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ABSTRACT

Existing methods for characterizing truncated sequential
probability ratio tests are either a) conservative, in that they

may produce a truncation point m that is larger than that needed
to guarantee given a and B values; b) inefficient in that the

computational effort needed to find m is proportional to m3; or
c) subject to considerable round-off errors as m increases. We

present an efficient recursive method for computing m that is
linear in m, does not accumulate round-off errors, and produces

the smallest conservative value of m. An example is given for

i.i.d. normal observations.

INTRODUCTION

Suppose we wish to test Hy: 8 = 6, against Hy: 6 = 84 by

sequentially observing independent random variables X1, XZ"”' X

n



with density fi(xilej)’ j =0, 1, but with a limit on the maximum
number of samples.

Wald (8) originally proposed the SPRT, with truncation point

m, as follows: First define the single sample log-1likelihood

£y (xql0y)
zy =0 (———————— , i =1, 2,...n

fi(xi|90)
and the total log-likelihood ratio up to and including the nth

ratio

observation

Then, the truncated SPRT rule is:
reject Ho if Zy 2 bforn=1, 2,..., m

accept HO if Z, aforn=1, 2,..., m

and take one more observation if
a < Zn <bforn-=1,2,..., m-1.
If the experiment has not stopped at or before m observations,

then X
reject Ho if b > Zn 20

and accept Hj if a <z, < 0. (1)
The stopping bounds a and b are given by the approximation
1..
a= 4n £ and b = &n 18 (2)
1-a a

a and B in relation (2) represent the desired error probabilities
of type I and type II respectively. For any fixed value of m,

~

this procedure will produce actual errors a and 8 that will, in

general, differ from a and 8.
In this paper we find the smallest truncation point m* such

that the actual error probabilities & and E are less than or

equal to the desired error probabilities a and 8. To do so, we
explore the relationship between m* and the parameters of the

density functions fi(xilej)' in order to help an experimenter
choose (in advance) a truncation point guaranteeing any desired
error probabilities. We strictly restrict ourselves to using



Wald's stopping bounds (relation (2)), since they are easily
computable and well understood. We thus do not, for example,

consider the more efficient but less transparent non-constant
bound techniques of Anderson (1960) and Armitage (1957).

Wald (1947) suggested setting the truncation point m "large
enough" such that the effect of truncation on the actual error

probabilities would be minimal. In this spirit, Johnson (1961)
gives a working rule for choosing a non—-integer truncation point

m* when the observations are independent and identically
distributed normal random variables. This Johnson rule sets m =

3 supJE(N|eJ), where E(N|ej) is the expected number of

observations for the untruncated SPRT when ej is the true state

of nature, for j = 0, 1. An integer point m** is then obtained
by rounding m* up to the next higher integer. It has been shown

by Golhar and Pollock (1983) that the resulting integer truncation
point m** tends to be conservative, in that smaller truncation

points can still guarantee errors no worse than a and 8.
Aroian and Robison (1969) proposed obtaining a truncation

point by first finding the operating characteristic function
Ly = L(6;) = prob.{accept Hole = 851.
This is gotten from the p.d.f. of the random variable Z given

n-1
N {a <z, < bl

k=1
To obtain this p.d.f., let =1
Pj(z,n) = pr‘ob.{(gn < z)gw1(a <z < b)|e = ej}

be the c.d.f. for the random variable Zn after having observed n
samples and let pJ(z,n) be the p.d.f. of Z, i.e., the derivative

of Pj(z,n) with respect to z.
Successive convolutions can then be used to calculate

pj(z,n):

b
pj(z,n) -.g pJ(u, n-1) f(z-u|ej) du forn> 1. (4)



These relationships in turn produce the operating characteristic
function
m-1 a o}
Ly(m) = ] S pj(z,n) dz] +f p;(z,m) dz, j=0,1 (5

n=1 -w -
We can now recursively use equations (3-5) form =1, 2,..., and
find the minimum value of m such that both Lq(m) < 8 and Ly(m) >
1-a hold. Thus, the actual error probabilities do not exceed the
desired error probabilities.

The major difficulty with this approach is that the
numerical methods needed to evaluate relations (3)-(5) are
tractable only if m is small. However, for large m, as shown by

Golhar (1983), the number of grid points needed to carry out the
required numerical integration increases on the order of m3.
Hence both computing time and memory increase on the order of
km3, where the constant k depends on the degree of accuracy
desired. Computing time may thus become prohibitive for large m,
particularly if one is interested in microcomputer
implementation. 1In addition, the accumulation of round-off
errors is exacerbated by the recursive nature of equation (4).

We present here a more efficient method using a different
recursive formulation, one for which computing time and memory
only are on the order of km. We also, by example, develop a
simple relationship between m* and the distribution parameters
for IID normal random variables, when a = B.

THE RECURSION METHOD
Let m be the maximum number of observations to be taken.

Let ¢,(t) be the type I error probability with at most k more
observations, when the present log-likelihood ratio (i.e., up to

and including the (m-k)., observation) is t. If a <t < b and k
> 0, then one more observation is taken.
If z is the log-likelihood ratio computed after this next

observation then,
1 ift+z>0Db

0 (t) = { ép-q(t+z) if a <t +2z2<0Db
0 if t+z3sa



with initial conditions:
1 if t>0
0o(t) =
0 if t < 0.
Hence, one can recursively compute by
o b~t
0 (t) =S f£i(z]8 ) dz + [ ¢p_y(t+2z) £;(z]o,) dz  (6)
b-t a-t
for 1 <k < m,
:th

where fi(z|eo) is the density function for the i*" observation

when 8o is the true state of nature, where i = m-k.
Equation (6) holds since a type I error occurs either if the

next observation causes the likelihood ratio to go above b (term

1), or the process continues but eventually produces a type I
error (term 2).

A similar expression holds for wk(t), the type II error
probability with at most k more observations, when the present

log-likelihood ratio is t:
a-t b-t
b () =L " fy(z]eg) dz + [ Vk-1(t+2) £;(z]84) dz
The truncation point m* is then obtained by finding the

smallest n (=m*) such that both ¢,(0) S « and y,(0) S B.

Example: Normal IID Observations

Let X. be IID Normal random variables with mean 6. and

b J

variance ¢~ for j = 0, 1 and 1 > 1. The log-likelihood ratio
that corresponds to the ith observation Xi = x is given by
2 - 2_n2
£(x[84, 0°) 8,-8, 67-65
z = 4n > - X T (7)
£(x|8,, 0°) 0 20

Since Z is linear in X, it is easy to show that, when § = eo,
1
Z "N (=542, d?) where d = (8, - 8;)/o.

For a given value of a (= B) and d, equation (6) can be
solved iteratively forn=1, 2, 3,.... We then find (by

interpolation if necessary) that particular smallest value of n
(= m*) for which ¢™(0) S a. Table 1 shows the results for values



of o = B between .01 and .15 and values of d between .20 and 1.5.
The values of m* are very close to those obtained by Aroian and

Robison (1969) and Golhar (1983). Finally, we note that an
integer truncation point m** can be obtained by rounding up the

solution to (9), which of course guarantees satisfying the error

*
probabilities desired since m * > m*.

Figure 1 is a plot of 2n(m*) vs. n(d) for different values

of a = B: an essentially linear relationship. Table 2 shows the

slopes of these lines (and standard error) as determined by a
standard least-squares fit. Note that the slope is fairly

constant for different a, and roughly equal to -2.16. This
suggests that for IID Normal variates m* and d have the
approximate relationship:
n* = k(a) 47210 (8)

where rk(a) is the intercept of the curves in Figure 1 at d = 1.

To obtain k(a), m* was plotted against a for d = 1 as shown
as Figure 2. This curve is well represented by the equation:
k(a) = a + b(a)®. In order to find constants,-a, b and ¢ the
following procedure was adopted:

1. For d = 1, using the three data points (a, m*) of (.01,
24.3); (.075, 9.1); and (.15, 4.6) the value of ¢ = -.1096 was
obtained.

.1096

2. Letting y = (a)” the general equation is

transformed into the linear relationship: k(a) = a + by. A

least squares criterion using all points gives values of a =
-53.17 and b = 46.9.

Thus, equation (8) can be written:
an(n*) = n{-53.17 + 46.9 o 1998} ~2.16 *an(q) (9)
The simple relationship (9) gives the m* values shown in

Table 3, which are very close to the (actual) m' values of
Table 1.

CONCLUSION
The recursive method presented here is very efficient

compared to the methods proposed elsewhere in the literature,



Computing time and memory space requirements are of the order of
m. We have also established a simple relationship between a

useful truncation point m*, the desired error probability a and
the discrimination factor d for testing Normal IID variables

using Wald's bounds. It has been shown by Golhar and Pollock
(1983) that the m* thus obtained gives a smaller expected number

of observations than the truncation point from Johnson's working
rule, yet still gives actual error probabilities within the

desired values.

TABLE I
Computed (actual) values of u' for given d and a

d\%] 0.01| 0.02]|0.025] 0.03| 0.04| 0.05| 0.06| 0.07|0.075] 0.08| 0.09] 0.1 |0.125] 0.15

0.20{775.1/615.0{562.8]520.0|452.2/399.8357.1|321,3(305.3|290.5/263.8|240.1{191.3{153.2

0.25(479.0(378.9/346.4/319.7/277.6{245.1|218.7|196.6(186.8|177.7]161.2{146.7|116.7| 93.4

wone| consn | conce | cacen | cevcne | cnces | cvcvn | conns | cecce | cvnes | ceves | cncna | cance| covec | ccaea

0.30(323.3/255.1]233.0(214.9]186. 4164, 4{146.6/131.7{125.1{118.9{107.9| 98.1| 78.0] 62.4

0.40(173.9[136.7|124.6{114.8] 99.4) 87.6| 78.0| 70.0| 66.5| 63.2| 57.3]| S2.1] 41.4f 33.1

coon | covee | cecwe | cenne| cocne| cnnce| cenvn | cncna|cacca | cnane ]| cncnn | cnnce | cnvanlcccne| cacae

0.50{107.6| 84.3| 76.8| 70.7| 61.1| 53.8] u7.9| 43.0| 40.8]| 38.8| 35.1| 31.9| 25.4| 20.3

0.75| 45.0( 35.1] 32.0] 29.4| 25.4)| 22.3] 19.9| 17.8] 16.9] 16.1| 14.6] 13.2( 10.6] 8.5

1.00| 28.3] 19.0f 17.3]| 15.9| 13.7| 12.0| 10.7] 9.6{ 9.1| 8.7|] 7.9] 7.2] 5.7| 4.6

1.25] 15.2| 11.8] 10.8{ 9.9] 8.6{ 7.5| 6.7 6.0] sS.7| sS.5| 4.9] u.s| 3.6] 2.9

1.50| 10.4| 8.0 7.3] 6.8{ 5.8] sS.1| u.6{ 4.1 3.9 3.7| 3.4] 3.1| 2.5 2.0
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TABLE II
Slope of &n (m*) as a function of 2n(d) for different

values of a. The average slope for the values shown

is -2.16. Sp = standard error.

a Slope Sb
0.01 -2.143 0.0035
0.02 -2.154 0.0033
0.025 -2.157 0.0035
0.03 -2.169 0.0043
0.04 -2.162 0.0049
0.05 =2.177 0.0049
0.06 -2.164 0.0065
0.07 -2.168 0.0059
0.075 -2.168 0.0065
0.08 -2.164 0.0076
0.09 -2.164 0.0083
0.10 -2.163 0.0086
0.125 -2.159 0.0098
0.15 -2.157 0.0096
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Figure 2: m* ford=1 as & function of a



TABLE II

Values of o' from equation (9)

d\%| 0.01| 0.02|0.025] 0.03| 0.04| 0.05| 0.06] 0.07|0.075| 0.08| 0.09| 0.1 |0.125| 0.15

-----------------------------------

ceme| ccvocn | cvnae

0.20793.4/609.5(553.2{508.2{439.1/386.9)|345.2[310.6/295.3(281.1]{225,4(232.7{185.5/147.8

0.25/489.9{376.3[341.6(313.8{271.1(238.9{213.1{191.7/182.3{173.5{157.7[143,7T{114.5{ 91,2

0.30{330.4(253.8(|230.3|211.6(182.8{161.1({143.7{129,3/122.9[117.0/106.3| 96.9| 77.2| 61.5

0.40(177.4[136.3{123.7(113.6 98.2| 86.5( 77.2| 69.4( 66.0| 62.8] 57.1| 52.0| 41.4| 33.0

0.50[109.5[ 84.1| 76.4| 70.1| 60.6] 53.4| u7.6| 42.8| 40.7| 38.8] 35.2| 32.1| 25.6 20.4

0.75| 45.6] 35.0| 31.8{ 29.2| 25.2| 22.2| 19.8] 17.8| 16.9| 16.1| 14.6] 13.3| 10.6| 8.5

1,00 24.5| 18.8| 17.0{ 15.6] 13.5| 11.9{ 10.6f 9.5| 9.1| 8.6{ 7.8 7.1f 5.7| 4.5

B T I B e T T R T R L e Y I Bl Rl T T P I

1.25( 15.1] 11.6| 10.5| 9.6/ 8.3] 7.3] 6.5| 5.9| 5.6[ 5.3 4.8 4.4 3.5{ 2.8

1.50f 10.2| 7.8{ 7.1 6.5 5.6] 4.9 4.4 3.9] 3.7| 3.6f 3.2f 2.9| 2.3 1.9
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