — V-[VC(r)] =0. (79)

In plane geometry, with the velocity directed in the negative
x direction, we can write

d*C(x) B
dx?
where C(0) = 0. If C_, is the current of particles at infinity

and V() = V_, the solution of the above equation be-
comes

Cx) =C°°DV°° fo dx’ exp (%f V(x”)dx"). (81)

The particle current to the wall is readily seen to be
equal to C_ V_ and therefore does not depend on the vari-
ation of ¥(x) with position. On the other hand, for spherical
and cylindrical bodies, there is a dependence on ¥(r) but,
unless the radius of curvature of the body is comparable to a

D 4 vxem]=o, (80)
dx
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mean free path, the effect of variations in the thermophoretic
velocity resulting from surface perturbations will be negligi-
ble as far as the value of the particle current to the surface is
concerned.
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