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1. Introduction

Detecting the occurrence of an underlying process change, when observations are related
only probabilistically to the state of the process, has long been a concern of statisticians,
engineers, economists, epidemiologists, etc. In this paper we present an analysis of this
“detection of change” problem in the context of machine monitoring. Applications to areas
such as quality control, health, military surveillance, or economic analysis should be readily
apparent.

Fundamentally, the problem is to determine when a system goes “out of control” or “fails”
and to do this “as soon as possible.” We use the term “policy” to describe a procedure
that prescribes when to take an “action” consistent with a process change, after observing
available information. Usually, an economic or other advantage is gained when a policy raises
an “alarm” that detects the change soon after it happens. However, it is also desirable to
avoid costly “false alarms” that may occur while the system is still “in control,” i.e., when
no process change has occured.

The balancing off of these two criteria — quick detection and few false alarms - is the basis
of most quality control and control chart procedures (e.g., CUSUM) developed over the past
sixty years (see Shewhart (1981), Roberts (1966), Johnson and Leone (1962), Montgomery
(1980), for a historical perspective and related formulations). The most common approach
to “optimize” these procedures (e.g. Moskowitz, Plante and Chun (1989)) uses an economic
model that explicitly assumes costs are ascribable to these two criteria, or to equivalent
operational measures of the procedure. These economic approaches depend upon specific
policy structures which, although intuitively appealing, and lead to easy computation or
evocative charting methods, are not necessarily optimal in any sense, or even, in some cases,
consistent.

Thus, a full understanding of how to effectively and appropriately operate a monitoring

(or “surveillance” or “inspection”) system, and how to compute the associated performance



measures, is still lacking. As a step towards such an understanding, we address four issues,
in the context of a rather simple but generalizable framework, that are relatively neglected

in both the literature and practice.

1. A traditional performance measure is the average run len: h (ARL): the expected time
until a false alarm occurs given the system remains “in control.” This attempts to
capture the relative cost associated with false alarms — a policy with a longer ARL
typically engenders lower false alarm costs. We propose instead to use the reasonable,
computable, and economically supportable measures of “false alarm rate” and “fraction
of time processing false alarms” during the entire monitoring process. These measures
contribute to the typical costs associated with false alarms: a fixed cost per false alarm
(e.g., to allocate resources) which is captured by the false alarm rate, and a variable
cost for time spent processing false alarms (e.g., labor hours and lost operating time)

which is captured by the fraction of time spent processing false alarms.

2. A traditional “quickness of detection” measure is the expected time to detect that the
system has gone “out of control” or “failed.” This detection time is used to estimate
the cost of operating the system while in a failed condition, or “down” (e.g., while
producing scrap). However, there is more. Typically failure costs also depend on the
failure occurance (e.g., replacement part costs) and on the time spent after detection
to renew the system (e.g., lost production time). To understand total costs over time,
the frequency of these cost-incurring events is needed, particularly when one wishes to
minimize average cost per unit time. These costs are captured by the failure frequency
or “true alarm rate” (assuming all failures are eventually detected), the fraction of time
the system is down (i.e., operating while in a failed condition or halted for renewal
after a failure detection), and the expected time to detect a failure. Hence, we focus

on calculating the true alarm rate, fraction of time down, and expected detection time



while routinely using the monitoring policy. This is in constrast to similar measures

traditionally computed given the monitoring process starts when the system first fails.

. Most analyses of monitoring system performance produce only asymptotic results,
involve computational difficulties, are relatively complex and difficult to explain to
potential users, or require unrealistic conditions on sampling processes. Qur approach,
instead, provides a method for the computation of operating performance measures
which (although approximate) is computationally straightforward, easy to understand

and implement, and holds for a wide range of parameters.

. Our approach allows sensitivity analysis with respect to important parameters such
as the expected operating time until system failure and the relative discriminatory
power of various sampling devices. We do not require an explicit assessment of hard-

to-estimate costs associated with false alarms and late detections.



2. Formulation of the Basic Monitoring Problem

Consider a system that can be in one of two conditions, G or B (for “Good” and “Bad”).
The system starts in G’ and enters B after some operating time T, where T is a discrete
random variable (r.v.) with probability mass function (p.m.f.) f(t); t = 1,2,.... Once the
system enters B, it remains there until some exogenous action is taken. When this action,
called checking, is taken the system is halted (i.e., it stops operating) and its condition is
assessed with certainty. Checking may find the system in G or B and, in either case, we
assume it is renewed (i.e., made as “good-as-new”) before operations continue. The time
it takes to renew after checking depends on system condition. In particular, this time is ¢
or b if the system is found in G or B, respectively. Typically ¢ < b since renewal from B
often requires fixing something while renewal from G may only require a brief inspection to
ascertain it is in G. Since the system is halted during renewals, the operating time T' until
failure differs from the system time until failure. The system time until failure is T plus the
total time spent checking and renewing (while in G) prior to failure.

For convenience, we use language appropriate to a manufacturing process that starts
producing good parts (hence “G”) and at some operating time T later it “fails” and then
produces bad (hence “B”) parts or no parts at all. We do not consider the explicit economic
or physical consequences of the process while in either condition. As we will see, these can
be subsumed into appropriate performance measures of a procedure for determining if the
system has entered B.

We use the following notation:
{G, B} = set of possible system conditions,
C; = condition of the system at time ¢, ¢t =0,1,2,..., and

P, = prob{C; = B|Co = G}, t =1,2,3,....



We now consider the use of an (imperfect) information gathering procedure with a se-
quence of events as shown in Figure 1. At every observation time 7; = 1,2,3,... a random
variable X is observed with probability density function (p.d.f.) fx,(-). This “monitoring” of
X provides information about system condition since its p.d.f. depends upon the condition.
This information is used to immediately “update” f(t) and determine if checking should be

done.

In particular, let

p(z) HCi=G,1=12,...,
q(z) ifC;=B,1=1,2,...,

define the random vector X, as
Xn = (Xl,XQ, v Xn)a

and its realization z, as

z, =(21,2,...2,),

and define
P(z,) = PTOb{Cn =B|Co =G, X; =2, X3 =29,..., X, = xn}-

It is well known (e.g., see Girshik and Rubin [1952 |, Shiryaev [1963], or Pollock [1965] for
early references, or Pollak [1987] for a more recent one) that for this situation, the following
form of decision rule is optimal (in that it minimizes average cost per unit time) for a variety

of reasonable economic and/or statistical criteria:

Probability Threshold Rule (PTR): Decide (or take appropriate action con-

sistent with such a decision) that the system is in B when P,(z,) equals or

exceeds some threshold p*.
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Figure 1: Sequence of events involving possible system “failure,” monitoring by
observing r.v. X;, and deciding whether or not to check.



The PTR policy effectively sets the structure of the monitoring procedure: continuously
compute P,(z,) and react when it equals or exceeds p*. By varying the threshold p*, the
decision maker, given the ability to compute P,(z,), can explore trade-offs among various
criteria and performance measures. Note that there is only this one parameter, p*, to vary.

The event when P,(z,) equals or exceeds p* is called an alarm; subsequent exploration to
determine the system’s actual condition is called checking; and making the system “as good
as new” is called renewing. An alarm is called a false alarm if, upon checking, the system is
found to be in G, otherwise it is a true alarm.

This paper first develops a way to conveniently compute P,(z,) for any set of observed
values {z1,z,,...2,}. Given this “probability the system has failed given z,,” we com-
pute five performance measures arising from two competing criteria that characterize the
“goodness” of the procedure: the cost associated with false alarms and the cost associated
with failures. The first is measured by the false alarm rate and the fraction of time spent
processing false alarms. The latter is measured by the true alarm rate, the fraction of time

down (i.e., in B), and the expected detection time. These performance measures are formally

defined as:
ry = false alarm rate: the expected number of false alarms per unit time,
ps = fraction of time spent processing false alarms,
ry = true alarm rate: the expected number of true alarms per unit of time,
pp = fraction of time the system is down (in B), and

6 = expected detection time: the expected time after failure until P,(z,) equals or exceeds

the threshold p*.

These measures capture the essence of the operational performance of PTR: P,(z,) allows

the rule to be followed (given any assigned value of p*); r, pg, and & represent the waste

7



due to failures (failure frequency, fraction of time down, and expected detection time); r;
and py represent the waste due to false alarms (false alarm frequency and fraction of time
spent processing false alarms).

These measures also support a simple yet reasonable cost model. Given the following

costs:
K = fixed cost per false alarm,
V¢ = variable cost per unit of time spent processing a false alarm,
K, = fixed cost per true alarm,

Vi = variable cost per unit of time spent while the system is down and a failure has been

detected, and

V, = variable cost per unit of time while the system is down and no failure has been

detected,

then the average cost rate for the procedure can often be expressed as
Kyrs+ Vips + Kiro + Vi(pg — 1i6) + Varsd.

Even if such a linear cost model model or cost parameters can not be specified, it is important
to note that these measures serve to summarize the behavior of the policy.

An excellent way to summarize the performance of any procedure that purports to be ap-
propriate for monitoring a system change process is to develop an Operating Characteristic
(OC) for the procedure. Similiar to the Receiver Operating Characteristic, used in telecom-
munication and signal detection theory, and related to the power curve of simple hypothesis
testing, an OC is simply a plot of achievable levels of two competing performance measures.

For example, an OC could plot the expected fraction of time down, pg, versus false alarm

rate, ;. Consider such OC’s for three different hypothetical monitoring procedures A, B
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and C, as shown in Figure 2. Each curve represents the operating points (i.e., values of pp
and ry) achievable by varying free parameters within the procedures. In the PTR policy,
this is done by varying the threshold p* to produce large (near 1) pp and small r; when
p* — 1, and small pg and large r; when p* — 0.

Procedure C is clearly better than A or B, since it has a lower pp for any given ry or
lower r; for any given pg. (Perhaps procedure C is based upon observing variables z; that
are not available to A or B). Procedure A would be preferred to B only in those situations

when early detection (i.e. small pg) is more important than having high false alarm rates.

1
Py

t

Figure 2: Operating Characteristics (OC) for three hypothetical procedures A, B
and C.
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Figure 3: A single cycle of the checking/monitoring procedure. Arrows indicate
checking actions and renewals; T = operating time until failure which
occurs at system time T + (n — 1)¢; D = detection or response time;
t; = time of :** check — a false alarm for 7 < n; t, = time condition
B is detected; and t, + b is the time the system re-enters condition G

which ends the cycle.

3. Some Relations Among Performance Measures

For a process governed by failure time p.m.f. f(t), where t is the operating time until
failure, and any reasonable checking/monitoring procedure, there exist general relations
among the performance measures. Figure 3 shows a single cycle of a procedure that starts
with a renewal and ends with a renewal following the first check that finds the system in B.

If this cycle contains n checks at times t,,t,, - -,t,, then n — 1 checks find the system in G,

1.e., there are n — 1 false alarms, each requiring a time c to process.

As shown in Figure 3, D is the (random variable) response time. The performance

measure § is E(D) by definition, and the expected cycle length is

C(be)=E(T)+c(n-1)+6+b

where E(T) = Y. tf(t) is the expected operating time until system failure. Note, the system

remains in B during the renewal time interval of length b, and it cannot fail during the
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checking time interval(s) of length ¢ while in G.
Using the fundamental renewal theorem, if y is the expected number of false alarms until

failure, then

ry= a (2)
ET)+cu+6+b
and
1 3)
ry = .
"TEM) +cutb+b
The ratio of these two equations gives
r
p=-L (4)
Tt
Solving for § in equation (3) gives
1
5=—T——E(T)—c,u—b. (5)
t

Since é + b is the time in B which occurs at rate ry, and c is the lost operating time for each

false alarm which occurs at rate ry,

pp = (6+0)r, (6)

py = cry. (7)

These relationships hold for any checking or monitoring procedure. If r; and r, can be
calculated, then given the parameters E(T), b, and ¢, we can calculate y, é, pp, and py.

A traditionally used Average Run Length measure, ¢g, is the expected time to first
alarm given the system remains in condition G. In spite of its popularity, using ¢g as a

performance measure of a monitoring procedure is questionable for several reasons:

a) the hypothetical situation where the system is “forced” to remain in G until the first
alarm (an assumption required for computing @¢) is hard to justify as a realistic one,

and in any event never represents reality;
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b) its interpretation is unclear if the system fails before the first false alarm: ¢g is really

a conditional expectation, yet it is not computed as such in the literature;

¢) in any event, in most situations any checking action (not only a false alarm) is costly;
thus @¢ is less relevant than, for example, the total checking (thus cost-incurring) rate

=T+

As a point of completness, we note that if the inter-checking intervals t,,t; —t,t3 —1,,...
etc. are L.I.D. random variables, then the unconditional expected time to first alarm (false
or true), or ¢, is

¢ = EG(tl) = EG(tz - tl) = Eg(tg _ tg), etc.,

where Eg is the expectation given the system was found in condition G when last checked.

The total checking rate r is then
r=rp+r, = 1/¢.

We stress that for nontrivial decision policies, the inter-checking intervals will not be LLD.
For example, while using the TPR policy with any informative observations, the expected

time between checks becomes smaller once the system fails.
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4. Computing P, (z,)
The computation of P,(z,) follows from a straightforward application of Bayes’ Theorem:
Pi(X,) = prob{T <n| X, =z,}

prob{T <nnX, =z,}
prob{X, = z,}

(8)

where
prob{T <nN X, = z,} = ilf(j)nf;:pwnzzjq(xk) )
and J
prob{X, =z,} = prob{T <nNX,=z,}+ 3 f(MMple)  (10)
j=n+1

Substituting (9) and (10) into (8), and dividing numerator and denominator by I, p(z;),

gives
I HIAEN
Pi(z,) = —2= - (1)
Y F) T, Llae) + Fln)
where

L(z:) = q(x:)/p(z:) (12)
is the likelihood ratio for condition B given X; = z;, and
F(n) = ) f(i)=prob{T >n}.
t=n+1
For notational convenience in the remainder of this paper, the argument z, will be left out,
e.g., P,(z,) will be written as P,.
Although computing P, directly from equation (11) is straightforward, it is advantageous
to use the “odds in favor of condition B” ratio R, = P,/(1 — P,), which is obtained directly

from equation (11) as

(n)]™ Zf )T L (k). (13)
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This allows a recursive representation for R,:

L($n+1)
Ry ==———=
+1 + 1)

FOAL PRy + fla + 1) (14
which can be confirmed by substitution into equation (13). Equation (14) is an excellent
way to compute P, = R,/(1+ R,) since Ry, is calculated from the previously obtained R,
after each new observation z,,; by a simple addition and multiplication.

Equation (14) also clarifies the challenge of computing the expected time until P, first
equals or exceeds p* or, equivalently, the first time R, equals or exceeds the “odds threshold”
p*/(1 —p*). In particular, when z,4, is replaced by the r.v. Xy41, we see that equation (14)
can be viewed as the generator of a Markov Process R,. This process has as a state space

the non-negative real line R*, with transitions governed by the stochastic behavior of Xj,

which in turn are governed by the p.d.f.s of equation (1).
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5. Special Case: Geometric Time to Failure
The remainder of this paper assumes the operating time from G to B follows the geo-

metric p.m.f. f(t) = a(l —a)"!,t =1,2,3,..., with cummulative mass function (c.m.f.)
Ft)=1-(1-a), t=1,2,3..., (15)

and expectation F(T) = 1/a. Using this distribution in equation (14), the random variables

X; produce the generating equation for the Markov Process R,:

L(Xn+1)

R, =
+H l—a

[Rn + al.

In order to gain notational convenience and some advantage in computation, scaling
and interpretation, the process R, can be transformed into a new Markov Process Z, =

R./a, Z, € R*. This new process has governing equation
Znp1 = U Xn1)[Zn + 1], (16)

where ¢(X,) = L(X,)/(1 — a), and the process has an associated threshold

*

. _ P
ao(l-p")

The absorption behavior (i.e., the distribution of time until Z, first equals or exceeds
z*) of this process has a long and important history of study (see Shiryaev 1978), with
computational (as contrasted to structural) results essentially constrained to limit theorems
and approximations [e.g. Pollak (1985)]. Our emphasis is not on absorption, but on the
steady-state behavior that results when the system is renewed after checking. This allows

direct computation of the measures r; and r; from which we get 6, pg and p; (see Section

3).
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6. No Information and Perfect Information

Before exploring how the performance measures and OCs might be calculated in general,
it is instructive to examine two special situations. First, consider the limiting case where
observations provide no information, a situation equivalent to p(z;) = ¢(z;) or L(z;) = 1,

for : =1,2.... In this case, equation (14) reduces to
Ruyi = [F(n+ 1)]7'[F(n)Ra + f(n + 1)),

which is a deterministic difference equation with solution (given boundary condition Ry = 0):

F(n)
R, = =
F(n)
From the definition of Ry, this gives
P, = F(n).

Clearly, observations of z, have no effect on computing P,, which is simply the cumulative
distribution for the failure time T'. This result holds for any f(t).

To éalculate the performance measures, we derive expressions for p (expected number
of false alarms per cycle), § (expected response time) and the expected cycle time. The
remaining performance measures follow immediately from their definitions.

The (deterministic) processing time to the first alarm, ¢, is the smallest (integer) n such
that F(n) > p*, ie, ¢ = ngn{n : F(n) > p*}. Since there is a constant probability F(¢)
that an alarm is a true alarm (which is the last alarm in a cycle), the expected number of
false alarms per cycle is

po= OF(8)+1(1 - F(#)F(9) +2(1 - F(¢))*F(¢) + -
1-F(¢)
F(¢)

Computation of § is slightly more complex. If T < ¢, then the time between T and when

action is taken — the response time D — is
D = ¢-T.

16



If kg <T < (k+1)¢ for k = 1,2,..., then there are k false alarms (at system times &,

20+ ¢, 30+ 2¢, ..., and k¢ + (k — 1)c), followed by a “true detection” with response time
D = (k+1)¢-T.

If the system were not renewed, then
oo (k+1)é
5= Y [(k+1)6-1f(t).

k=0t=ko+1

However, since f(t) is geometric, the process renews after a false alarm, and

¢
2 (¢ =1)f(t)

From equation (15) for F(t),
¢ = min{n:n 2In(l -p")/In(1 —a)}.

Using this in equation (17), after some algebra, results in

(1-a)*—1+ad
al-(1-a)?]

Given 6, p, and E(T) = 1/a, the expected cycle time is
C(bye) = 1/atcu+6+0
which allows calculation of the remaining performance measures from their definitions:

7= wClbe),
1/C(b, c),
pr = /‘C/C(b7c)’
(6+b)/C(b,c).

Tt

DB
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Figure 4 shows an example operating characteristic curve: plots of r versus § as p* varies,
for b = ¢ = 1 and selected values of a. Figure 5 contains the same information presented
in “normalized” time units (i.e., in units of E(T) = 1/a) where r' = r/a is the normalized
checking rate. Since these represent worst case results, any actual information gathering
procedure should produce achievable points below the curves in Figures 4 and 5.

The limiting case of “perfect” information represents another special situation. In this
case the supports of p(z) and ¢(z) are disjoint, so that L(z;) =0 forz =1,2,...T — 1, and
L(z;) = oo for ¢ = T,T + 1.... From equation (11), we see that any non-zero threshold is
exceeded for all n > T', so that § = 0. Since the system is checked only when it fails, u =0
and the true alarm rate is r; = 1/(E(T) + b) = a/(1 + ab), the false alarm rate is ry = 0, the
fraction of time down is pg = b/(E(T) +b) = ab/(1 + ab) and the fraction of time processing

false alarms is py = 0.

18
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Figure 4: Operating Characteristic for “no information” case.
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r/a = normalized checking rate
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Figure 5: Normalized Operating Characteristic for “no information” case.
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Figure 6: Evolution of the Z, process for an observation that (b) leads to check-
ing, and (a) does not lead to checking.

7. An Extension of the Process Z,

When information (in the form of z,,) is gathered, the process Z, described by equation
(16), along with the system condition, determines the behavior of the monitoring procedure.
Figure 6 shows two possible results of computing Z,4; from Z,: an observation of z,;; is

made, and either
a) Zn41 is less than the threshold z*, and the process continues; or
b) Z.41 equals or exceeds z* and action (check and renew) is taken.

Recall that z* = p*/a(1—p*) is the threshold value for Z,, and that Z, > 2* means a decision
is made to check; when this action is taken, the system is renewed (either because condition
B is discovered, or because of the memoryless property of the geometric distribution if

condition G is discovered).

21



The conditions for (a) and (b), respectively, from equation (16) are such that
a) U(zn41) < 2°/(Z,+1), and
b) Uzns1) 2 2°/(Zn +1).

Recall that z; are realizations of random variables X; which are generated with p.d.f.
p(z) while the system is in G, and with p.d.f. ¢(z) while the system is in B.

In order to directly compute the various performance measures, we characterize the check-
ing/monitoring procedure by means of a mixed continuous-discrete state Markov Process
(called, for convenience, “M PZ”) based upon combining the process Z, with the system

condition C,. The performance measures can be obtained from the appropriate stationary

state probabilities of this M PZ.
The state of MPZ at the end of the n** transition will be denoted as S, € S, n =1,2,....
The state space S is the union of five sub-spaces: three singletons and two mixed continuous-

discrete. These sub-spaces are:

So = 0, renewal state: the state entered after the system is renewed, i.e., when Z, = 0 (or,

equivalently, P, =0 or R, =0) and C, = G;

S = {(2*,G)}, false alarm state: the state entered after checking while the system is in G

and occupied until system renewal, i.e., when Z, > 2* and C, = G;

Sy = {(2*, B)}, true alarm state: the state entered after checking while the system is in B

and occupied until system renewal, i.e., when Z, > 2* and C,, = B;
Se = {(2,G) : z € (0,2*)}, set of states where Z, is between 0 and z*, and C,, = G;

Se ={(z,B) : z € (0,2*)}, set of states where Z, is between 0 and 2*, and C, = B.
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The transition probabilities among the states in these sets are governed by the evolution
of Z,, described by equation (16), the behavior of the random variable X, given in equation
(1), and the geometric failure time distribution of equation (15) which implies a probability
a of the system condition going from G to B at each transition (except from S5 where this
probability is zero).

In the following development we assume b = ¢ = 1, since computing results for arbitrary
b and c values (even for zero values) is straight forward — see Appendix C. The steady
state equations for M PZ are derived in Appendix A. We note some of the properties of this

Markov Process:
a) it is ergodic, since there is a single closed communicating class of states;

b) the probability of transition from S or Sg to 0 is 1. Both represent one transition
(since we assume b = ¢ = 1) needed to check and renew the system (the former after

a false alarm, the latter after a true alarm);

¢) due to the geometric failure time distribution of equation (15), the single-step transition

probability:

i) from the set S to the set Sp U Sg;

ii) from the state 0 to the set Sp U Sg.
1s a.
The steady-state probabilities for the singleton states are defined as

To

lim prob{S, = 0},

n—o00

mg = lim prob{S, = Sz},

mp = lim prob{S, = Sg}.
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In addition, we define the steady state cumulative distribution functions for the sets Sg and
Sp as
g(z) = lim prob{S, € (,G) :t <z}, 0<z<2T,
llg(z) = lim prob{S, € (t,B):t <z}, 0<z<2z",
and set, for convience, [I(0) = Ip(0) = 0, Ig(z*) = lim_oIIg(z* — €), and Ip(2*) =
lime_o IIp(z* —¢€) .
If these steady state probabilities and distributions can be computed from the equations in

Appendix A, then the performance measures are easily obtained. In particular, by appealing

to the ergodic theorem for Markov Processes, we know that
7o = expected fraction of time the process is in the renewed state.

Thus, r = r, + ry = 7, since MPZ is in 0 for exactly one time unit per cycle.

Similiarly, since
7 = expected fraction of time the process is in the false alarm state,

7g = expected fraction of time the process is in the true alarm state,

we know that ry = 75 and r, = 7} (recall that ¢ or b, the time to renew from either G or

B, is one time unit). Given these values for r; and r;, we have from the analysis in Section

3 (withb=c=1and E(T) =1/a),

po= :—i (18)

§ = 1_*”&—1-1, (19)
7TB a

pB = 1—%—7T*G, (20)

py = T7g (21)

Thus we can present OC plots (such as r; v.s. pg), given the steady-state probabilities 7}

»
and 7.
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8. Markov Chain Approximation

The steady-state equations used to calculate 75 and 75 - (A4) and (A5) in Appendix A
— are special cases of the Fredholm equation of the second kind, which has a long history of
theoretical study (e.g., Groetsch (1984) or Brunner (1982)) and numerical means of solution
(Schippers (1983)). Indeed these equations have an analogue to those developed by Pollak
[1987] to compute the ARL measure ¢ (rather than the measures like r¢ and pg that we
seek). However, as Pollak notes, a solution method is still lacking for even the simplest forms
of p(-) and ¢(:). The computational literature is problem-specific and essentially suggests
using variable transformations and discretization approximations tailored to the problem at
hand. Following this approach, we now develop an approximation for some specific cases of
p(z) and ¢(z). In the context of our problem this approximation method is equivalent to
proposing that the process M PZ can be approximated by a Markov Chain (“MCZ”) with
finite state space.

To construct MCZ, we require values of Z, that do not cover the interval [0, 2*], but in
fact are restricted to a finite set

ousS'uz

where

S'={z,25,.. . 2m_1}.

The key to this restriction is to find values of z; that are numerous enough, and “cover”
the interval (0,2*) in such a way that the sums over probabilities in S well approximate
the integrals over S implicit in equations (A2) to (A5). Obtaining such a set of z-values is
discussed below; at this point we will assume that S* is available.

Given the finite elements of S', we define a finite state space Z for MCZ
Z2=8US;USgUZzUZp
where the first three sub-spaces are the singletons (corresponding to the renewed, false alarm
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and true alarm “states” of the system, respectively) and

Za {2;: 2, € S, C,=G,1=12,..m-1,n=12,...}

H

Zp {Z,'ZZ,'ESI, Cn=B,i=1,2,...m—1,n=1,2,...}.

Thus Zg represents a subset of Z, values while the system is in G, and Zg represents a
subset of Z, values when the system is in B.

A simple re-numbering of states now allows us to represent MCZ as a (2m + 1)-state
ergodic Markov Chain, which we will refer to as “M C,” with state space 41 = {0,1,2,...,
2m}, o, = the state of MC after the n'* transition, and transition matrix P with elements
[Pl = pij = prob{o, = jlon—1 = 1} for i,j € Iypy1, and n = 1,2,.... Details of this
representation of MCZ and MC are contained in Appendix B.

Given the elements of P developed in Appendix B, the steady-state probability vector

T = {mo,M1,T2,...,Tom }, Wwhere
T = nhr{.lo prob{o, =1}, : =0,1,...2m
can be obtained by solving the set of linear equations:

T = 7wP,

T = 7l

where 1 = {111 ...1}! is the transpose of the unit (2m + 1)-vector.
The key performance measures of interest can be immediately obtained from these equa-

tions since 75 = 7, and TR = To,,.
G B
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9. Special case: Bernoulli Observations
The general conditions under which the “discretization” of MPZ to MCZ is valid, and
which allow an explicit determination of 7% and 7} from p(z) and g¢(z), are not addressed in

this paper. We consider, instead, the following special case of Bernoulli observations, where

X,=0o0rl,n=1,2,..., and

l-a ifz=0,
p(z) =

a ifz =1,
Az) = {ﬂ if r =0,
1-p5 ifz =1.
This situation is a form of classical hypothesis testing: = = 0 is “evidence” of condition G
(e.g- no defect in an observed manufactured product) and z = 1 is evidence of condition B
(e.g. a defect is observed). Thus « is analogous to an “error of the first kind,” and 8 to an
“error of the second kind.” The likelihood ratio is

L(r):{ 8/(1-a) 20,
(1-75)/a ifz=1.

By defining
wy = g
° T (1-a)(l-a)
—_ 1—
wro= a(l —a)’
then



Before writing the steady-state equations for this case, it is convenient to note that, for a

realistic problem,

a) the value of a (the probability that the system goes from G to B on any transition) is

usually quite small;

b) a and B, the “misclassification” errors in a single observation of z, are relatively small

compared to one (generally, a, 8 < .1);

Under these conditions

O<wy<l<w <25,

and equations (A2) to (A6) can be written, after some reduction and algebra:

/

0 if 0 <z < wy,
Oo(2) = (1-a)(1 - ) [la(Z — 1) + ) ifwy <z<w, (23)
\(l—a)[(l—a)Hg(wio—l)+aHG(wil—1)+7ro] if w; < z< 2%,

4

0 if 0 < 2 < wy,
B lalla(Z — 1) + Tp(Z£ — 1) + amy) if wo < 2 < wy,
B lalls (& - 1) + s (3 - 1)]

L +(1—ﬁ){aﬂg(;"l——l)+ng(i—l)]+a7r0 if wy < z < 2%,

o= (1-a)a [HG(z")—HG (;—1-1)] (25)
v = o [lole)~Tlo (= = 1)] + (1= 8) [Ms(e") -~ T (Z-1)]. o
To = Tg+Tg, (27)

where IIg(0) = II5(0) = 0, Ig(2) = lg(z*) for z > 2*, and IIp(2) = (") for z > 2*.
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10. Markov Process Discretization

In order to create the M C' version of equations (23) to (27), we now consider the evolution
of the Z, process of equation (22), when the process starts with Z, = 0 (i.e., Ro = Py = 0).
The possible values of Z that can be generated after the first three observations, assuming

none exceed z*, are given in Table 1:

Observation Number Possible Z, Values Label

n
1 (I 1
wy 2

2 (1 4+ wo)wo 3
(1 4+ wo)wy 4

(1 4+ w)wo )

(14 wy)uy 6

3 (14 (1 +wo)wo)wy 7
(14 (1 +wo)wo)wy 8

(14 (1 4+ wo)wy)wy 9

(14 (1 +wo)wy)w; 10

(14 (1 +w)wo)we 11

(14 (1 +w)wo)w; 12

(14 (1 +w)wy)we 13

(14 (1 +w)w)w, 14

Table 1: Possible values of Z,, after n = 1, 2,3 observations.

Figure 7 shows all possible values of Z, for a = 0.0l,a = 0.2,8 = 0.1, and n = 6.

Each distinct value of Z is assigned an arbitrary “label” number. After n observations
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Z Value

v T Y T T T T T

20 40 60 80 100

Z Label sorted by increasing Z value

Figure 7: Possible Z,, values after 6 observations for a = 0.01, a = 0.2, § = 0.1,

and p* = .1 (or 2* = 11.11). Since calculated Z values exceeding z* are
set to zero and not used subsequently, only 90 out of the 254 possible
Z,, realizations after 6 observations are greater than zero.
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the number of possible distinct values of Z, hence the number of different labels, is clearly
2+l _ 2. However, two important effects allow us to reduce this number, which in turn

allows a practical means of discretizing MCZ to MC:

1. As n becomes large, some values of Z,, satisfy Z, > z*, in which case either state S

or 8y occurs and Z,4; becomes 0;

2. As n becomes large, values of Z, less than z* tend to “cluster” around a finite set W

of m — 1 points (m — 1 = |W|).

Thus, we can approximately incorporate into a single discrete value z; all those Z, that are
within some small range ¢ > 0 of ;. Then the entire evolution of the process can be repre-
sented by a M C with states 0, S5, Sg plus the 2m —2 states from the cross product of the set
W and the set of system conditions: {G, B}. The associated probability transition matrix
P can be easily created (see Appendix B) from the two probability transition submatrices
P% and P® corresponding to state transitions placing the system in G and B, respectively.

Figure 8 depicts the composition of the transition matrix P using these submatrices:

l—a  ifj=J(i), 1 €{0,1,2,...,m -1},
P9, = {a if j = Ji(3), i € {0,1,2,...,m = 1}, (28)
| 0 other: € {0,1,...,m -1}, j € {0,1,...,m},
8 if j = Jo(s) +1, i € {0,1,...,m — 1},
PPl = $1-8  ij=h@+1ie{01,...,m~1}, (29)
| 0 other: € {0,1,...,m =1}, j € {1,2,...,m}
(30)

where, after letting W5 = {0 UW U 2"} and defining 0 as its 0" element (i.e., zp = 0) and
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z* as its m'* element (i.e., z, = z*), respectively,

Jo(i) = the index of the closest element in W to Z,1, given Z, = z; and 2,41 =0

= arg min {wo(zi +1) — 2|}
and

Ji(1) = the index of the closest element in W to Zn41 given Z, = z; and zp41 =1

= arg krén“% {Jwi(z + 1) — 2]}
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0 1 2 e 60 m-i m m+1 m+2

e 6 0 2m-1 2m

.............

am-t |

2m

................

Figure 8: Schematic representation of the transition matrix P from state i to

state j showing the use of submatrices P¢ and PB. [M];1o denotes the
submatrix created by removing the row associated with : = 0 from M.
Shaded regions represent zero transition probabilities.
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11. Conclusion

The value of the Operating Characteristic as a tool for evaluation of monitoring proce-
dures and policies has yet to be established. We believe, however, that it is an important and
evocative tool for the comparison of policies and the comparison of alternative observation
technologies. The structure set forth in this report provides a method for the computation
of critical measures such as the expected detection time and total alarm rate (6 and r),
needed to express various OCs. It is an open question, however, as to whether the approach
outlined in section 10 will prove viable for computation in the case when there are Bernoulli
observations. For the case of general sampling functions p(z) and ¢(z), Appendix A presents
the equations that need to be solved to find key performance measures. Again, demonstrated
numerical techniques for their solution are not yet available.

In a companion paper we explore the effectiveness of the discretization method outlined

in section 10 as a means of obtaining numerical representation of useful OC'’s.
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APPENDIX A: Steady State Properties of MPZ

In this Appendix, we show how the Chapman-Kolmogorov (C-K) equations can be used
to write expressions for the steady-state probabilities and distributions for MPZ. Although
the notation and details may seem formidable, the method is a straightforward extension of
the use of C-K equations for finding the steady-state solutions to a finite state Markov chain.
In the development that follows, it might be helpful to refer to the suggestive flow diagram
of Figure Al. In this diagram, the “states” {Zg} and {Zp} refer to Z-values in the open
interval (0, 2*) while the system is in condition “G” and “B,” respectively. S5, Sj, and 0
are the singleton “false alarm,” “true alarm,” and “renewal” states as discussed in Section 7.
The labels on the transition arrows represent governing probabilities (to singleton states) and
densities (to {Zg} and {Zp}), where P and Q are the complementary distribution functions
associated with p and q.

Consider the computation of IIg(z). By definition

[Ig(z) = lim prob{S5, € {(t,G)} : 0 < t < 2}

= nango prob{0 < Z, <znC, =G},

which by conditioning on the value of Z,_;, and noting that C, = G is only possible if
Cn-1 = G, gives

Mg(z) = /y=0 lim prob{0 < Z, <2NCp = G|Zuy = yNCosy = G}

xprob{Z,_; € (y,y +dy) N Cr_; = G}. (A1)

The first probability in (A1) can be obtained by using:
a) equation (16) which governs the behavior of Z, when Z,_; = y, and

b) prob{C, = G|Cy-1 = B} = 1 — a which is independent of the value of Z,_;.
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(1-2)P(z»

Figure A1: Schematic representation of transitions among the states in MPZ.
Note that 0, S; and S} are singleton states, while {Z5} and {Zp}
represent a continuum of states in the open interval (0, z*).
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Thus
[lg(z2) = /z lim (1 — a) prob{0 < {(X,_1)(y + 1) < 2|Cry = G}

Q n—o0

xprob{Z,_1 € (y,y + dy) N Cr_y = G}.

By definition
lim prob{Z,_; € (y,y +dy) N C,_y = G} = dllg(y), 0<y<zm

Hence, after taking the limit as n — oo,

»

Mg(z) = /;0(1 — ) prob{0 < {(X_y(y +1) < 2|Cay = G}dll(y)
+(1 — a)mo prob{0 < {(X,—1) < z|Cp_y = G}.

For convenience, we define the region C(z,t) = {z : ¢(z) < z/(1+t)}. Using this
notation, C(2*,,) is the set of “continuation” values of the observation z,,.

Finally, since the p.d.f. for X,,_,, given C,_; = G, is p(z),

B = dz. 2
(1-e /y—o/acECzy ) dedllo(y) +(1 a)m’/zecu,o)p(x) e (42)

Similarly, it can be shown that

[Ig(z) = a/ / q(z) dz dllg(y) +a7r0/ q(z) dz
—0 z€C(z,y) z€C(z,0)

/y “o / (it (z)dzdllp(y) (A3)

T = /F /x,ng-ml”“) (2) dz dllG(y) + 7o /mc(z‘,o)(l—a)p(a:)dx. (Ad)
= /y /w. (@) dedlG(y) + 7 / ey (2

+/_ /“z Y z)dz dllp(y) (A5)
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To

- /-0/¢c
+/_0/¢CZ,,

(1 -a)p(z z)]dz dllg(y)

d.’L‘ dHB
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MCZ Sets MC States MCZ Sets
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. L,@ __/

Good (G) Bad (B)

Figure B1: Schematic representation of the MC states, the MCZ sets, and the
Z-values generated from equation (16). System condition transitions
are governed by a geometric probability distribution from G to B.

APPENDIX B: Correspondance between Formulations MC and MCZ

The correspondance between elements of Iomyq € {0,1,2,...,2m} of the chain MC and
of the elements MCZ which lie in the set S* x {G, B} are shown in Figure B1.

State 0 is the “starting” state of MC. Since it represents the situation where P, = 0
(and thus R, =0 and Z, = 0) it is also the “renewal” state, with system condition G; state
m is the false alarm state, since Z, = 2* and the system condition is G, state 2m is the

true alarm state, since Z, = z* and the system condition is B. The set Zg represent states
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where Z, lies between 0 and z* when the system condition is G; Zp represents states where
Z, lies between 0 and 2* and the system condition is B.
Transition probabilities for MC, i.e. among the states in I5,41, are obtained by noting

that:

a) when Z,,, > z*, the state entered after transition n + 1 is either m or 2m, depending

whether system condition is either G or B;

b) once in state m or 2m, as long as b = ¢ = 1, the next transition is into state 0 with

probability 1;

¢) for any value of Z, < z*, if the system condition is G then with probability a condition

B applies on the next transition;

d) the only transition from condition B to condition G must be made via the true alarm

state 2m.

Thus, transitions from alarm states to the renewal state are

Pmo = 13
p2m,0 = 1,
Pmj = 0 if 7 #0,

Pm; = 0 ifj#0,

and p;j =0fori=m+1,m+2,....,2m-1; 7=0,1,2,...,m.
For the rest of the elements of P, we define the m x m sub-matrices P¢ and PB, such

that

[PG]“: prob{o, = jlon-1 =:NC, = G} fori=0,1,....m—-1; y=0,1,...,m,
ij
[PB] = prob{o, =j+m|o,., =iNC, =B} fori=0,1,....m—-1; 7=12,...,m,

i
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The elements of these submatrices are given by the nature of the distributions p(-) and

q(-) of equation (1). In terms of these submatrices, the remainding elements of P are given

by:

pii = (1=a)[P%);; fori=0,1,....m—-1;7=0,1,...,m
pi; = a[PB; ;om fort=0,1,....m—=1; j=m+1,...,2m,
pi; = [PBlicm jom fori=m+1m+2,....2m—-1; j=m+1,m+2,...,2m.
The first equation reflects transitions from C,_; = G to C, = G; the second represents

transitions from C,_; = G to C, = B; the third equation reflects transitions while the

system is in B. Matrix P is shown schematically in Figure 8.
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APPENDIX C: State Probabilities for Arbitrary b and ¢
In our development, we assumed renewal times of one time unit, ie., b = ¢ = 1.
Calculating the steady-state probabilities for arbitrary b and c is described here.

Recall that C(b,c) is the expected cycle time (between two consecutive renewals from
B) given b and c are the renewal times after a checking action detects condition B or G,
respectively. Let 7% (b, c) be the associated steady-state probability the system is in the false
alarm state given b and c. It is clear that 7%(1,1)C(1,1) is the expected number of false
alarms per cycle when b = ¢ = 1. For arbitrary b and ¢, the cycle time is C(1,1) plus b — 1
(for the renewal while in B) plus 75(1,1)C(1,1)(c—1) (for the false alarm renewals). Hence,

the expected cycle time for arbitrary b and c is
C(b,c)=C(1,1)+ (b-1) + 75(1,1)C(1,1)(c - 1).

Note, that prob(S|b = ¢ = 1)C(1,1) is the expected time per cycle the system is in state
S for any state S € S and this time is independent of b and c for all states except the two
renewal states, i.e., the false alarm and true alarm renewal states. The probability of any

non-renewal state S € S is then

_ prob{Slb=c=1}C(1,1)
prob(S) = o) -

Using these results, the probability of the false alarm renewal state is

me(1,1)C(1,1)c
Clbye)

To(b,c) =

and the probabilty of the true alarm renewal state is

b
C(b,c)

7g(b,c) =
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