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We describe a novel molecular dynami{d4D) method to simulate the uniaxial deformation of an
amorphous polymer. This method is based on a rigorously defined statistical mechanics ensemble
appropriate for describing an isothermal, displacement controlled, uniaxial stress mechanical test.
The total number of particles is fixed and the normal stresses in the direction normal to the applied
strain are constant, i.e., ¥l L,oy,0,, ensemble. By using the Lagrangian of the extended system
(i.e., including additional variables corresponding to the temperature and cross-sectional area
fluctuationg, we derive a set of equations of motion for the atomic coordinates and the additional
variables appropriate to this ensemble. In order to avoid the short MD time step appropriate for the
stiff covalent bonds along the polymer chains, we introduce bond length constraints. This is
achieved using a variation of the commonly used SHAKREP. Ryckaert, G. Ciccotti, and H. J. C.
Berendsen, J. Comp. Phy23, 327 (1977] algorithm. A numerical method for integrating the
equations of motion with constraints via a modification of the velocity V¢két C. Swope, H. C.
Andersen, P. H. Berens, and K. R. Wilson, J. Chem. Ph§s637 (1982] algorithm is presented.

We apply this new algorithm to the constant strain rate deformation of an amorphous polyethylene
in a model containing several distinct polymer chains. To our knowledge, this is the first time that
bond length constraints were applied to a macromolecular system together with an extended
ensemble in which the simulation cell shape is allowed to fluctuate19@7 American Institute of
Physics[S0021-960807)50133-4

I. INTRODUCTION origin. Simulations also have the advantage of being able to
. . _ systematically vary specific structural featur@sg., bond
The mechanical properties of polymers play an impor-torsional stiffnesswithout modifying others. Unfortunately,
tant role in effectively all polymer applications. Therefore, within the capabilities of present-day computing, molecular
these properties have received considerable attention of th@mulations are limited in terms of spatial and temporal
polymer research community. The macroscopic mechanic@cales that can be investigated. Another limitation of molecu-
properties of amorphous polymers are intimately related tqg; simulations is their dependence ¢msually empirical
their microscopic molecular structure and the types of MOoyescriptions of atomic interactions. Given these limitation,

lecular motions that occur upon application of a stress. Yieldapplications and interpretation of molecular scale simula-
behavior is one of the most important attributes of an aMmorinns have to be carefully chosen to avoid artifacts

phous polymers. How a polymer plastically deforms controls While there have been many computer simulation stud-

suc_h important properties as ductility, toughness and impa%s of deformation, they have focused predominantly on the
resistance. deformation of atomic, rather than macromolecular, systems.

The deformation behavior of amorphous polymers haﬁ_? . : ) .
. . . : elatively few computer simulation studies of the deforma-
been studied experimentally, theoretically, and via computey.

simulation. Experimental investigations have the advantag jon of solid amorphous polymers have been performed. This

that they provide macroscopic and/or microscopic data oft due, in part, to the added complexity associated with the

specific, real materials. However, in experimental work, it jgconnectivity of polymer chains. This factor is, however, very

difficult to separate the effects arising from different origins MPOrtant because the difference between the mechanical be-

and to systematically vary specific structural properties with-"@vior of macromolecular systems and atomic systems is pri-
out inadvertently modifying other properties. Unlike in ex- marily attributable to this very feature. Argon,. Mott, Hutnik,
perimental work, theoretical approaches allow us to chang@nd Sutef™ have used a computer simulation procedure,
individual parameters without affecting others. Because oPased upon energy minimization, to study the yielding be-
the inherent complexity of the yielding phenomena in poly-havior of several polymer systems. These studies were the
mers, theoretical analyses are often reduced to describirfyjst to make the important connection between specific fea-
plastic behavior in terms of composite parameters that artires of the stress—strain curve and molecular scale phenom-
empirically chosen to provide the best fit with experimentalena. Because their simulations were based upon the energy
observations. Molecular scale simulations have the advarminimization method, no information could be directly ex-
tage over analytical theory and experiment in that the physitracted regarding the role played by temperature or strain rate
cal behavior can be traced back to their specific structurah the deformation of these amorphous polymers. The simu-
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lation approach employed by Argast all~3 was limited to  advantageous to fix the bond length. Ryckaert and
fixed Poisson’s ratio deformatiofw=0.5), such that the co-worker§=8 devised an approach, known as the SHAKE
overall density was fixed. This is, potentially, a major limi- algorithm to handle this constraint. In Sec. IV, we combine
tation, since density changes do occur during deformatiomur generalized extended ensemble MD method to account
and such changes are often invoked to explain part of théor bond length constraints using a variation of the SHAKE
deformation behavior of polymers. algorithm. Next, we describe the numerical procedures and
The molecular dynamicéMD) simulation method has several important practical details used to successfully inte-
several advantages over the energy minimization approach grate the equations of motions derived in Sec. IV. Finally,
studying such dynamical phenomena as deformation. For exve present the results from our simulations of the deforma-
ample, MD can be used to predict the detailed dynamicgion of a model, amorphous polyethylene performed using
associated with deformation events and to examine, directlyur new, extended ensemble MD method.
temperature5 and strain rate effects. Brown, Clarke, and
co-wo.rke.ré’ were the first to apply the MD method to study. I. NTL,0,,0,, EXTENDED ENSEMBLE MD
the yielding behavior of a macromolecular system. Their vy
study employed a “loose-coupling” MD procedure which is MD is a simulation approach in which the equations of
not based on a rigorously defined statistical ensemble. Fumotion of each particle are numerically integrated forward in
ther, their use of a fictitious external stress resulted in defortime. Given initial positions and momenta of all particles and
mation that was neither constant strain or stress rate. Thig description of the interaction of the particles, MD can be
makes the significance of their results difficult to evaluate. Inused to predict the trajectories of all of the particles. The
order to overcome these difficulties, we have developed anacroscopic behavior of the system is determined by per-
new molecular dynamics simulations procedure for modelingorming (time) averages of the desired properties over all of
the deformation behavior of amorphous polymers that is rigthe trajectories. If the ergodic hypothesis holds, the trajectory
orously based on a prescribed statistical ensemble and alloveserage of a property is equivalent to the corresponding en-
for constant strain rate simulations that closely reproduce theemble average. Therefore, in order to determine the appro-
deformation history and behavior that occur in uniaxial test9riate macroscopic properties, it is essential that the en-
commonly performed in the laboratory. semble used to generate the patrticle trajectories is suitably
Deformation experiments on amorphous polymers arehosen to match the appropriate macroscopic boundary con-
typically performed using a testing machine in which theditions. In traditional molecular dynamics, the classical New-
cross-head displacements are specified in order to maintaintanian equations of motion are solved for each particle pro-
prescribed strain rate in one directigauch displacement ducing trajectories corresponding to the microcannonical
controlled experiments are much easier to perform thamnsemble. This is called théVE ensemble, since the num-
stress controlled experimeitsThe normal stresses in the ber of particles N), total volume ), and energy ) are
two directions perpendicular to the tensile axis are Zam  conserved.
tually atmospheric pressyreThe advantage of strain con- The extended ensemble concept, first proposed by
trolled tests over stress controlled tests is that the formeAnderser?, greatly enhances the power and flexibility of
permits the investigation of post-yield stress drop deformaMD. Andersen used this method to perform simulations in
tion. While such uniaxial tests are not explicitly isothermal, which the pressure and enthalpy were consefued NP H)
typical variations in temperature during a tensile test at typi+ather than the volume and enerdy\{E). This was done by
cal testing rates do not exceed 1 K. Therefore, the new, exntroducing the system volume as a dynamical variable. This
tended ensemble molecular dynamics method developeeblume was determined in terms of the deviation of the in-
here correspond to a constant, uniaxial strain rate test iternal pressure of the system from the specified external
which the transverse normal stresses are zero, the tempeiaressure. In this extended ensemble method, a set of “ex-
ture is constant, and the stress is purely uniaxial. While théended” or “virtual” variables(in this case, the scaled par-
procedure developed here was designed to model the cotiele coordinates and the volumeand a properly modified
stant strain rate, uniaxial tensile test of an amorphous polytagrangian are introduced. The Hamiltonian and equations
mer, it is sufficiently general to simulate any type of strainof motion of the “extended” variables are derived from the
controlled uniaxial tesftension or compressigmf any type  Lagrangian. By defining the direct relationships between the
of material. positions and momenta of the “original system” with the
In the next section of this paper, we describe the concep‘extended” variables, every state of the extended system
tual framework of the new, extended ensemf®thermal, corresponds to a unique point in the phase space of the origi-
constant uniaxial strain rat&D method. A detailed descrip- nal system. The time scale associated with the volume fluc-
tion of this approach, as it applies to atomic systems is theuation is determined by the choice of a constant in the modi-
subject of Sec. Ill. Exactly the same procedure could be usefied Lagrangian, which can be interpreted as the inertia of a
to simulate polymeric systems. However, since the in-chaimpiston. The time average of any property calculated from the
covalent bonds are much stiffer than the bending, torsionarajectory generated by the equations of motion of the ex-
and van der Waals portions of the interatomic potentialtended system is equal to the ensemble average of this prop-
these stiff bonds force the use of very short simulation timeerty for an isoenthalpic—isobaric ensemble in which the pres-
steps. In order to perform longer time scale simulations, it isure is the specified valfe.Parrinello and Rahmah
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introduce the dynamic variabketo control the temperature.
Two constantsv, andwg are introduced into the Lagrang-
ian, and they are associated with the dynamic fluctuations of
A ands, respectively.

In the next section, we present a detailed description of
the “extended variables” and the relationship between the
extended variables and the real system variables. In addition,
we present the Lagrangian, Hamiltonian, and equations of
motion for the extended system. In the Appendix, we extend
the proof presented by Nadkto demonstrate that the con-
figurations generated by these equations have exactly the

FIG. 1. The simulation cell geometry and coordinate system used to model . .
the NTL,a, 0, ensemble. Same partition function as teTL,oy,0,, ensemble.

lll. ATOMIC SYSTEMS

generalized this method to the case of constant stress by

. ; o In this section, we focus on theTL,oy,0,, ensemble
introducing the lengths and angles describing the box CON5t N atomic particles interacting through interatomic poten-

taining the system as adqgilonal variables to be set by th‘ﬁals which are known analytically. The “extended” vari-
gxternal ;tres$tenso). .Nos proposed yet another varia- ables of this system includé; y; .z ,A,s}, as discussed
tion of this procedure in order to keep the temperature conz ove. The atomic positions y; .z} are scaled by the
stant(i.e., theNVT ensemblg To this end, he introduced a overali shape of the simulatior; 'cél’l aimensions

new variables to scale the MD time stefs is related to the

specific heat of the thermal reservoir in contact with the sys- X, L 0 O Xi
tem. real
real_phly. | = O A O i )
In the present paper, we focus on the ensemble appro- fi )Z/' VA )zll ' 3.3
priate for modeling a uniaxial tension test. The required en- ! 0 0 VA !

semble will be isothermal, which corresponds to a prescribegyhereh is the matrix describing the orthorhombic simulation

strain in thex-direction and fixed normal stresses in ¢ cell and is defined within the equation. In this scaling, the
andz-directions. To this end, we first generalize the extende¢oordinatesx;, y;, z € [0,1) and the dimensions of the

ensemble method to describe an isothermal orthorhombigimyiation cell in thex, y, andz-directions are., , VA, and

system in which the dimension of the simulation cell in the /A Note, that whileL, is specified in the ensembla, will
x-direction and the normal stresses in the other two direcfiyctyate in time. In this ensemble, if the coordinate axes are
tions are fixed. This ensemble is illustrated in Fig. 1. Wechosen to lie parallel to the edges of the orthorhombic unit
refer to this as theNTLyoyy0,, ensemble, the Lagrangian cell, all of the off-diagonal terms in the stress tensoare
and equations of motion for which are derived in the follow- zerg (by the symmetry of the loading and the orthorhombic
ing section. Conste}nt strain rate simulations can .be Pefanit cell), oy, and o, are constrained to be equal to the
formed by appropriately choosing the rate at which thegyternal pressuré,,, and o, fluctuates(becauseL, is
length of the box is changed. fixed).

While traditional NVE) MD simulations are performed The dynamics of the system will be controlled by the
at fixed volume and energy, thereby leaving the stress andagrangian
temperature uncontrolled, in tHeTL,o,0,, ensemble the N
length of the box, the temperature and the transverse normal L= E
stresses are fixed while the longitudinal stress,), the en- i
ergy and the cross sectional akdluctuate. Therefore, this
ensemble is like aNVT ensemble in tha-direction and, at WA .
the same time, like arlNPT ensemble in they and —(f+1)kgTex In s+ - AZ— P LA, 3.2
z-directions. A natural choice is to break the symmetry of the
X, y andz-directions and consider them differently. Since wewhich is a function of the “extended” variables
specify the length of the simulation cell in thedirection  {x;,y;,z ,A,s} and of their time derivatives with respect to
and the normal stress in tiyeandz-directions(in response to  “virtual” time 7 (as described later in this sectjonn this
the external pressurewe introduce the cross section area of function, m; is the mass of particle, ® is the energy of the
the simulation cell in theg/z-planeA as a dynamic variable. system determined by summing the interatomic potentials
A will fluctuate as necessary in order to keep the normabnd the asterisks indicate differentiation with respect to the
stresses iry and z-directions fixed. In principle, we should “virtual” time (as opposed to real time, as described bglow
employ two dynamic variables, corresponding to the dimens is the dynamic variable which is used to maintain the sys-
sions of the simulation cell in thg and z-directions; how- tem at constant temperatule,; and is associated with the
ever, since these two directions are equivalent in an amorscaling of the time step in MD and¢ determines the mag-
phous polymer, we employ only the single dynamic variablenitude of the temperature fluctuations, as originally intro-
A. As in theNVT extended ensemble method of Npse  duced by Nosé! f is the number of degrees of freedom of

m- * * * W *
7' S(L2x2+Ay2+AZ2) - D+ 75 s?

*
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the systenjf = d(N — 1)], whered is the dimensionality the temperature control and the box shape, in addition to the
of space.w, may be viewed as the inertia of the piston forces derived from potentials. The equation of motion for
which fixes the normal stress in tlyeandz-directions at the the variables depends on the difference between the instan-
external pressurB.,;, similar to the approach introduced by taneous kinetic energy of the system and the kinetic energy
Anderser? appropriate for the specified temperatdig;. Similarly, the

The first and the second terms in the Lagrangian arequation of motion for the variablé depends on the differ-
associated with the kinetic energy and the potential energy afnce between the instantaneous average normal stress in the
the system; the third and the forth terms can be viewed as thg and z-directions and the external pressure.
kinetic energy and the potential energy associated with dy- The equations of motions described above are for the
namical variables; the fifth and sixth terms are associated extended variables or scaled coordinates of the atoms, which
with the kinetic and the potential energy of the dynamicare related to the real variables as per Bdl). The relation-
variable A. The momenta of the “extended” variables ship between the “real” time and the “virtual” time 7 is

{Xi .¥i,z ,A,s} can be derived from this Lagrangian, dt=dr/s. (3.6
Ty = miszLﬁ ;<i , The unscaled momenta of the real variables are related to the
momenta of the extended variables by
—.c2A o
Tyi= MSTAYi, Pxi = i/ SLy
2= miSZA ;i f (33) pyl: 7Tyi /S\/K
Pzi= Wzi/s\/x 3.7
S:Ws *Sl pS: 7TS
. PA=TA-
=W A. The resulting equations of motion in the real variables
The corresponding Hamiltonian is and real time are found using Eg8.5), (3.1, (3.6), and
- 77';2” - - 3.7, ) »
H= E AN AN +®+2w5 Mif'yi=fxi =SS Pyi
2 A My (4 A2
+(f+1)KgTey In 5+ Z_V\;\AJFPE"thA' (3.4) mif'yi=fyi—ss™pyit — 4 2A)"
The equations of motion for the “extended” variables, ex- 6 eelp | m;T 5 A A_2 3.9
pressed in “virtual” time, are determined from the Lagrang- Mil2i= 1z Pzi 2A 2A )’ '
ian
) -2 N

2 2 2
. S Pkt pyi+ Pzi
WS=ws —+s 2, ——

—(f+1)kgT|,
i=1 m; ( ks

oo fyi 2s .

Xi ms’L, s X .
A=w SA+52L
* * W = —_—
w fy 25, AL TR s "
Yi= 2 ~— = Yi™ 3% Vi N
mis™VA S A 1 3 pgit P2
. . X 2AL, &4 m +fyiryi+fzirzi _Pext )
w  fy 25 AL . X L .
Zi_misz\/ﬂ_ S 4T 4 (35 wherep, is a known function of;, ;, A, andA,
" - Pxi = Milxi,
2 + + .
5= st(L X2+ Ay2+AZ2)  mA
Pyi=Milyi— S Tyis (3.9
—(f+ 1>kBText},  mA
5 pzi:mirzi_ﬁrz
o Ly ms® «, s, _ e
A:W—A Z S (it z) Using the approach followed by NaSkit can be shown that
X the real phase space trajectory of the system rigorously sat-
isfies the constraints of tféTL,o,,0,, ensemble, as proven
\/_ 2 (fyiYit2iz) = Pex| in the Appendix.
2 ALy While it is possible to write and integrate the equations

wheref is the force on individual atoms derived from gradi- of motion[Eq. (3.5)] directly in terms of the scaled variables
ents of the potentiab. These equations of motion show that and “virtual” time, performing such calculations in terms of
the acceleration of the particle depends on terms related tive unscaled variable€Egs. (3.8) and (3.9)] is equivalent.
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However, performing the simulations in real time yields datacoordinates. The time scaling, related to temperature control
that are uniformly distributed in time, which makes the per-in an NPT ensemble, is applied to all of the degrees of

formance of time averages more straightforward. Anothefreedom. At the same time, the space scaling is only applied
advantage in performing the simulations using the feal  to the centers of mass of each molecule without affecting the
scaled variables is associated with the bond length con-elative coordinates of the atoms belonging to the same mol-
straints(discussed in the next sectipnwvhich are most sim- ecule. We will follow this same general approach to extend

ply written in terms of real atom separations. the SHAKE algorithm to account for the extended ensemble
In order to perform simulations at a constant, finite en-method described in Sec. IV for ti¢TL,0,0,, ensemble.
gineering strain rate, we slowly increase tkalimension We can rewrite the Lagrangian for thT Loy 0, €n-

L, of the orthorhombic box. In practice, this is accomplishedsemble[Eq. (3.2)] in terms of center of mass variables for
by increasingL, in finite stepsdL, = eL,qdt at each MD the individual polymer chains;,, p,, wherea labels in-

time step, wherelt is the time stepe is the strain rate and dividual chains,p, is the scaled position of the center of
L,o is the initial dimension of the sample in the mass of chairx, and¢;, is the position of aton in chaina
x-direction. This approach is valid provided thdt,/dt measured relative to the chain center of mass. These new
= €L, is much smaller than the speed of sound in the mavariables are “extended variables” in the sense that they are
terial. in the scaled coordinate system and their time derivatives are

always with respect to a “virtual” timer, as defined above.

In terms of thi f variabl he Lagrangian i
IV. CONSTRAINED MOLECULAR SYSTEMS terms of this set of variables, the Lagrangian is

For a polymer system, the intrachain covalent bond is ARY . X .
much stiffer than the other types of potentials describing the | = > - S2(L2p2 +A p§a+A p2.)
interactions(i.e., bending, torsional, and van der Waals a=1
Since the time step in a MD simulation must be small com- .
pared with the fundamental vibrational periodt Mi , x5 2, x5 W =
= 2mJm/k (k is the bond stiffness anth is the particle +21 > S &t &iat E2ia) —et = s?
massg, large stiffness necessarily implies small MD time
steps. Since there is a large disparity between the stiffnesses Wp
of the intrachain covalent bond and those of the other types ~(T+DkgTeqIn s+ — A= P LA, (4.1
of potentials, it is computationally advantageous to freeze the
intrachain covalent bonds at their equilibrium lengths. This iswith constraints,
reasonable since the large stiffness of the covalent bonds
suggests that the vibrations of these bonds will be of very
small amplitude. Furthermore, since the intrachain covalent
bonds are much stiffer than the other potentials describing
the atomic interaction§.e., bending, torsional, and van der -1n
Waals, constraining these bonds to a fixed length will have o~ 2 m;&ia=0,
very little influence on the deformation behavior. Therefore, =t

introducing bond length constraints should not introduce anyyhereN is the total number of molecules in the systemis
serious artifacts into MD simulations of realistic polymer the total number of atoms in each molec(iteorder to keep
systems, while greatly accelerating the MD simulations.  the notation as simple as possible, we assume that all mol-
Ryckaert, Ciccotti, and Berendsedevised an efficient ecules have the same number of atoms and are indistinguish-
algorithm using Cartesian coordinates, known as SHAKE, taplg, h is the metric tensor defined in E€.1), d is the
fulfill the bond length constraint at each MD step. This algo-fixed length of the covalent bondhich we also assume to
rithm does not significantly increase the numerical errors aspe constant for simplicity M is the total mass of the poly-
sociated with integrating the equations of motion. The incormer chain, and indicate time derivatives with respect to the

poration of the SHAKE algorithm into the numerical “virtual” time 7. The corresponding Hamiltonian of the
framework of the Verlet algorithid (commonly used to in-  “extended” system is

tegrate the equations of motion in M straightforward.

The SHAKE algorithm was originally developed for tra- N
ditional NVE systems and its application to other statistical H= E
mechanics ensemblés.g.,NPH, NPT) requires additional a=1
theoretical development. By decoupling the internal geom-

L — & 2_ 2:
(§ia= &ja)*—d*=0, 4.2

1 (0O, 7, I,
—— + +
2Ms2\ L2 T A A

X

etry constraints from the space scaling implicit in the ex- n 1 2
tended system method, Ryckaert, Ciccotti, and Ferf&rio +2> ol (o Toia T Taig) |+ P+ 2\;
made the extension of the SHAKE algorithm to other statis- =1 : s

tical mechanics ensembles possible. In their approach, the 2

Lagrangian of the system is recast in terms of the molecular +(F+1)kgToy In s+ A Peoxl A, 4.3
coordinates of the centers of mass and the relative atomic 2wWp
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where the momenta of the “extended” variables are now

Tiq=M;S? éiaa

M, =Ms2L2 py,,,
My, =Ms?A py,,
I,,= Ms?A p,,,,

Ts=Ws S,

7TA:WA /&

4401

Pa= Hza/\/KS,

m; i,
Pia=Pa g 5
Ps=ms,

PA:WA!

4.9 where upper and lower case letters refer to the center of mass

and atom coordinates, respectively,andr correspond to
positions, and® andp correspond to momenta. The resulting
equations of motion in the real variables and in real time are
found using Eqs(4.5 and (4.6),

v _ ca—1
rnirxioz_fxia—i_gxia_sS Pxia »

The equations of motion using these center of mass “ex- ) . MRy [ - A2
tended” variables are Miryia="fyiat dyia—SS™ "Pyiat oA A— oL
miasz *éia:fia+gia_mia/*l“a_zmiagS*gia! . -1 miRZa - Az
mirZia:fZia+gZia_Ss Pziat 2A A_ﬁ ’
MsZ’ZXa:L— Fro—2M SSpe,, 4.7
X
2 N n 2 2 2
. S pxia+pyia+pzia
1 Ms? A e PP m,
2 *k . * * * a= = 1
Ms pya_ﬁ Fya=2M S$Spys= ——2— Pya:
X 4.5 —(f+1)kBT},
M2 1 £ _oMas Ms?A
S pZa_\/K Za SSpPza A Pza> A SA ZL 1 EN: P§a+ Pga -
=W, —+ +

N n WA WA s S X 2ALX = M ya'Yya
WSSZE P misgiza +MS(L§p)2(a+Ap§a+Ap§a)

a=1 i=1

+F201Rzaz) _Pext '
(f+1)kgTex
N s ' where the forces with two indices indicate center of mass

N 2
Kk MS * *
WaA= 2 [7< Pyat Pla)

- Pextl-x )

1
+ﬁ (Fyapya+ FzaPza)

forces, while those with three indicate forces on atoms
within a particular polymer chain. Note that the term in the
parentheses in the equation of motion of the cross sectional
area is the internal stress associated with the center of mass
of the moleculegrather than that of the individual atojns

R,. P,, andp;, are known functions of;,, ri,, A, andA,

wheref; , is the force on théth atom ofath molecule which
is derived from the interatomic potenti#, is the total force
on moleculea. An artificial (constrain} force is added in
order to ensure that the bond lengths remain fixed. The sum
of the constraint force for the two bonds to atorof mol-
eculea is g, . As discussed in Ref. &, = F,/M.

The relationships between the extended variables in the
center of mass systefGreek lettersand the real variables
(Roman lettersare

Re=hp,,
la=Rat &ias
dt=d7/s,
Pya=IxaILys,

Pya=I1,,/\As, (4.6)

1 n
Razm IZ]. mifi,,
PXaZM.Rch

=MR

P ya— M

R

ya ya 1

A
2A
. A
Pza: M Rza_ M ﬁ Rzav
Pyia=Mifxiq

. mA
pyia:miryia_ oA yar

. miA
Pzie=Mil zja— ﬁ Rza .
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Based upon these relationships, the temporal evolution of th€his is consistent with our definition of the Lagrangian
real variables described by Ed4.5) and(4.6) can be shown above. The momenta of atoms indirection will feel this
to rigorously correspond to the TL,oy,0,, ensemble with  rate and change to
constrained intrachain bond lengths.
These equations of motion describe the dynamics of the
real variables of each polymer chain and the atoms within X
them, subject to the fixed bond length constraint along the mA
chain and within theN TL,o,0,, ensemble. Although these Pyia= mifyia— - Rya: (4.11
equations of motion were derived using the extended vari- 2A
ables, it is the real variables that directly enter the MD simu-
lation code. It is important, however, to realize that the rela-
tionship between the real variables in tNTL,oy 0,
ensemble is not exactly the same as in the simplstE
ensemble. For example, tlyecomponent of the momentum V. NUMERICAL METHODS
of an individual atomi cannot be found directly from the In this section, we describe the molecular dynamics al-
time derivative of the position of that atom, but rather from gorithm used to integrate the equations of mofign. (4.7)]
Paiy=Mif wiy — (MA/2A)R,,, . Additionally, other properties for all of the particles in theNTLco,y0,, ensemble with
must be computed directly in terms of the momenta andixed intramolecular bond length constraints. In traditional
positions and not in terms of their derivativésg., the ki-  MD simulation, algorithms such as the Verlet algoritirare
netic energy should be written gs’/2m rather than as used to integrate these equations of motion. The Verlet algo-
mr2/2). rithm is a direct integration of the second-order equations of
The equations of motion in Eq4.7) have a similar motion and is based on current positions, current accelera-
structure to those in E¢3.7) for an atomic system. Note that tions and positions from the previous time step. However,
variations in the cross sectional aréa,only affect the equa- there are several features of the present, bond length con-
tion of motion of the atoms in thg and z-directions by  strainedNTL,0,,0,, ensemble that makes these methods
modifying the position of the center of mass of the entireinapplicable in their traditional forms.
molecule. The equation of motion for the cross sectional area  The first difficulty is associated with the temperature
A, in turn, is determined by the difference between the aveontrol. In order to keep the sample isothermal, particle ac-
erage normal stress internal to the system in yhand celerations depend not only on the force but also directly on
z-directions and the external pressure. The normal internghe particle momenté.e., particle velocities Therefore, the

. m; L,
Pxia=MiMxia ™ L Xa 1

. mA
Pzie=Mil zia— ﬁ Rza -

stresses are Verlet algorithm cannot be directly applied because current
N 2 velocities are not available. A variant of the Verlet algo-
o=Vt (ﬂ_,_ FraRea ) (4.9  rithm, known as the velocity Verlet meth&ds based upon
a=1 \ M the same type of integration of the equations of motion, but

where the subscript refers to the Cartesian directiorsy, uses the current velocities instead of the positions from the

andz. These stresses are “molecular” stresses, because EQr€Vious time step. Since, in the present case, we need the
(4.9) is written directly in terms of the momenta, forces, angcurrent particle velocities, a method based upon the velocity

coordinates of the centers of mass of the molecules, rathef€Met algorithm should be more appropriate.
than the atoms. In the NTL,o,0,, ensemble, the temperature and nor-

At constant strair(i.e., fixedL,) the Hamiltonian of the mal stress controls require that the equations for motion of
€., «

system should be conserved. In terms of the real variablef1€ Particles depend on the current first and second deriva-
the Hamiltonian of the system can be written as tives of A ands. The second derivatives & ands depend,

in turn, on the current particle momenta. This interdepen-
N dence problem prevents the direct application of the velocity
H= azl ;1 Verlet method. Fox and Andersérsuggested a procedure to
modify the velocity Verlet algorithm to handle this difficulty
p§ pf\ for atomic systems without adversely affecting the accumu-
2WS+(f+1)kBText In s+ 2_\,\,A+pe><tLXA' lated errors. Their approach is to use the particle momenta
from the previous time step to approxim#teands and their
(4.10 derivatives and use these approximate values for integrating
However, if the system is strained at any finite rate, thethe equations of motion of the particles. These new coordi-
Hamiltonian will not be conserved. As in the atomic systemsnates are then used to make a better approximation to the
the molecular system can be strained at a fixed strain rate yurrent values ofA ands, to be used in the following time
quasistatically changind., according todL, = elL,dt, step. We will apply these same concepts to the integration of
wheredt is the time step used in the MD simulation. In the the equations of motion here.
present molecular system, we translate the centers of mass of While the Fox and Andersen algorithfnsolves the

the molecules at a rate which is in accordance with the rate giroblem of incorporation oA and s into the equations of
which the macroscopic shape of the simulation cell changesnotion for the particles in an atomic system, it does not

2 2 2
pxia+ pyia+ Pzia

om +®

+
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provide a mechanism for incorporating the constraint forces  s(t+ 3dt) and Eq.(5.19, we determine an approximate
associated with the fixed bond length in a polymer system. value of's(tfdt), which we refer to asam{tntdt).
Although the SHAKE approach can be used directly with the ~ We then use,,t+dt) and the momenta of particles at
Verlet algorithm(including the constraint forcgsit cannot t (instead oft+dt) to determine approximate values of
be used with the velocity Verlet method since the velocity — A(t+dt) [i.e., Ag{t+dt)]. Using Ag{t+dt),
Verlet algorithm requires the determination of the particle A(t+ dt), and Eg. (5.10, we can approximate
acceleration one time step ahead which is not available when A+ dt) [i.e., Aapp(t+dt)]

using the SHAKE method. Anders€rovercame this diffi-  (4) Determine the total force on each partié{e-+dt) from
culty with his RATTLE scheme for including bond length the interatomic potentialgincluding nonbonded and
constraints in a velocity Verlet formulation. This is done by ponded contributions using the particle coordinates
performing two types of iterations for each MD time step; r(t+dt).

one for updating the positions and one for updating the ves) \we now determineg (t+dt), i(t+dt), andr(t+2dt)

locities. In a recent paper, Palm&suggested a new, single using the approximate values obtained in s@p
iteration approach within the framework of a velocity Verlet

algorithm with bond length constraints in &V E ensemble. The acceleration in the-direction, may be determined from
In Palmer’s approach, the velocity Verlet algorithm is recast
in a form in which the bond length constraint is applied two.. 1

+dt)= it dt) 4+ gy, (t+
time steps beyond the current one in order to calculate the ia(t+dD)= m; Fia(t+dD + Guig(t+dY)
constraint force one time step ahead,

s(t+dt)
TSty Pxialt+dt)
X(t+dt)=x(t)+ (dt)x(t) + 3(dt)2x(t), (5.1a
= i [fxia(t+dt)+0yi,(t+db)]

X(t+ ) =x(t)+ Ydbx(t), (5.1 M

s(t+dt) . s(t+dt) . F o tedo.

s LiAan € Xa' ot L A+ Xia
X(t+dbt)=x(t+ 3dt)+ J(dvX(t+dt), (5.10 s(t+dt) s(t+dt)

(5.2

X(t+2dt) = x(t+dt)+ (dt)x(t+dt) + 3(dt)*k(t+dt). While Eq. (5.2 only describes the acceleration in the
(5.1d x-direction, similar equations apply in the other two, or-
thogonal directions. For simplicity, we will only explicitly
For each time step, this method requires the current poskhow the procedure for integrating the equations of motion in
tions, current velocities, and current acceleratiGnsluding  the x-direction.
the constraint force contribution Examination of Egs.(5.2 and (5.19 shows that
We employ this modified velocity Verlet approach in our r(t+ dt) andi(t+dt) are interdependent and functions of
bond length constrained|TL 0,0, ensemble MD simula-  g(t+dt). These equations can be solved to yie(d+ dt)

tions. The equations of motidiEq. (4.7)] are integrated in  and(t + dt) in terms ofg(t + dt) and other known quanti-
the following manner: ties,

(1) We assume that(t), r(t), i(t), s(t), s(t), (1), A(t),
A(t), andA(t) are all known. From this data, the kinetic ; (t+dt)= [ (t+ E dt) + E (t+db)
i Xla 2 i Xla

energy and internal normal stresses can be determined a"t
the current timet. Using these quantities in E¢5.13

. : (dt)s(t+dt) . dt
allows us to determine the values of all of the variables ——————— €R 7 Oy (t+d1t)
at the next time step,(t+dt), s(t+dt), andA(t+dt). 2s(t+dy) 2m
(2) The values of the velocitie§.e., time derivativesof all (dt)s(t+dt)] 2
of the variables are determined at the next half-time step [ + Tos(trdo)
from Eq.(5.1b), r(t+ 3dt), s(t+ 3dt), andA(t+ 3dt).
(3) Next, we approximate the velocities and acceleration of =r};, (t+dt)+(1/dt)C9g,,(t+dt), (5.3
A ands at time ¢+dt) in terms of the available infor-
mation. . fro(t+dt)  st+dt) .
We obtains(t+dt) by using the equation of motion for [yi.(t+dt)= m st dD) [€Rya—in(t+dD)]

s in EqQ. (4.7) in which the derivative of on the right-
hand side of the equation is evaluatedtat {dt) and the
momenta of particles att. Since we are using + (dn? CO9xio(t+dt)
s(t+ 3dt) and the momenta of particles @ato estimate
s(t+dt), the resultang(t+ dt) is approximate, as indi-

cated by a “app”: Spft+dt). Using Sy{t+dt), =Ty (t+dt)+

2
( t)2 ngxia(t+dt)! (54)

J. Chem. Phys., Vol. 107, No. 11, 15 September 1997



4404 Yang, Srolovitz, and Yee: Molecular dynamics for deformation

wherery; (t + dt) andry;,(t + dt) represent the con- ( ro\ 2 [ro)\® r
straint force ) independent parts of the particle velocity de (T) _(T +B; when —<23
and acceleration and along wi@® are defined within Egs. 1 5 ) 0
(5.3) and (5.4). Substituting Eqgs(5.3) and (5.4) into Eq. Bz(r—o B, Mo 4B, r 4B
(5.10, yields r r )
D y(r)= < r
Mia(t+2dt) =1 (t+dt) +(d)ry; (t+dt) when 2.&a<2.5
+ 3(d0)%F ), (t+dt) +2C99,;,(t+dt) 0 when 255

=1l (t+dt) +2C90, o (t+d1), (5.5 \ fo 6.1
wherery;,, is defined within the equation. Finally, applying wherer is the distance between pairs of united atoras,
the bond length constraint from the SHAKE algorithm, we =57K-kg is the well-depth of the LJ potentialn
obtain C%j,;,(t+dt) from Eqgs.(5.3), (5.4), and(5.5. Sub- =0.428 nm is the LJ length parameter dgds Boltzmann’s
stituting the resultanC9g,;,(t+dt) back into these equa- constant. The constan®,=0.016 132, B,=3136.6, B;
tions yieldr,;,(t+2dt), y,(t+dt), andi,(t+dt). =-68.06%, B,=-0.083312, and B;=0.746 8% are

(6) Using the values of (t+dt), F(t+dt), andf(t+dt) chosen to insure a smooth cutrat 2.5r;. The bending po-

from step(5), we can obtain more accurate values of thetential is a potential written in terms of the valence angles
variabless(t +dt), &(t+dt) A(t+dt) and A(t+dt). (defined as the angle between two contiguous covalent

These accurate values sft+dt), s(t+dt), A(t+dt), bonds,
andA(t+dt) are then used in stef3) to yield accurate D pendind 0) = 3Ko(COS 6—COS )2, 6.2
values ofr,;,(t+2dt), ry;(t+dt), andr,;,(t+dt).
(7) Next, we increment the MD time byt and return to step wherek, = 520 kJ/mol. The torsional potential is a four-
(2). body potential written in terms of the dihedral anghe(de-
fined by three successive bond vecjors

D orsiof ¢)=Co+C; cOSp+C, cog ¢+ Cj coS ¢,
VI. APPLICATION TO THE DEFORMATION OF (6.3

POLYETHYLENE
where  Cy=8.832kJ/mol, C;=18.087 kJ/mol, C,

To demonstrate the applicability of the MD method de- =4.880 kJ/mol, andC;= —31.800 kJ/mol.
scribed above to the deformation of polymer systems, we In order to keep the system size small yet without intro-
present a simple application of this method to the isothermalducing significant surface effects, we employ periodic
constant strain rate, uniaxial deformation of a model polyethboundary conditions in all three orthogonal directions. The
ylene (PE) glass. The goal of this application is to demon- system simulated here consists of 1500 united atoms ar-
strate that the numerical method described in Sec. V worksanged into five equal length polymer chains. The method by
and that all of the variables are controlled in accordance witlwhich the initial amorphous polymer structure was con-
the proposed statistical mechanics ensemble. structed will be presented in a future paper. The simulation

The amorphous PE employed in this simulation is deresults presented below were for runs performed at 100 K,
scribed in terms of the united atom model, in which the,CH which is below the glass transition temperature of this model
group is considered as one united or quasiatom. The unite@imorphous PE. The normal stress in thand z directions
atom approximation is used in order to make the study of avas fixed at atmospheric pressure which, for all practical
relatively large system possible without placing undue depurposes, is indistiguishable from zero.
mands on computational resources. The united atoms are The conservation of the Hamiltoniah in Eq. (4.10 for
connected by bonds which are constrained to a fixed lengthonstantL, serves as a sensitive test of the errors associated
(0.153 nm. Nonbonded, modified Lennard-Jon&s) poten-  with a MD algorithm. HoweverH is not strictly conserved
tial, bond bending and torsional potentials are used to dein any MD simulation because of numerical errors. For the
scribe the remaining interactions. We employ exactly thesake of computational efficiency, the time step should be as
same forms of the potentials and parameters as did Browlarge as possible such that the simulation remains stable.
and Clarke®, with the exception that we modified the Fluctuations inH of order 0.01% are generally acceptable.
Lennard-Jones potential in order to insure that the potentidlarger fluctuations, associated with time steps that are too
and its first derivative has a smooth cutoff at 2,5 where large, tend to destabilize the entire simulation. In the present
ro is the Lennard-Jones length parametigscribed beloyv  simulation, we typically employ a time step aft = 7

The modified Lennard-Jones potential acts on all pairs of= 2.63 X 10 '°s (i.e., 2.63 f3. Using this time step, we
united atoms, except those neighboring pairs separated bind fluctuations inH of approximately 0.005%. The size of
less than four bonds on one chain. The modification to thehe fluctuation increases with increasing time step.
Lennard-Jones potential used hejie order to insure a Andersef® suggested that the rms fluctuationtbshould be
smooth cutoff was introduced by Broughton and Gilmér,  proportional to (1t)? in Verlet (and equivalentalgorithms.
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FIG. 2. The variation of the temperature with strain during a constant strain

rate (10 ®7~ 1) tensile test. The external temperatiltg, was set at 100 K. FIG. 3. The tensilgaxx and average ransverse nqrmal stress?l;g( (
All of the data were averaged over 2000 time steps. + o,,)/2 as a function of strair,, in a constant strain rate (16771
tensile test. All of the data were averaged over 2000 time steps.

For the range of time steps examined for this simulation(~—0.1 MP3. This demonstrates that the transverse stress
method 0.5 < dt < 27 we found that the rms fluctuations control aspect of the algorithm is working properly also. The
in H are indeed proportional tadf)2, which suggests that magnitude of the fluctuationéwhich are large compared
our algorithm is numerically equivalent to the Verlet algo- with the averageare dictated by our choice af, and the
rithm. averaging interval.

In order to simulate a constant strain rate uniaxial defor-  In the x-direction, the strain is controlled, and we mea-
mation test, one dimension of the simulation cell was sure the stress. The engineering stress—strain curve associ-
increased at a fixed rate. In the simulations discussed belovated with the constant strain rate tensile test of our model
the strain rate was fixed at 187, which means that the amorphous polyethylene is presented in Fig. 3. Unlike in a
length of the samplé., is doubled in 16 MD time steps tensile test of a bulk sample, the simulated stress—strain
(i.e., an engineering strain of 100%n these simulations, curve is far from smooth. This roughness is real and is not
we setwg = 2.0 X 10° amu Z andw, = 1.5 amu /A2  associated with numerical errors. Each small spike in the
While there is no physical basis to guide the choice of thesstress—strain curve is associated with a particular molecular
parameters, we chose these values such that the systamotion/rearrangement. Since the simulation cell from which
equilibrates relatively quickly and remains stable. this data is extracted contains only 1500 united atoms in five

Figure 2 shows the variation of the temperature of themacromolecules, each abrupt molecular rearrangement
system during a constaéngineering strain rate test. The yields a spike in the stress—strain curve. These individual
data in this figure are averaged over 800While the tem-  spikes would not be seen in a simulation performed using a
perature of the system does fluctuate, the average tempeneery large number of molecules, since the stress is averaged
ture is very nearly constant. The averaged value of temperaver the entire system. Alternatively, a smooth stress—strain
ture over the deformation range in the plot is 100.03 K,curve could be obtained if we averaged the results over sev-
which is very close to the prescribed value 100 K. This dem-eral statistically equivalent simulation runs using a small sys-
onstrates that the temperature control aspect of the algorithtem.
is working properly. The magnitude of the temperature fluc-  Several features of the stress—strain curve are notable.
tuation is dictated by our choice of the thermal inevtigand  The stress—strain curve exhibits a well defined linear elastic
by the degree of averaging used. In addition to controllingregime followed by a stress maximurultimate tensile
the temperature, the algorithm is designed to maintain thetrength of 0.19 GPa at a strain of approximately 15%. The
normal stresses in the direction perpendicular to the strailYyoung’s modulus estimated from the linear region of Fig. 3
axis constant. Figure 3 shows the variation of the averages approximately 2.2 GPa, which is similar to that reported
transverse stressr(, + o,,)/2 with the applied straire,, by Brown and Clark&for their simulations using a similar
during a uniaxial tensile test. As with the temperature, theotential. The yield stress/strain is subject to our choice of
transverse stress fluctuates about a nearly constant valugefinition. If we define the yield strain in terms of significant
Careful examination of the data upon which Fig. 3 is basedleviation from linearity on the scale of the Fig. 3, we find a
shows that the averaged value of the transverse streg3.%  yield strain of 6%. These high yield and ultimate strengths
atm, which is close to the prescribed value ofl atm (and concomitantly high straipsre probably too high for
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bulk, amorphous polyethylene. This is because yiglke = ACKNOWLEDGMENT
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decreasing the yield/ultimate stress and strain. Additionally,

the magnitude of the parameter, may affect the absolute APPENDIX

value of the yield stress/strain as it affects the degree of

mechanical constraint. It is important to recall that the strain  In this appendix, we demonstrate that the equations of
rates used in the present simulation 3.8x10°/s) are ap- motion derived in Sec. Il yield the partition function consis-
proximately six orders of magnitude larger than the highestent with theNTL,oy,0,, ensemble. To do this, we follow
strain rates typically used in experiment. Since yielding andhe approach originally outlined by Nask In an
flow in amorphous polymers are thermally activated, thesdNTL,o,,0,, ensemble, the variation of the energy of the
high strain rate are expected to have a pronounced effect @ystem is described by

the magnitude of the yield and flow stresses. In order to dE= Ty ds— Py L dA. (A1)
extract realistic yield/flow stresses from simulations of this

type, yield/flow stresses could be determined for a range of he partition function associated with E@1) is

strain rates and extrapolated into the experimentally ac-

. X 1
cesible regime. ZNTLP. P ZWJAJ def drN exp{ —[E(rN,p"Y)

X" yy" zz

+ Pextl—xA]/kBTexT}a (AZ)

where we use the compact notationf dpM

=/ dpyf dp,---J dpy to indicate multidimensional inte-
grals.

In this paper, we have described a new, extended en- The Hamiltonian associated with the equations of mo-

semble molecular dynamics algorithm for simulatingtion derived in Sec. lll is given in Eq3.4). The partition

uniaxial, strain rate controlled tensile tests, the most comtunCtlon associated with thHTLXUWUZZ ensemble is given

monly performed type of mechanical testing. This new algo-as the integral over all of the variabléand their momenta

fithm is a generalization of Andersef'and Nosas!! ex- but constrained to satisfy the Hamiltonigince the Hamil-
tended ensemble concept to the constant number of particfg’rt"and'S dcon:?[erve)dThsrefor_tet, the partition function of the
N, constant temperaturg, fixed uniaxial displacemerit,, extended system can be writien as

and fixed transverse streés,, ando,,) ensemble; i.e., the 1 N N

NTLyoyy0,, ensemble. In order to accomplish this goal, wel= NI f d“sj dsf d”Af dAf d”xf dx

have derived an appropriate Lagrangian, Hamiltonian and

equations of motion for all of the degrees of freedom of the f dW’y\'f dny dﬂ-,z\lf g

system(i.e., the positions and momenta of all particles plus
two parameters used to fix the transverse stress and tempera-

VII. CONCLUSIONS

2 2 2 2
ture). Since our ultimate application of this new algorithm is X8> (E‘Z'+ E+ et} A s
the uniaxial deformation of amorphous polymers, we ex- To2mst Ly A A 2ws
tended this general approach to treat molecular systems in 2
which the intrachain bond lengths are fixed. This is done 4 (f41)kgT,, In s+ £+PexthA_H _ (A3)
within the framework of the SHAKE algorithm originally 2Wp

proposed by Ryckaert and co-workér€ This was accom- Here 5(x) denotes the Diraé function. By substituting Egs.

plished by rewriting the Lagrangian of the system in terms of(3.2) and (3.9 into Eq. (A3), we can expresg in terms of
the centers of mass of the individual molecules and the relg | variables and their momenta

tive atomic coordinates. The equations of motion are numeri-

cally integrated using a variation of the velocity Verlet 1 f j j NJ Nf N
algorithm®® modified to account for the bond length con- Z=Nr | dps| dpa | dA [ dpy | dx7 ] dpy
straints. Constant strain rate deformation studies can be per-

formed by increasing the simulation cell sizg at a fixed XJ dny deNj dzNJ dsd

rate. In order to ensure that this new algorithm corresponds

to theNTL,0y0,, ensemble, we simulated a constant strain 2

. PXit Pyt P3; p
rate tensile test of a model amorphous polyethylene system. x> | L Ep+ —
The results demonstrate that the temperature and transverse ! 2m; 2Ws
stress are well controlled and a reasonable stress—strain pi
curve is obtained. Therefore, we conclude that our new al- +(f+21)kgTey In s+ mﬂL PexlxyA—H. (A4)
gorithm works and is appropriate for modeling the uniaxial A
deformation of polymeric systems. Using 8[g(s)] = (s — sg)/g’(s) [whereg(sy) = 0] and
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E(r”,pN)=Z [(pZi+pyi+pZ)/2m ]+,

in Eq. (A4), we find

1
zszdpsfdAJdpAfdpyfdefdpy
xfdnydpszdszds

2 2
p Pa
X 6 s—exp{ [E(r P +2WA
(f+1)
+Pext|—xA_H}/ (F+1D)KgTex (f+1)KgTox
ex

- 1fd fdAfd fd”
_(f+1)kBTextm pS pA px
xfdx“fdp&‘fdy“fdp?‘fdz”

p Pa
Xexp{—[E(rN,pN)—l—ZV\SIS+2—+PextL A— H}/

kBText] .

Evaluating the integrals in EGA5) as

—ps _ 12
J dps eX[{ 2Kg T oW s) (27Kg T exWs) ™%,

~PA _ 112
J d pA eX% 2kBText A) (ZWkBTeXI\NA) 1

yields

_ exp(H/KgT ) 27m(WeWa) 2
- (f+1) NTLPy P,

(A6)

whereZNTpryypZZ is defined in Eq(A1l). Since the partition

function in Eq.(A6) is proportional to the partition functions
defined directly in terms of th&l TL,o 0,, ensembldi.e.,
Eqg. (Al)], we conclude that the equations of motion derived
in Sec. Ill are consistent with thBITL,o,0,, ensemble.
Note: that the coefficient oZNT,_XPnyZZ is a constant and

constant proportionality only effect the normalization of the
partition function.
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