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When a vertical temperature gradient is applied to a large solid containing a spherical fluid
inclusion, the temperature in the fluid is a function only of height. The stability of this fluid
against convection is investigated and it is found that the principle of exchange of stabilities
applies. The linear differential system governing stability is then solved; the results show that
the thermal conductivity of the surrounding solid is always stabilizing and that the most
unstable mode is the first asymmetric mode, for which the critical Rayleigh number is given.
The energy method can be applied, with due modifications to account for heat conduction in
the surrounding solid. The same mathematical governing differential system would then be
obtained, giving the same number for the upper bound of the Rayleigh numbers below which
the fluid is stable. This number is then truly critical: The fluid is stable or unstable according to
whether the Rayleigh number is below or above it, whatever the magnitude of the disturbance.
The results are discussed in the context of the movement of the spherical inclusion in a soluble

solid. The greater instability of the asymmetric mode indicates that when instability occurs, the
fluid inclusion will have a sidewise component, which is greater for a greater supercritical
Rayleigh number. The effect of double diffusion is also discussed.

I. INTRODUCTION

Fluid inclusions in a soluble solid and their movement
when a temperature gradient is present constitute an inter-
esting subject of geological studies. Take, for simplicity, the
case of a spherical inclusion of a liquid of thermal conductiv-
ity k& and radius @ imbedded in a soluble solid of density p,
and thermal conductivity k. Let there be a vertical tempera-
ture gradient S, in the solid, disturbed only by the presence
of the liquid inclusion. If we assume that there is no flow in
the liquid, the temperature 7, in the solid and the tempera-
ture 7 in the fluid must satisfy the Laplace equation, so that

VT.=0 and A’T=0, (1)

in which V? is the Laplacian operator, which in spherical
coordinates (r,6,9) is

V2=—15i(r2i) +Tl,—i<sin ei)
rcor\ or r<sin@ 46 a6
1 a2
r2sin? 6 go?

The polar axis of the spherical coordinates is directed verti-
cally upward. The boundary conditions at the spherical sur-
face are

ks—ai=k£ and TS=7' at r=a. (3)

ar ar

In addition, T must be regular at 7 =0 and 7, must ap-

proach B.x, far away from the sphere, x; being the vertical
one of the Cartesian coordinates (x,,x,,x,;), with origin at
the center of the sphere, which is also the origin of the spheri-
cal coordinates.

It can be immediately verified that (with T, denoting a

constant)

(2)

7-‘s =Bsx3 +

3 —
Blz“ %—i—To and T=p8x,+ T, (4)
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satisfy (1), the re_gularity condition at the origin for T, and
the condition on T, at infinity. Since

X3 =rcos 0,
the conditions (3) demand

ki (B; —B\) = kB and B, +B,/2 =B, (3

FIG. 1. Isotherms showing linear temperature distribution in the spherical
fluid inclusion.
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FIG. 2. Sketch showing that erosion causes point A tomove to A and Bto B,
resulting in the apparent vertical movement of A to B'.

which give
Bi=1024-2)/Q2A+1D]B,, B=I[31/21+ DIB,,
(6)
where
A =k,/k. N

The interesting part of the solutions (4) is that (Fig. 1)
the temperature 7 in the fluid is a linear function of x,, so
that ordinary thermal convection need not arise. But if the
solid is soluble in the liquid, there must be mass transfer from
the hotter hemisphere to the colder one and that will push
the fluid up (if B, is positive). We can calculate the velocity
of the liquid by assuming the solution is saturated every-
where and that the saturation concentration (in mass per
unit volume) cis related to 7, in the temperature range expe-
rienced by the fluid, by

c=p(T—T,) +c, (8)
If the mass diffusivity of the substance of the solute is «,, its
mass is transported downward at a rate of k. (dc/dx5) (mass
per unit area per unit time). The speed with which the
spherical boundary moves upward is then (p, = density of
the solid)
KBy

K ﬁ_ = . (9)
ps 0x3 Ps

The reader may verify that this conclusion is reached

whether the simple argument of vertical transport is used, as

here, or whether the radial erosion of deposition of mass at

the spherical boundary is calculated from «_.(dc/dr). See

Fig. 2.

The fluid, then, is constrained to move upward with the
same velocity u, everywhere. The heat equations will then
have to include the effects of this velocity and a second ap-
proximation for both the temperature and the velocity (for
the fluid) fields has to be made. However, u, is very small, or

Us
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the relevant Reynolds and Péclet numbers are very small, so
that (9) gives the velocity of the fluid in the same way that
the Stokes law gives the fall velocity of a small sphere in a
viscous fluid at small Reynolds numbers. Indeed, (9) is a
kind of an inverse Stokes law, since it gives the velocity of a
liquid sphere moving through a solid.

The erosion and deposition of solute give rise to heat
sinks and sources, respectively, because of the absorption or
release of latent heat. The effect of these heat sinks and
sources can be taken into account quite simply. From the
second equation in (4) one obtains that the normal gradient
of Tis [3 cos 8. The solute dissolved (or deposited) per unit
time and per unit area is «.3¥ cos 8. The strength of the heat
sink per unit area of the boundary is then m/3 cos 8, where

m = Lk_y,

with L the latent heat per unit mass. Still using (4), one
replaces conditions (3) by
aT.
k,—— =k —a—T
ar ar
This gives, instead of (5),
k. (B, —By) =kB+mfB and B, + 5,/2 =0,
and instead of (6),

—1
Bi= 24 - 1 —mkfl) B, ﬁZ—LtTBS-
24 + 1 4 mk 2L+ 1 + mk
With the 3 so determined, (9) continues to give the speed of
movement of the liquid sphere. It can be seen from (9) and
the above equation giving /5 that the temperature gradient
inside the sphere and its speed of movement decreases as the
latent heat (and therefore m) increases, as is to be expected.
The question of the stability of the temperature stratifi-
cation in the fluid then naturally arises, either when £ is
negative, or if the effect of double diffusion is considered,
even if 3 is positive. As is well known, the problem of nonos-
cillatory instability when double diffusion is considered can
be reduced to that of the simpler case of ordinary thermal-
convective instability. When the fluid is unstable, the move-
ment of the fluid inclusion in the solid may be much faster,
depending on the Rayleigh number, and may not even be
vertical. This rather intriguing situation motivates this
study. We shall neglect the effect of the u; given by (9) on
the stability calculations, since that effect is very small, and
we shall concentrate on thermal instability (i.e., without
considering double diffusion) first.

+ mf3 cos 6, TszT at r =a.

Il.EQUATIONS GOVERNING THE STABILITY PROBLEM

The mean temperature fields in the solid and the fluid
are given by (4), and the mean density p,, of the fluid is
given by

Pm =poll —a(T—Ty)], (10)
where « is the coefficient of thermal expansion and p, the
density of the fluid at x; = 0. The mean pressure gradient is
in the vertical direction and is given by

P
dx,
where p,,, is the mean pressure and g the gravitational accel-

= —pgll —a(T—Ty], (11)
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eration. If T, denotes the temperature in the solid and T that
in the fluid, and if p and p denote, respectively, the density
and pressure of the fluid, we have

T.=T,+T,, T=T+T/,
pP=Pm+pPs P=Pn+PD,
where the primes indicate perturbation quantities. Since

p=poll —a(T-Tp)}, (12)
we have
p' = —aTl'p, (13)

We shall consider the temperature differences T, — T,
T-—T,T,— T, and T — T,, and we shall express these as
well as 7"/ and 7' in units of Ba. Furthermore, we shall mea-
sure time ¢ in units of a°/, and use a as the length scale for
X1, X5, and x;. Velocities will be measured in units of x/a, and
pressure in units of pxv/a?, where v is the kinematic viscos-
ity. Then all the questions will be in dimensionless terms. For
instance, the mean temperature distributions in the solid is
now given in dimensionless terms by

= 34 A-1x
T, —T,= X3+ =, 14)
T 24+177 34 (
and that in the fluid by
T— Ty =x,. (15)

The velocity perturbation is denoted by u; (/i = 1,2,3)
measured in units of k/a. The usual linearization procedure
then filters out the mean quantities in the governing equa-
tions except where they are multiplied by a perturbation
quantity. If the Boussinesq approximation is adopted, the
dimensionless linearized equations of motion are

L9 _ 0 pris, + v,
Pr c?t Ix;
where 8,5 is a Kronecker delta, V? is the Laplacian operator
in Cartesian coordinates, and

R = —gafa*/kv and Pr=v/k (17)
are, respectively, the Rayleigh number and the Prandtl num-

ber. (For unstable modes S is negative.) The equation of
continuity is

% g (18)
Ix; e
The heat equation is, for the liquid,
aT’
——tuy = VT’ 19
ot : (1

and, for the solid, with A = k,/k (x, = thermal diffusivity of
the solid),

o, = AV2T! 20
From (16) and (18) one obtains
vy = —rIL 1)
O,

lil. BOUNDARY CONDITIONS

The boundary conditions at the spherical surface are
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u,=0atr=1, (22)

T'=T, at r=1, (23)
' aT!

or =A *atr=1. 24)

or or

These demand, respectively, no slip at the boundary, contin-
uity of temperature, and continuity of heat flux. (Replace A
by A /(1 + mk ~ ') to include the effect of L.) Further,

T:=0at r=o (25)
and

T',u}, and p’ must be regular at r = 0. (26)

IV. NONOSCILLATION OF CONVECTION

Since there are no time-dependent coefficients in all the
linear equations involved, one can assume that all perturba-
tion quantities contain the exponential factor exp(o?),
where

o=o0, +i0;.
The fluid is therefore stable, neutrally stable, or unstable if
o, is negative, zero, or positive, respectively.

Multiplying (16) by u*, where the asterisk indicates the

complex conjugate, and integrating over the fluid domain ¥,
we have

oK = —PrQ—PrRJ-T’ug‘dV, (27)
where
du; au*
K= Ju uxdVv, Q= f (28)
J
Multiplying (19) by T'* and (20) by A/A)T I* integrat-

ing over V and the solid domain V', respectively, and adding
the results, using (23) and (24) when necessary, one has

o(H+H)=—S-35, —fT’*uadV, (29)
where
H=J-|T'|2dV, Hsz—/}—f|T;|2dV (30)
A
=f|grad T'2dV,
(31)

S, =/1J]grad T:|*av,.

Multiplying (29) by — R Pr, taking the complex conjugate
of the result, and adding (27) to it, one has

0K= —PrRo*(H+H))= —PrQ+PrR(S+S,).

(32)

The real and imaginary parts of (32) are
0. [K—PrR(H+H)]=—PrQ+PrR(S+3S,),
(33)
o, [K+PrR(H+H,)] =0, (34)

in which, one recalls that all the quantities or numbers repre-
sented by capital letters are real and positive. If o; £0, (34)
shows that R is negative and then (33) shows that o, is
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negative. Hence for instability or neutral stability, o; must be
zero.

V.ANALYSIS OF THE PROBLEM OF LINEAR STABILITY

For neutral stability, then, we shall take o to be zero.
This greatly simplifies the calculations. First, the thermal
boundary condition for the fluid alone at the spherical sur-
face can now be formulated.

Equation (20) is now

VT’ =0, (35)
where V2 is given by (2). The elemental solution of (35),
nonsingular at infinity, is

T!'=r=""'P"™(cos O)cos md, (36)

where P is Legendre’s associated functions of the first kind.
(If m = 0, they are just the Legendre polynomials.) For this
solution,

ar';
= —(n+ DT, at r=1. (37)
or
Then (23) and (24) give
o’ _ —(n+ DAT" at r=1, (38)
ar

which allows the separation of the problem for the fiuid from
the heat equation for the solid.
We shall, for simplicity, write

h=RT’' and h, =RT". (39)
Then, for neutral stability, (16) becomes
Ve, = L ps, (40)
Jx;

{

and (19), (21), and (20) assume the forms, respectively,

V?h = Ru,, (41)

vy = 9 (42)
Ox

V2h, =0. (43)

The thermal boundary condition (38) now has the form

9h DAk at r=1. (44)

ar

Since the boundary is spherical, it is natural to use
spherical coordinates (#,6,9) and the corresponding veloc-
ity components (u,v,w). Then, for neutral stability, the non-
oscillation of the disturbance shown in Sec. IV allows us to
write the Navier—Stokes equations

ap’ ( s 2u 2 v
0= - _pcosd +[Vu— K _ 20
or cosg T VH r2 r?a
2v cot 6 2 é)w)
— — —1, 45a
r? r?sin6 d¢ (452)
1 dp’ . ( ) 2 du
0= —— =2+ hsind +|Vvo+—=—
r 96 r? a6
b 2cotf @_)’ (45b)
r2sin’@ r2sin@ dé
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0= — 1 ép_+(vzw__£_

rsin @ dg r?sin’ 0
2 du 2cotf v )
S ), (45¢)
+rzsin6 d¢  risiné do
where V-~ is given by (2). The equation of continuity is
1 d,, 1 a . 1 oJw
— —(ru) —(vsin @) + —=0.
rzé?r( rsinf@ 99 rsin 8 ¢
(46)

In view of (46), the last three terms of (45a) can be replaced

by

2 ou
r or’

and a simple calculation shows that (45a) reduces to the
form

(47)

aiJrhcosezivz(ru). (48)

ar r

The velocity components u and v are related to u; by

Uy=wucos@—vsinf (49)
and in (42) one has

9 sl _sinb 9 (50)

Ix, ar r J6

One has to solve (41), (42), (48), (45b), and (45¢c), with
(49) and (50) used in (41) and (42). Apart from regularity
for all quantities at # = 0, the boundary conditions are (44)
and

u=9%_0atr=1, (51)
ar
v=0=w at r=1. (52)

The condition on du/3rin (51) arises from (46). Once (46)
is satisfied on r = 1, and (51) and (52) guarantee that satis-
faction, it is satisfied everywhere in the fluid, since (42) has
been derived on the basis of (18). Indeed, (40) gives

Ju, h
VL=V +-—, (53)
Ix; ? Ix,
so that if (42) is satisfied one has
% _, (54)
dx;

If Au,/dx, is nonsingular withinr = 1,and iszeroon7 = 1, it
is zero everywhere inside the spherical surface, as is well
known in potential theory. Alternatively, one can use (46)
to replace (45b) or (45c) in the differential system to be
solved.

It has been necessary to present the governing equations
in both Cartesian and spherical coordinates because the sim-
plest approach involves the use of both coordinate systems.

This approach is as follows.

(a) Expand 4 in some suitable basis functions satisfying
(44).

(b) Solve (42) for p’, retaining the undetermined com-
plementary solution.

(¢) Solve (48) for u, using the complementary solution
available from step (b) to help satisfy (51).
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(d) Solve the third equation of (40) for u,.

(e) Go to (41) to get the determinant whose vanishing
gives R.

() Solve (49) for v and (46) for w, if v and w are de-
sired.
We shall now use this procedure to solve the problem.

First, we set forth a few well-known formulas regarding
associated Legendre functions of the first kind (including
Legendre polynomials), and some functions involving Bes-
sel functions of half-orders. The solution of the Laplace
equation in spherical coordinates by separation of variables
is of the form

SNOPT(pu)cos m(p + €), (55)
where
f(ry=rorr "', p=cosé, (56)

€ is a phase angle which can be set to zero, P”( i) is an
associated Legendre function of the first kind, and m and n
are integers with m<n. (When n <m the function P is
zero.) The following formulas will be useful:

Cn+ DuPl=m—m+ 1Py +(n+mP;_,,
(57)
(- Zi L e m 1Py,
du 2n+1
— 4+ D(n4+mP™_,). (58)

We shall use the basis functions F, (a,,7) defined by

d? 27 , n(n+ )
a, ———=|F, =0, (59
(dr2 rdr at (@,r) (59)
the regularity condition at » = 0, and, on account of (44),
dF,(a, r)

—(n+ 1)AF,(a,r) at r=1. (60)

dr
For each n, there are infinitely many eigenvalues for «,,,
which we denote by ,; (j = 1,2,3,...). It is well known that
the solutions of (56) are of the form

n+05(anjr)/\/ nj’ 2

where the J stands for the Bessel function. Near » = 0, then,
F,(a,;r) behaves as r". The first several functions F, are
given explicitly in the Appendix. An F, has a finite number
of terms for a finite #. It has been used before by Chandrasek-
har.!

From corresponding formulas for Bessel functions, one
has

F,(ayr) = (61)

an

dr 2 + [ -+ DF,  +nF, w—1] (62)

dF, n n+1

dr _TF nan+1=_ r F +anan 1
(63)

2 1

B F, =ay(Fy,\ +F_ 1) (64)

r

The argument of the functions in (62)—-(64) is a,r.
Two other useful formulas, upon the use of (57), (58),
(63), and (64) are
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d

—P7(uw)F, (a,r)
Ox,
=uP” dF" 2) dP:ln Fn
—H T a du r
a"j m
=2n+1[—(n—m+l)Pn+an+1
+(n+m)Pn—l n—l]’ (65)
a 1pm
— VP w)=(n+myr—'Py_,. (66)
Ox,

Equation (65) is gratifying because each term on the right-
hand side has the same indices below. Thatis, P, | is multi-

plied by F,, . | and P'_, is multiplied by F, _,. This is a
most fortunate situation, as we shall see.

We now expand 4 as follows:

h+z z A, P (p)F,(a,r)cos md, (67)

n j=1

where for each m, n runs through either odd or even integers
not less than m. (For instance, if m = 0, n can either be 0, 2,
4,..0r1,35 ....If m=1, nruns through 1, 3, 5, ..., or
through 2, 4, 6, .... That the increment of » is 2 in either
series will be clear from the subsequent development.) Then
we solve (42) and obtain

(~—P’"F + B, tPT

n+1
Ix,

ng

"!

+C,’,jr"“P,,’"_1)cosm¢

W [ —(n—m+ )P
Z (2n+1)a [—(n=m+DPTLF,

n

+ (n+m)P7_\F, | +B,r""'P7, |
+ C, "~ 'P_ | |cos m, (68)
where
(B,;,Cy)=[2n+ 1)/a,;](B,,C.). (69)

The argument for the P functions is ¢ and that for the F
functions is a,,;7. From (68) we obtain, after some cancella-
tions,

ap’
dar +uh 22
><((n—m+ )(n+2)
r

(2n+ l)a

m
Pn+1Fn+l

(n+m)(n— 1)
r

+ (n+ DB, /"P7, |

F,_,

n—l

+(n—1)C,r—?P7_ 1)cos mg, (70)

where, asin (68), P | is zeroif n — 1 < m. We now solve
(48) and obtain
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1 ((n=m+D(n+2)
u-zz(2n+1)a[ az(

nj ¥

n—Dn+m
XPn+1Fn+1+( )( ) n‘an‘l)

r

n+1

4n + 10

B, r+2pm + m_
/ T !

+D,rPy, +E,,jr"*zP;",1]cosm¢. (71)
The boundary conditions on # in (51) then determine the
coeflicients:

B (n—m+Dn+2)2n+95)
Y (n+ Dai;

X[aF,(a,;) — (2n + 3)F,

s (@)], (72)
1

n—m+1
2n+3

+m—1)P™_

P_vy Ay (_

Ox, rly (2n+1)a \
X[ = (n—m)PJF, + (n

+ (n+m-—1)C, r"‘zP,,_z)cosqu,

a,|—(n—m+2)P7 F, ,+(n+m+ DPYF, | +——

_(n—m+1(n+2)

D . =
i 2a5;
X[(2n+5)F, , (a,) —a,F,(a,)], (73)
anz _ 2n+1)(n+m) Fn(anj)’ (74)
a,;
E-nj= (n—*lz)(2’1+m) [2an1(anj)+a"an(anj)].
a?.

n

(75)
Forn<m + 1C,; and E,; will not be needed. From (71), it
is clear that C,; is not needed even for m = 0.
We now turn to the third equation in (40), or
ap’

Viu, =
’ 9x,4

+ h. (76)

First,

ntm
2n—1 G

F, ,]+(n+m+1)B,rPy

(77

in which, as elsewhere, a P function is zero if its subscript is less than its superscript. The argument of the F functionsis «,,;7.
Substituting (67) and (77) into (76), and solving it, we obtain

((h—m+1(n—m+2)

2 2
2(2n+1)(n +n_1+m )PmF

= — Ay Py L F, .+
ZZ (27 + a3, \ 2n+3 "2 (2n —1)(2n + 3) e
+(n+m)(n—{-m I)PT‘zF 2—(n+m+1)a,,jB,,jl"+2P,',"—n+m 1 @,y Cos? P,
2n —1 4n + 6 4n — 2
+ G, P, + Hyr' P+ K, f’_zP,,_z)cosm¢. (78)
TABLE 1. Values of eigenvalues of ;.
A

n,j 0.5 1 5 10.72 @
0,1 1.165 561 19 1.570 796 33 2.570 431 56 2.855 825 15 b
0,2 4.604 21678 4.712 388 98 5.354 031 84 5.749 063 38 2T
0,3 7.789 883 75 7.853 981 63 8.302 929 18 8.694 984 46 9.424 76
1,1 2.743 707 27 T 4.066 202 10 4.286 387 37 4.493 40
1,2 6.116 764 26 2 7.056 819 40 7.378 345 88 7.72524
1,3 9.316 615 63 9.424 777 96 10.059 893 23 10.431 622 41 10.904 11
2,1 4.067 31591 4.493 409 46 5.392 525 84 5.58573225 5.763 45
2,2 7.517 465 12 7.725251 84 8.542 952 84 8.818 685 90 9.095 00
2,3 10.761 984 24 10.904 121 66 11.625 651 18 11.955908 18 12.322 93
31 531141066 5.763 459 20 6.648 002 74 6.826 005 71 6.987 93
32 8.854 793 54 9.095 011 33 9.931 192 69 10.178 195 06 10.417 11
33 12.152 991 68 12.322 940 97 13.090033 82 13.387 97199 13.698 01
4,1 6.513 445 84 6.987 932 00 7.862 622 03 8.030 700 50 8.182 55
4,2 10.150 100 30 10.417 118 55 11.261 903 15 11.489 360 84 11.704 90
4,3 13.504 450 97 13.698 023 15 14.491 662 20 14.765 382 91 15.039 66
5,1 7.688 605 78 8.182 561 45 9.049 992 85 9.211 005 21 9.355 81
5,2 11.414 998 45 11.704 907 15 12.553 804 24 12.767 091 90 12.966 52
53 14.825 518 09 15.039 664 71 15.849 782 40 16.105 060 48 16.354 70
6,1 8.844 763 42 9.355812 11 10.217 604 84 10.373 288 84 10.512 83
6,2 12.656 620 94 12.966 530 17 13.817276 09 14.019 791 29 14.207 39
6,3 16.122 315 18 16.354 709 64 17.175 538 74 17.416 383 74 17.647 97
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TABLE II. The critical Rayleigh number R, for various modes.

A
ZN 0.5 1 5 10.72 o

Mode

0,3 1161 1160 1158 1158 1156

(i) 2,2 967 1111 907 1181 978
2,3 938.738 959.579 994.294 1000.92 1008.25

4.3 938.366 959.206 993.937 1000.57 1008.25

3,1 7855 5642 3530 2618 2056

(i) 5,1 7706 7281 5450 4984 4584
32 3077 3063 5957 3277 2867

33 3026.92 3112.36 326498 3299.17 3337.55

5,3 3017.64 3102.63 3254.72 3288.85 3327.11

1,1 407 490 660 703 752

3,1 407 489 653 685 714

(iii) 51 407 491 659 702 749
1,2 385 464 648 697 749

32 384 463 645 697 748

3,3 383.394 462.653 645.021 694.611 744903

53 383.344 462.276 645.146 693.014 747.015

The coeflicients G, H, and K are determined by the condition

u;=0at r=1

and are

(n—m+1)(n—m+2)

Gy = = 2n+ 3 Foalan),
2 _ 2
Hnj=_2(2n+1)(n +n 1+m)Fn(anj)
Rn—-1)2n+ 3)
n+m+41
—a,B,, 79
4n + 6 v (79)

®
9

(i) n=1, m=0

@O

iy n=m=0

©

(i) n=m=1
FIG. 3. Flow patterns for the three modes. (i) 71 = 0 even, starting from

n=0; (ii) m =0, n odd, starting from »n = 1; and (iii) m = 1, » odd, start-
ing from n = 1.
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n+m)(n+m—1
Ky= -V E (e,
ntm—1 @,y Coy-
4n —2
Now (67) and (78) are substituted into (41) and one seeks
to equate the coefficients of P'( u)F, (a,;7) on the two
sides of (41). To do this, one needs only to multiply (41) by
P*F, (a,,r) and integrate from r = O to » = 1. The associated
Legendre functions, appearing as they do in (67) and (78),
need only to be sorted out, and no integration with respect to
e is necessary. In this way one obtains a doubly infinite num-
ber of linear homogeneous equations in the coefficients 4,,,.
Taking a finite number of them, and requiring that the 4°’s
are not all zero, one obtains a determinant the vanishing of
which determines R.
The integration procedure requires the evaluation of
certain definite integrals; these are shown in the Appendix.

VI. RESULTS

First, the eigenvalues «,,; are determined from (60) and
(61). The first two eigenvalues for each # are given in Table
1, where A = 10.72 is for NaCl and water.

Calculations for the Rayleigh number R were carried
out for three modes:

(iYym=0,n=0,2,4, ..;
(ii)ym=0,n=1,3,5,...;
(ii)m=1,n=1,3,5, ...

The results for the critical R are given in Table I, in which N
is the maximum of the values of » taken and J is the maxi-
mum of jina,;. The number of terms with coefficients 4, in
(67) taken for calculation is J(N 4 2)/2 if N is even and
J(N + 1)/2 if N is odd. Thus for each mode, the last two
lines in Table II give the critical R calculated from a 6 X6
and a 9X9 determinant, respectively. The convergence
seems quite satisfactory in general, with a discrepancy of less
than one part in 300 between the results given by the last
successive approximations, even in the worst cases. The flow
patterns for the three modes are sketched in Fig. 3.

From Table II it is clear that mode (iii) is the most
unstable. This is in agreement with the findings of Hale” and
Yih,? who treated the stability of a thermally stratified fluid
in a vertical circular tube, that overturning from one half of
the tube to the other half is the most unstable mode. It is also
evident from Table II that the effect of the conductivity ratio
on the critical R is much greater for mode (iii) than for
modes (1) and (ii) on the percentage basis. In general, J has
a greater influence on the accuracy of the results than N. The
value 5957 for mode (ii) and (N,J) = 3,2 indicates a large
truncation error for A = 5. Otherwise the R_, values seem
systematic. It is fortunate that for mode (iii), which is the
most unstable mode, the R, values are very consistent and

rapidly convergent from J = 2 onward for all values of A.
Even for J = 1 the values of R, are not very different from
their values for greater J, except for N =3 and A = o [for
which the value of 714 given for R_, seems to have a rather
high error because of truncation (in N or J) ].
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F1G. 4. Oilinclusions in fluorite (CaF,). (Courtesy of Professor W. Kelly.)

Vil. DISCUSSION

It is clear from the results that the critical R increases
with 4. To reach this conclusion for modes (i) and (ii) it was
necessary to take V and J sufficiently large. (Taking N =10
andJ = 1 gives the wrong trend. ) For mode (iii) even taking
N = 1=J gives the right trend and nearly the correct criti-
cal R. The increase of R with A can also be demonstrated by a
rather involved parameter differentiation, and agrees with
Hurl et al.,* who treated the Bénard problem.

When the Rayleigh number is above 693 in the case of
salt and water, including the third-order terms in the govern-
ing equations will, in the usual way (although the calcula-
tion is now necessarily more complicated), show that the
magnitude of the perturbation quantities is of the order of
(R — 693) "2, Since the asymmetric mode is most unstable,
and since it contains the factor sin ¢ or cos ¢, the deposition
or erosion of the solid by the fluid, when the solid is soluble,
will have a sidewise component. The greater R — 693 is, the
more the movement will be sidewise. When instability oc-
curs, then, larger fluid inclusions will move in a cone of a
larger vertex angle, if the surrounding solid is soluble. In that
case, keeping in mind that the flux is saturated with the so-
lute, and thus the mass concentration of the solute is propor-

FIG. 5. Aqueous inclusions in synthetic KNO;. (Courtesy of Professor W.
Kelly.)
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FIG. 6. Aqueous inclusions in NaCl, Windsor, Ontario, Canada. The inclu-
sions imitate salt crystals and are called negative crystals. (Courtesy of Pro-
fessor W. Kelly.)

tional to &, one obtains the erosion and deposition rates at the
boundary from the solution (67). The dominant term in
(67) contains the factor (for the most unstable case m = 1)

P (u)cos md or sin 8 cos me.

If only this dominant term were present, the spherical inclu-
sion would move in a slanted direction without change of
shape. However, the other (less important) terms would
cause it slowly to vary its shape.

We have ignored the effect of double diffusion. When
that effect is taken into account, the fluid can be unstable
even when the temperature gradient £ is positive. For neu-
tral stability,

4 y
e ﬁf”—) = 693,
PV \ K K

where the first term on the left-hand side is the Rayleigh
number for mass diffusion, S " is the salinity gradient, and x’
is the diffusivity of the solute. If the solid is salt (NaCl), ' is
much smaller than «, and instability can occur at a positive
' much smaller than the value of — a8 (when Sis negative

as in the main body of this paper) necessary to bring about
thermal instability. Again, when instability occurs with dou-
ble-diffusive effects taken into account, the fluid will as a
whole (slowly) move sidewise as well as vertically.

It may be noted that if the energy method for hydrody-
namic stability is employed, the usual calculation, with due
modification to take thermal conduction in the solid into
account, will produce, upon the application of the calculus
of variation of Euler and Lagrange, the same mathematical
differential system governing the upper bound of the Ray-
leigh number R below which the fluid is definitely stable,
whatever the magnitude of the disturbance. That bound is
therefore 693, which is therefore the true critical Rayleigh
number: When R is above it the fluid is unstable, and when R
is below it the fluid is stable, whatever the magnitude of the
disturbance.

Finally, we wish to show a few photographs of fluid
inclusions in minerals. Figure 4 shows perfectly spherical
inclusions. Unfortunately, they are oil inclusions, in which
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the mineral is not soluble. Figure 5 shows nearly spherical
shapes, but the crystal planes of the mineral already have an
influence on them, while Fig. 6 shows negative crystals, or
aqueous inclusions imitating the shape of salt crystals. All
these shapes occur in isothermal conditions. We have not
been able to find shapes of fluid inclusions in minerals when
a thermal gradient had been present for a long time.

In a previous paper, Yih® showed that general ellipsoi-
dal liquid inclusions can move with a constant velocity in a
soluble solid provided gravity acts in a direction parallel to
any one axis of the ellipsoid. Thus infinitely many perma-
nent shapes are possible if surface energy associated with
crystals is ignored. The photographs shown here seem to
indicate, for isothermal conditions at any rate, a preferred
asymptotic (with time) shape. For isothermal conditions
Cline and Anthony® showed a rounded-cubic shape of an
aqueous inclusion in KCL after seven years in equilibrium.
Thus there seems to be a preferred shape. Cline and Antho-
ony® also calculated the shapes (each of which is presumably
unique under the specified conditions) of liquid inclusions,
which depend, among other things, on the volume of the
liquid. But Cline and Anthony® ignored the temperature dis-
tribution in both the solid and the liquid, and this distribu-
tion is, as shown by Yih,> important for determining the
speed of migration of liquid inclusions and relevant to the
permanence of their shapes. Yih,® on the other hand, ignored
the effect of surface energy in crystals and did not touch the
question of the uniqueness and determination of the perma-
nent shape of a liquid inclusion in a soluble solid with a
temperature gradient. This question remains open.
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APPENDIX: F,,(x) AND DEFINITE INTEGRALS
The first several functions F, (x) are
Fy(x) = (2/m)"?(sin x/x),

172 3
F,(x)= (—2—) i(sm X cos x),

T X X

2 172
F,(x) = —(—) i[3—095—):4—(1 ———3—2>sinx],
T x x X

172
Fi(x) = (—2—) —1—[(1 — %)cosx — (—6— — Lg—)sin x],
7/ X x X x
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n—1

dF, | (x)
dx '

The following definite integrals have been needed in the cal-
culations:

F (x)= F,_(x)—

1
I(a) =f PF,(ar)dr = iz [ZFO(a) — (i — a)Fl(a)] ,
o a a
1
I, (a) =J. PF,(ar)dr
0

=(/a)[2n+3)],_(a) —F,_,(a)];

1
Ly(a) = J PF(ar)dr = LFl(a),
o a

1
L, (a)= f T 2F, (ar)dr
0

=(/2)[C2n+ DL, (a)—F,_,(a)];
IO(a’B)

1
=f rPF,(ar)Fy( Br)dr
0

= [1/aB2m)*|[Fola — B) — Fola +B) 1,
I,(aB)

1
=J rF, (ar)F, ( fr)dr
0
=a '[Bl,_(aB) —F,_ (@)F,(B)];
1
J PF2(arydr=1I,(a,a);
0

1
J PFj(ar)dr = (2a — sin 2a);
o 2a°7
1 _
J PF? (arydr = —) (sinz 42— ﬁl_a) ;
o 2am o

1
f rF%(ar)dr
0

= (1/27a®) [2a — sin 2a — 6a~3(a® — 2a sin 2a

+a®cos2a + 1 —cos 2a)] ;

1
f rFi(ar)dr
0

= (1/27a®) Qa + sin 2a — 6a—>(2a* + 5a° + 15)
+ 6a’[(2a* — 25a® + 15)cos 2a
— (10a® — 30a)sin 2a]) .
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