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1. Introduction

In this paper we explore the numerical computation of the performance measures asso-
ciated with the monitoring policy described in Pollock and Alden (1992), hereafter referred
to as P&A. In particular, we present a numerical approximation method to solve equations
(A3), (A4),‘and (A5) in P&A. As shown in P&A, this is equivalent to finding steady state
solutions for the state probabilities of the approximating Markov chain MCZ of Appendix
B.

2. Computing Performance Measures given P.

We recall, from Appendix B of P&A, that the state space of MCZ is {0,1,2,...2m}.
The “renewal” state is {0}, the false alarm state is {m}, the true alarm state is {2m},
the set {1,2,...,m — 1} represents states where the system is in condition G, and the set
{m+1,m+2,...2m — 1} represents states where the system is in condition B.

We first assume that the (2m+1) X (2m + 1) transition probability matrix P is available,

where

[P);; = prob. {Zpp1 =7 | Za=1} 4,5=0,1,2,...2m,

and Z, is the MCZ state after observating X,. Sections [3] and [6] provide the elements of
P for Bernoulli and Normal observations, respectively.

The steady state probability vector 7, where
T=(mo ™ ... Tom),
is then obtained from the Chapman-Kolmogorov equation

* = %P (1)



along with the “normalizing” equation
2m
Z T = 1. (2)
1=0

P can be expressed in terms of a 2m x 2m matrix P, a 2m-dimensional row vector p,

and a 2m-dimensional column vector p;:
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p P

(3)

and 7 can be written in terms of 7y and the 2m-dimensional row vector @ = (7, m3...73,,),
so that # = (mp m). (Recall 7y = steady-state probability the system occupies the renewal
state. This in turn equals the checking rate, since the renewal state sojourn time is assumed
to be 1.)

This allows equations (1) and (2) to be written

0 po

(mo ) = (70 =) (4)
p, P
and
o + 7wl =1 (5)
where 1 = (111 ... 1) is the unit 2m-dimensional column vector.

Equation (4) can then be written as the equation
To = TP, (6)
and the set of equations

T = 7r0p0 + ﬂ'P- (7)



From the development in P&A and the definition of p,, we know that p, has elements of

1 in the m*™ and 2m** rows only, and is zero everywhere else. Thus equation (6) reduces to

To = Tm + Tom = T + Tp
where

.7"5 = steady state probability system is in the “true alarm” state, and

7y = steady state probability system is in the “false alarm” state.

As shown in P&A, the structure of the transition matrix P allows it to be further

decomposed as

(1-a)G aB
P= (8)
0 B

where: a = probability of transition from condition G to condition B in a single time period;
G is the m x m matrix, with elements G;; describing Z,-transitions while the system is in
condition GG, and B is the m x m matrix, with elements B;;, describing Z,-transitions while
the system is in condition B. Note the m! row of both G' and B contains all zeros, since
the next state from an alarm state must be the renewal state.

We can represent the row vector p,, which represents probabilities of transition from the

renewal state to all other states, by

Po=[(1-a)g ab] (9)

where g and b are m-dimensional row vectors with components g; and b;. Similarly, the

steady state vector w can be written

™ =[m, ™). (10)



With these representations, equations (7) become

(1-a) G aB
[wy m] = mo[(1 - a)g ab] + [my )] (11)
0 B
or the two sets of linear equations:
7, = (1 — a)mog + (1 — a)mw,G (12)
and
m = angb + aw,B + 7, B. (13)

The normalization condition of equation (5) can be re-stated as:
To+ W1+ mp1 = 1. (14)

The method of computation begins by letting #, = m,/7o and %, = m;/7o; then equa-

tions (12), (13) and (14) become

#,(I - (1~ a)G] = (1 - a)g (15)
#yI - B] = ab + a7, B (16)
mo=(l+@,1+m1)"" (17)

Equation (15) is readily solved for 7, since it is a set of m linear equations in m unknowns.
Once 7, is obtained, equation (16) can be solved for &, — another set of m linear equations.
Finally, 7 is obtained from equation (17), which gives

T, = 7‘1'971'0 (18)

Ty = ‘frbﬂ'o. (19)

Some performance measures of interest are
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mo = checking rate, obtained from (17)

me = false alarm rate: the mth element of 7, obtained from equation (18)
pB = prob.{system is in condition B}

= 7,1 found by summing the elements in 7, obtained from equation (19).

3. Elements of P for Bernoulli monitoring

In the case of Bernoulli monitoring, we observe random variables X, = 0 or 1, with

distribution p(z) when in condition G given by
l—a ifz=0
p(z) =
a ifz=1
and distribution ¢(z) when in condition B given by
g ifz=0
g(z) =
1-8 ifz=1.
As shown in Section 9 of P&A, by defining
Wo =
w; =

the evolution of the monitored Z, process is governed by

wo(Z,+1) if X451 =0
zn+1={ olZn+1) A Ko (20)

wl(Zn + 1) if Xn-H = 1.

Selecting the value of m, which determines the dimension of G, g, B and b, is related
to the desired accuracy of the computation of performance measures. As noted in P&A,

the number of possible states occupied by the Z, process (MPZ) generated by equation (20)
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is generally unbounded. Selecting a value of m is equivalent to determining the degree to
which the discrete state approximation (MCZ) represents MPZ. For the moment, we assume
m is given (determining a value for m is left to section 4).

The key issues in determining the elements of G, g, B and b are
a) identifying a set of z-values S = {z;: 1 =0,1,...,m}, where 2o = 0 and z,, = z*;
b) associating each Z,-value generated by equation (20) with an element in S.

We use an arbitrary but simple method for item b): assign Z,,; to the element z; € S that

is closest in absolute value. This is expressed mathematically as

Jo(t) = arg _min {]wo(z +1) — 2 [}

hi) = arg_min{|wi(si+1) = 2 |

The elements of the matrices G and B needed for solving equation (15), (16), and (17)

are

(1-a) if j = Jo(0)
a if 7 = J1(0)
0 other j

9;

(

(1-a) if j=Jdo(s), 1=1,2,...m—1
a if j=J1(1), 1=1,2,...m—1

0 other j, 1=1,2,...m-1

0 all j, 1=m



B if j=Jo(0)
bj=4 1-8 if j = Ji(0)
0 othery

B ifg=J(e), 1=12,...m—-1
1-8 ifj=4(@), 1=12,...m-1
0 other j, 1=1,2,...m-1

0 allj, i =m.

4. Algorithm for defining {z;}

Defining the subset {z,23,...,2,-1} of S is somewhat arbitrary. A simple algorithm
that seems to provide numerically stable performance measures is to generate all possible

z-values over a “horizon” of h observations of X. The advantages of this approach are:
e only feasible z-values are generated,
e it accurately represents the Z, process over the horizon, and

e the value of m, and consequently the accuracy of the approximation, can be increased

by increasing h (see Section [5]).

The algorithm follows:

m

Algorithm for generating m and S = {z,}7,

1. Set Sp = {0,2"}.



2. Select a horizon h > 1.

3. Set n=1.

4. Generate so = {wo(2; +1) : 2; € Sp—1 and wo(z; +1) < z*}.
5. Generate s; = {wy(2z; + 1) : z; € Sp—q and wy(2; + 1) < 2*}.
6. Set Sn ={z: z2€5,Us; and z ¢ U5 S;}.

7. Increment n by 1.

8. If n < h then go to step 4.

9. Set S =UL,S; and set m = |S| - 1.

At termination, the set S will be a set of m + 1 distinct z-values which, when sorted by
increasing value, can be labeled zy, 21, 29,...,2m. Thus, given values of a, 3, a, and 2*, as
well as the horizon h, the algorithm provides a value of m and set S. A larger h generally
produces a larger m. It is easy to show that m < 2*. Qur computational experience has

often shown that m increases close to exponentially in A.

5. Elements of P for Normal monitoring.

In the case of Normal monitoring, the X, are independent normally distributed random
variables with distribution parameters depending only on system condition. Without loss of
generality, we assume the distribution of X, is p(z) with mean = 0 and standard deviation
= | while in condition G, and is ¢(z) with mean = g and standard deviation = 1 while in

condition B:

-z2/2

|
plz) = Nirh
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The likelihood ratio is

and equation (16) of P&A becomes

Z'n,+1 = 7ean[1 + Zn],

where
—_pl
e~k /2
")’ =
l-a
Again, we assume the set of Z-values {2 = 0,2y, 22,...,2mn_1,2m = 2*} is given. Then,

using the governing equation (20) given Z, = y, we compute the cumulative distribution of

Zn41, from which the associated pdf can be obtained:

prob.{Z,;; <z} = prob.{ye**"(1 +y) <z}

1 z
= . n<_ .
prob.{ X —Nlnﬁ'yl-i-y}

When the system is in condition G, X, has pdf p(z). Thus the elements of G are given

by

G; = prob{Z,41 =2z;|2Z, =2}
prob.{Zn41 < zj | Z, = z;} — prob. {Zny1r < zjoy | Zn = 2}

l 2z _ l 2i-1 s _
(D(/‘IHM) ¢<”lnm) ,j=1,2,...,m—1.

where ®(-) is the standard normal cumulative distribution. By definition, we also have

Since state z,, = z* represents an alarm state,

1 2"
Glim = b{Zpy122"|Zn=2}=1-®|—-1n 1=1,2,...,m—1.
Gl = 91002 27 Zu =5 =10 (11 =)
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Elements of g correspond to row “zero” of G, so that

9; = prob{Zny =2 |2, =0}
_ l 25 _ l Z2;-1 . _
- @(“111;71) @(#ln—-,YL) j=1,2,...,m—1
- 1-o(l

gmn = 1 ‘I)(H In ’y)

By a similar argument, while the system is in condition B, X,, has pdf ¢(z), and so

Bij = CI)(I lnT_h [l) @(1 ln:y-(rl:*—f?j u) i,j=1,2,...,m—l

‘:I'—'

6. Computation for Normal monitoring

Exercising equations (15) through (17) for the Normal monitoring case requires a set
S = {z}, such that the resulting linear equations have numerically stable solutions as
m becomes large. Because of the peculiar nature of the matrices G and B, defined in
the preceding section, the task of generating an appropriate set S is difficult. Fortunately,
however, X, is a continuous random variable, which allows a re-stating of equations (15)
through (17). This re-formulation allows their solution by means of existing techniques from

numerical analysis. In particular, we define the elements of S to be

1
(24

i=0,1,2,.

Zg=iA=
m

so that a is the interval between equally spaced points from Z, = 0 and Z, = z*. This
allows the definition of continuous analogues of the steady-state probability vectors 7, and

7ty; that is, we define fg(z) and fb(z) so that, in the limit as A — 0,
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mofy(z)a = (steady state) prob.{z < Z < z4a N system is in condition G}
mofs(z)a = (steady state) prob.{z < Z < z4+a N system is in condition B}

and so f,(z)a = [#,]; and fo(zi)a = [#s);. Equation (15) can then be written

[7; = (1—a)) [7)iGij+(1—a)g; j=1,2,...,m—1 (21)
=1

[Folm = (1= a) Y [#,iGim + (1 — a)gm (22)
1=1

Using the definition of fg(.), the first set of these becomes:
fiz)a=(1-a)Y f(z2)aGi+(1-a)g; j=1,2,...,m—1 (23)
1=1
From the definitions of G;; and g; given in Section 5, it can be readily shown for small a

and 7,7 =1,2,...,m — 1 that

Lo A Zj d |1 Zj
Gij = p(ﬂ In 7i1+z,-i> dz; [# n 7i1+z,~i]
and

Dividing equation (23) by a and taking the limit as o — 0 gives

. LA 1 1 2z 1 1, =z x
fo(z)=(1-a) A fg(:c);;p(; In 7(1+1))d1+(1—a)—p(;ln;> 0<z<2" (24)

By a similar argument,

LA » 1 (1 z 1 (1. 2 .
—/0 [fb(x)+afg(x)];;;q (; In 7(1”)) d$+a;q (;hx;) 0<z<z (25)

Equations (23) and (24) are the continuous equivalents of equations (15) and (16). The

solution method is essentially the same: we first solve equation (24) for fg(z), and then
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solve equation (25) for fb(z). Substituting G;,, =1 — Z}”:‘ll Gij and g, = 1 - ¥7i7! g; into
equation (22) and then using the continuous approximations for G;; and g;, we can derive

the alarm probabilities:

[#glm = (l—a)/oz.fg(z)/:ip (i In 7(li_$))dzdx+(l—a)/:ip (% In %) dz

(26)
2, n oo ] 1 z o ] 1 z
Tolm = —q -1 dzd —q|—1In -] d.
i = [l + oo [T Lot I dsdota [T o (L0 E)
(27)
Finally, the normalizing equation equivalent to equation (17) is
-1 _ A 2, A A
rl=1+ / fi(z)dz + / Fi(@)de + [#g)m + o). (28)
0 0

Equations (24) and (25) are Fredholm equations of the second kind, which, as pointed out
in P&A, have been examined extensively in the literature. The key to their solution is the

nature of their kernals, that is the behavior of

and

1 (1 L * )2
b2,2) =—L—e 2\0 2(1+3)
In order to obtain a numerical solution to equation (24), a FORTRAN code was written
using a NAG library subroutine (NAG, 1983) that solves this linear non-singular Fredholm

integral equation of the second kind using the method of El-Gendi(1969). The function

fy(.), appearing on both sides of equation (24), is approximated by truncating a Chebychev
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series to form an n'* order polynomial. The subroutine solves for the resulting polynomial

coefficients ¢/,7 = 1,2,...,n such that

f,(2) = ;2:;(::’ cos ((z —1)cos™! (%; - 1)) (29)

with the property

Z‘ R n (:‘qz*
=0 fg(z) dz & i=1;120dd 1— (Z _ 1)2 (30)

This analysis also provides fg(z,-) evaluated over the set of Chebyshev points z; where

7 m(i—1) .
=5 (1—{—(:03( po— )) t=1,2,...,n. (31)

Equation (25) is then solved, using the same NAG subroutine, by approximating fb()

with a different Chebychev series and using fg(.) obtained above. This produces the coeffi-
cients ¢,z = 1,2,...,n, such that
. LI . _1/2z
Jo(z) =Y clcos | (i —1)cos™ (= —1)], (32)
1=1 z

with the property

Uieden Y 9 (33)
b 7R o
2=0 i=1;1 odd 1—(i— 1)2

The performance measures [#,],, and [#;]. are obtained by trapezodial approximation
of the integrals in equations (26) and (27) using the values of fg(m,-) and fy(z;) obtained from
equations (29) and (32) at the Chebyshev points z;, 2 = 1,2,...,n. Finally, 7y is obtained

by substituting equations (30), (33), and the values of (%], and [#})],, into equation (28).

7. Numerical Results for Bernoulli Monitoring

In this section we present numerical results for Bernoulli monitoring. The first computa-

tion is generating m and the set S using the algorithm of section 4. Figures 7.1a, 7.1b, and
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7.1c show how m = |S| increases with increasing horizon h, for various values of , 3, a, and
p*. Comparison of these figures show how larger p*, smaller a, and larger a and J increase

the number of states generated for a given A.

7.1 Generating S = {2}
Figures 7.2a, 72.b, and 7.2c show the resulting z; values and associated steady-state
probabilities when @ = 8 = 0.2, a = 0.01, p* = 0.2. Note the “jumpy” nature of the

steady-state probabilities and the “gaps” in the z-axis. This behavior suggests that

a) any solution approach which uses a continuous approximation to the state space would

be unwieldy, and

b) a using simple “grid” over the z axis to represent the possible z values would be inefficient

due to computations associated with highly unlikely or even impossible z values.

Figure 7.2b suggests a possible fractal character of the z; values by showing them in the
region near zero (0 < z; <5) which produces a plot similar to Figure 7.2a.

Figure 7.2c shows how increasing the horizon from 8 to 12 (which increases the number
of generated states) tends to fill in more values on the z axis but, has little effect on the
predominant state probabilities.

The accuracy of the computations generally increases with h, as does the computational
effort. Figure 7.3 illustrates how the increased accuracy (represented in the figure by the
computed value of ) is unbiased and levels off near h = 7. Over a wide range of parameter
settings, the maximum observed absolute percent error is less than 5 percent for A > 7. For

this reason, we use h = 7 for the remaining computational results.

7.2 Operating Characteristics

In production management, a trade-off is often made between time spent producing
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scrap and time spent “down” (i.e., not producing anything). In our analysis we know that
increasing p* reduces the down time due to false alarms yet this increases the time spent
producing scrap. Such trade-offs can be captured by means of an operating characteristic
(OC) curve (see P&A) which is created by plotting two competing performance measures
as a function of a decision variable (such as p*). Figures 7.4a, 7.4b, and 7.4c each show
three OC curves (for a € {0.1,0.05,0.01}) that plot pg = Pr{system is in condition B} =
Pr{producing scrap} versus my = checking rate = Pr{down for checking} while varying p*
from 0.01 to 0.5. Figure 7.4a shows that, for a fairly non-informative sensor (a = g = 0.3),
varying p* allows a wide range of operating points, with a resulting wide range of possible
pp and 7o values. With a more sensitive sensor (Figure 7.4c with @ = § = 0.1), only a few
operating points are possible for p* between 0.01 and 0.5. Indeed, for a = 0.1 there is only
one feasible operating point in this range of p*: pg = 0.00747 and 7y = 0.146.

Figure 7.5 shows an OC for an “asymmetric” sensor having a = 0.3 and 3 = 0.2. Note
that improving only one error probability of the sensor, i.e., § = Pr{z = 0|G} from 8 = 0.3
(as in Figure 7.4a), improves both measures plotted in the OC. This is because a decrease in
3 reduces the time spent producing scrap by reducing the detection time. This also reduces
the probability the system is down: a lower 3 gives greater confidence that z = 0 implies a
good system; this reduces the upward drift in the Z, process for a given set of observations
containing zeros; finally, this delays the time until a false alarm occurs for a fixed alarm
threshold.

Figure 7.6 compares different sensors for a system with a = 0.01. This OC allows
an immediate assessment of the advantage of a more sensitive sensor. For example, if an
operating policy with Pr{B} = 0.04 is required, decreasing the error probabilities of the
sensor from a = = 0.3 to a = f = 0.2 decreases 7y from about 0.11 to about 0.05.

Figure 7.7 shows an alternative form of an OC. The two attributes are pg and Pr{Producing

good product} = 7y + pg. The latter measure is important since time spent checking causes
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a decrease in production capacity even though there is less scrap produced. A fascinating
result of this OC is the existance of operating points (above the dotted line) that are never
optimal regardless of the (positive) cost per scrapped unit and (positive) revenue per good
unit produced. For example when a = 0.01, there exits for each probability threshold p*
above 0.26 a p* below 0.26 producing the same throughput of good product and a lower

scrap rate.

8. Numerical Results for Normal Monitoring

Figure 8.1 shows the probability density function mg fg(z) for Normal monitoring. Com-
pared to Bernoulli monitoring (Figure 7.2) this distribution is smooth and well behaved
except near zero where, it can be shown that lim,_ fg(z) =0.

Figure 8.2 shows the Operating Characteristic Curves for pg = Pr{Producing scrap}
versus 79 = Pr{Producing good product} for two values of a (0.05 and 0.1) while fixing
p = 1.5. As in Figure 7.4a, there is an improvement in the OC with smaller a. Since a is
the expected number of inter-monitoring intervals until system failure, a can be reduced by
either increasing the actual life of a machine or by decreasing the inter-monitoring interval.

Figure 8.3 shows OC sensitivity to changing p, the shift in the expected observation
value when the system fails. As p increases-the powerv of the sensor to discriminate between
conditions (i and B increases and this improves the OC cur.ve. This has obvious implications
in evaluating sensors with different p values.

Figure 8.4 shows the alternative OC curves for Pr{Producing scrap} versus Pr{Producing
good product} for a = 0.05 and p € {0.5,1.0,1.5}. As in Figure 7.7, if this OC represents a
- significant trade-off, then there is a wide range of probability thresholds that can be ignored
when selecting an operating point. For example, when g = .5 and a = 0.05 all p* above 0.15

can be ignored.
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Bernoulli Monitoring: State Space Size
a=0.1, alpha=beta=0.15

160 +

—8—p* = 07
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Figure 7.1a: The number of states generated increases as the horizon used to gener-
ate the z-state space increases.
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Bernoulli Monitoring: State Space Size
a=0.01, alpha=beta=0.15

300 T

i
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150 +
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o F—F—r—Fr—r—r—+ ¢
2 3 4 5 6 7 8 9 10 11 12

e

Horizon Used to Generate State Space

Figure 7.1b: Increasing mean time between failures by decreasing a from 0.1 (as in
Figure 7.1a) to 0.01 (above) increases the number of generated states.
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Bernoulli Monitoring: State Space Size
a=0.1, alpha=beta=0.35

1200 T
1000 4

800 +

600 +

400 +

Number of States
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0 -4 .g .g g .
2 3 4 5 6 7 8 9 10 11 12
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Figure 7.1c: Decreasing observation information content by increasing a and 3 from
0.15 (as in Figure 7.1a) to 0.35 (above) increases the number of gener-

ated states.
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Bernoulli Monitoring: Probability Distribution over z
a=0.01, alpha=beta=0.2, p*=0.2, h=8

0.25 +

0.2 +

0.1 +

0.05 += - -

Pr{State associated with z | Good}
o
o
i

2z value

Figure 7.2a: The probability mass function [r,]; associated with each z value gener-

ated by the solution proceedure when a = 8 = 0.2, a = 0.01, p* = 0.2,
and a horizon of h = 8 is used to generate the state space.
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Bernoulli Monitoring: Probability Distribution over z
a=0.01, alpha=beta=0.2, p*=0.2, h=8
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Figure 7.2b: [r,]; of Figure 7.2a in the interval 0 < z < 6 shows more detail. Note
the “self similarity” of points in the interval [1.5,2] to those in the
interval [5,7] of Figure 7.2a.
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Bernoulli Monitoring: Probability Distribution over z
a=0.01, alpha=beta=0.2, p*=0.2, h=12
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Figure 7.2c: Increasing the horizon h from 8 (as in Figure 7.2a) to 12 (above) intro-
duces new z values, but has a minor effect on the probabilities associ-
ated with the old z values.
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Bernoulli Monitoring: Convergence

e

3 4 5 6 7 8 9 10 11 12

h = Horizon Used to Generate State Space

Percent change in 7 as the horizon used to generate the z-state space
increases from h — 1 to h. The figure displays 18 curves corresponding
to all possible parameter settings such that o = 8 € {0.15,0.25,0.35},
a € {0.01,0.1}, and p* € {0.1,0.4,0.7}. Six of the parameter settings
had zero percent change for all A shown. The two worst cases are
plotted using diamonds (@ = 8 = 0.35,a = 0.01,p* = 0.4) and triangles
(¢ =p=0.35a=001p =0.1).
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Bernoulli Monitoring: Operating Characteristic Curves
alpha=beta=0.3

0.16 —
0.14 4 —=—0—-2a=0.01
o~ ____o___ =
2 010l a =005
@ —--0-—-a =01
0.1 +
g
= 0.08 T
3 . p*=0.3
© 0.06 +
a \.
ht A S
a. 0.04 - \\‘
p*=0.01
0.02+ oy T
0 —=< |
0 0.05 0.1 0.15 0.2 0.25 0.3

Pr{System Down}

Figure 7.4a: Operating Characteristic Curves under Bernoulli monitoring for
Pr{Producing Scrap} versus Pr{System Down} generated by varying
p* from 0.01 to 0.5 in steps of 0.01. There are three curves, one for
each a € {0.01,0.05,0.1} with @ = 8 = 0.3 in each case. Any apparent
non-convexity of these curves is due to round off errors in 7 and 7
which are used to calculate Pr{producing scrap} and Pr{system down}.
Points associated with the same value of p* are connected by solid lines

for p* = 0.01, 0.3 and 0.5.
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Bernoulli Monitoring: Operating Characteristic Curves
alpha=beta=0.2

——0—-a =001

0.05 0.1 0.15 0.2 0.25
Pr{System Down}

Figure 7.4b: Operating Characteristic Curves of Figure 7.4a but with o = § de-

creased from 0.3 to 0.2. Note that increasing the failure rate tends
to collapse ranges of smaller p* into one operating point, for exam-
ple p* € (0.01,0.3) produces a wide range of operating points when
a = 0.01, but produces only one operating point when a = 0.1. Com-
paring this figure with Figures 7.4a and 7.4c shows this collapse is more
pronounced with smaller a and £.
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Bernoulli Monitoring: Operating Characteristic Curves
alpha=beta=0.1

0.05 T

0.045 4+ —=—0-—-3 =0.01

0.04 T ---0--- 32005

0.035 +

Scrap}

o a=0.1

0.03 T

0.025 +
0.02 +
0.015 +

Pr{Producing

0.01 + 0 p*=0.01 to 0.5

0.005 + N 05°=0.01 to 0.32
0 . © 6°=0.01 to 0,09 '

. .

0 0.05 0.1 0.15 0.2 0.25
Pr{System Down}

Figure 7.4c: Operating Characteristic Curves of Figure 7.4a with @ = f reduced
from 0.3 to 0.1. Note the extreme collapse of operating points to just
one for all p* € (0.01,0.5) associated with a high failure rate (a = 0.1)
and informative sensors.
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Bernoulli Monitoring: Operating Characteristic Curves
Asymmetric Sensor alpha=0.3, beta=0.2

—=—0—-2a=0.01
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o
o
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"o, o
\0‘

0.02 + Q%%o .o

T

Pr{Producing

0 0.05 0.1 0.15 0.2 0.25 0.3
Pr{System Down}

Figure 7.5: Operating Characteristic Curves of Figure 5.4A with an asymmetric
sensor: @ = 0.3, f = 0.2. Decreasing § from 0.3 (as in Figure 7.4a) to
0.2 (above) improves both performance measures.
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Figure 7.6: Decreasing a and f of a symetric sensor from 0.3 to 0.1 dramatically
improves the Operating Characteristic for scrap production versus sys-
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Bernoulli Monitoring: Operating Characteristic Curves
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tem down time.
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Bernoulli Monitoring: Operating Characteristic Curves
alpha=beta=0.3

0.16 T ——0—-2a=0.01

—=--0----a= 0.05

—-0-—-a= 0.1

scrap}
o
N

0.1
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Pr{Producing

0.04

0.02

00-
om0

_-—-'_'o’—-—
0 O } z : |

0.7 0.75 0.8 0.85 0.9 0.95

Pr{Producing good product}

Figure 7.7: Operating Characteristic Curve for scrap production versus good pro-
duction. “Better” is towards the point (1,0): no scrapping and always
producing good product (no down time). Note the non-optimal operat-
ing points above the dotted line: when a = 0.01, for example, for each
p* above 0.26 there exists a p* below 0.26 with the same throughput
of good product and a lower scrap rate. Similar “optimality threshold
boundaries” for a = 0.05 and a = 0.1 are near 0.32 and 0.36, respec-
tively.
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Probability density of z
given system good and z > 0

0.35 T
0.3
0.25

0.2

Normal Monitoring: Probability Density over z
a=0.05, mu=.5, p*=0.2

Figure 8.1:

z value

Probability density function 7of,(z) over states in {z : 0 < z < 2*
and in condition G} given an alarm threshold of px = 0.2 (or 2* =
5). Observations X, are normally distributed random variables with a
variance of 1 and a mean u that shifts from zero to 0.5 when the system
fails. Failure times are geometrically distributed with rate a = 0.05. It

can be shown that lim,_q f,(2) = 0.
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Normal Monitoring: Operating Characteristic Curves

Pr{Producing Scrap}

mu=1.5
0.06 T QP =05
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0 b | z —
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Pr{System Down}

Figure 8.2: Operating Characteristic Curves generated by fixing 4 = 1.5 and vary-
ing p* from 0.15 to 0.5 in steps of 0.05. Points associated with the same
va%ue of p* are connected by a dotted line for p* = 0.15 and 0.5.
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Normal Monitoring: Operating Characteristic Curves
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Figure 8.3: Operating Characteristic Curves generated by fixing a = 0.05 and vary-
ing p* from 0.1 to 0.5 in steps of 0.05. There are three curves: one for
each mean observation value p € {1.5,1.0,0.5}. Points associated with
the same value of p* are connected by a dotted line for p* = 0.1 and
0.5. A higher y implies a more discrimating sensor which improves the

Operating Characteristic.
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Normal Monitoring: Operating Characteristic Curves
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\ —=O0—=-mu=1.0

© —-0-—-mu=.

0.75

0.8 0.85 0.9 0.95 1
Pr{Producing Good Product}

Figure 8.4: Operating Characteristic ('urve under Normal momtormg for scrap pro-

duction versus good production with fixed a = 0.05. “ Better” is to-
wards the point (1,0): no scrapping and always producing good product
(no down time). Note the non-optimal operating points above the dot-

ted line: when u = I, for example, for each p* above 0.2 there exits a
p" below 0.2 with the same throughput of good product and a lower
scrap rate. Similar “optimality threshold boundaries” for p = (.5 and

1.5 are near p* = 0.15 and 0.25, respectively.
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