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Li-O-O. The pair of bands at 685 and 730 cm-I, shown 
in Ref. 1, have an isotopic separation and ratio which 
agree very well with the theoretical values for Va of a 
symmetric LiCh molecule, whether linear or slightly 
bent. The predicted Va ratio for either D"", or C2• 

(170°) is 1.066; the observed ratio is 1.066±0.002. If 
the molecule is linear or only slightly bent VI would 
have zero or very low infrared intensity. On the other 
hand, V2 could have appreciable intensity. For this 
reason the 231.1, 243.4 cm-l pair observed in the 
present work can be assigned to Vz of lLi02 and 6Li02, 

respectively. The observed isotope frequency ratio is 
1.053±0.OO4. The theoretical values are 1.066 for 
linear geometry, and 1.053 for a 170° model with some 
assumptions about the magnitude of VI. On this basis 
it seems safe to conclude that Li02 is nearly linear. For 
the sake of definiteness we assume that the apex angle 

of 170°, derived from the structure-sensitive isotopic 
shift of V2, is correct. 

Some estimates of force constants and the bond 
distance can be made with the help of the arguments 
already in Ref. 1 for Li20. From V3 it is found that 
(Jr-jrr) =0.80 mdyn/ A. Since this is much less than 
jr=1.59 mdyn/ A for LiO it may be assumed that the 
interaction constantj" is large and positive. This would 
imply, as shown in Ref. 1, that the Li-O bond distance 
in Li02 is appreciably longer than in LiO itself. We 
assume that r=1.65 A in Li02 and that j,,=+0.1 
mdyn/ A. On this basis it is found that Vi =340 em-I. 

The bending constantj .. =0.049 mydn/ A. It is interest­
ing to note that this is much larger than the value found 
for Li20. 

The results for LiO, Li02, Li20, and Li20 2 are sum­
marized in Table II. 
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A simple scheme is proposed for predicting effects of electron correlation on intra-atomic electron-electron 
radial distribution functions and on intensities of x rays scattered by gas atoms. It makes use of a relation­
ship connecting the Coulomb hole function for an electron pair with the corresponding correlation energy. 
The method is applied to the beryllium atom in its ground state. Results compare favorably with results 
calculated directly from correlated and Hartree--Fock wavefunctions. 

INTRODUCTION 

A FUNCTION of special significance in the theory 
of x-ray scattering by gas atoms is Per), the 

intra-atomic radial distribution of electrons with re­
spect to other electrons. l This function, unlike the more 

* This research was supported by a grant from the National 
Science Foundation. 

1 L. S. Bartell and R. M. Gavin, J. Am. Chern. Soc. 86, 3493 
(1964), Paper I; J. Chern. Phys. 43, 856 (1965), Paper II. 
Note that Eq. (15) of Paper I contains an error. The equation 
should read - 1'" D(r) fl:V .. ,=-Z& --dr. 

.. 0 r 

It is worth noting in the same reference, also, that according 
to the definition of Per), the double sum 

l: l: Vff=&[p(r) dr 
• ;¢i 0" 

of Eq. (16) expresses twice the average electron-electron poten­
tial energy. It is this convention which introduces the factor of 
1/4 into Eq. (3) of the present paper. 

familiar radial distribution D(r) of electrons relative 
to the nucleus, is sensitive to effects of electron cor­
relation. It is related to total x-ray scattering (in­
elastic plus elastic) by 

[ ! sinsr J 
[toter/»~ = [01(r/» N+ Per) -;;- dr (1) 

following the notation of Paper I of this series,1 where 
[c1(r/» is the Thomson intensity and N is the number of 
electrons in the atom. 

The influence of electron correlation on 1(r/» and/or 
Per) has been calculated for several two-electron 
systems in earlier papers.1,2 The calculations, in which 
distribution functions and intensities were derived for 
Hartree-Fock3 and for correlated Roothaan-Weiss4 

2 c. A. Coulson and A. G. Neilson, Proc. Phys. Soc. (London) 
78,831 (1961); R. F. Curl and C. A. Coulson, ibid. 85, 647 (1965). 

3 C. C. J. Roothaan, L. M. Sachs, and A. W. Weiss, Rev. Mod. 
Phys. 32, 186 (1960). 

(C. C. J. Roothaan and A. W. Weiss, Rev. Mod. Phys. 32, 
194 (1960). 



ELECTRON CORRELATION. IV 4701 

wavefunctions, showed that electron correlation effects 
followed a regular pattern. The purpose of the present 
paper is to investigate whether this pattern can be 
used to predict electron correlation effects in many­
electron cases. 

METHOD 

The proposed scheme for estimating effects of electron 
correlation on Per) and Itot(r/» makes use of a con­
nection between Per) and correlation energy. Although 
extensive information is now available on correlation 
energies of atoms,5,6 very little attention has yet been 
devoted to P(r). Therefore it seems worthwhile to 
take advantage of the known correlation energies to 
estimate correlation effects on Per) and Itot(r/». 
This may be done without recourse to correlated 
wavefunctions as outlined below. 

The total electronic energy E of an atom is related 
to the radial distributions D(r) and per) according to1 

E=H' 
= - !zJ D(r) dr +! J per) dr. 

2 r 4 r 
(2) 

Since one-electron distributions such as D(r) are 
virtually the same when calculated by Hartree-Fock 
(HF) wavefunctions as when calculated by correlated 
wavefunctions,7 the correlation energy Eoorr for an 
atom is given very nearly by 

Eoorr == Eexaot - EHF 

~ !JIlP(r) dr 
4 r ' 

(3) 

where 

in which IlP(r) represents the shift in per) due to 
electron correlation. 

A study of heliumlike systems confirmed that the 
integrals 

{ J 
IlP(r) 1/ 
-r- drJ Eoorr 

were indeed almost identical for all systems. It was 
revealed that the correction functions IlP(r) / Eeorr 

were nearly congruent when plotted against the reduced 
distance Z*r, where Z* is the effective nuclear charge 
acting on the electron pair. The functions IlP(r) 

• E. Clementi, J. Chern. Phys. 38, 2248 (1963); 39,175 (1963); 
42,2783 (1965); 44,3050 (1966). 

6 D. F. Tuan and O. Sinanoglu, J. Chern. Phys. 41, 2677 
(1964). 

1 L. Brillouin, Actualites Sci. Ind. No. 159 (1934); J. Good­
isrnan and W. Klernperer, J. Chern. Phys. 38, 721 (1963); M. 
Karplus and H. J. Kolker, ibid. 38,1263 (1963). 

resembled the derivatives -dP(r) /dr of the distribu­
tion functions themselves. 

The simplest way to attempt to generalize the 
two-electron result to many-electron cases would seem 
to be as follows. From the Hartree-Fock wavefunction 

it is possible to calculate the electron-electron distri­
bution function per) in terms of the unit normalized 
average distribution perij) using the relation 

per) =N(N-l)P(ri;) 

in which peri;) is defined by 

The perij) functions, in turn, may be expressed III 

terms of a sum 

(4) 

over all combinations of orbital,;; in the atom. To each 
pair function Pkl(r) corresponds a IlPkl (r) function 
which, we assume, is of the characteristic shape found 
in Paper II. This function is completely specified when 
its radial and vertical scale factors are assigned. For a 
given electron pair kl, the radial scale factor of IlPkl(r) 
is adjusted to make its crossover point occur at the 
maximum of Pkl(r). The vertical scale factor is es­
tablished by setting 

equal to the known correlation energy of the electron 
pair. The total effect of Coulomb correlation on 
perij) may then be obtained by summing the IlPkl (Z) 
over all electron pairs. The corresponding shift III tot in 
the total x-ray intensity is deduced from 

I tot J () sinsr - = IlP r --dr. 
lei sr 

(5) 

While such a scheme may fail to predict the correla­
tion correction with great accuracy in complex atoms, 
it is hard to see how it can be grossly in error. A test 
of this scheme is afforded by beryllium for which both 
Hartree-Fock and correlated wavefunctions were avail­
able at the time the present work was initiated. 

The calculation of Per) from a correlated wavefunc­
tion is much simpler for some forms of wavefunctions 
than for others. A particularly convenient form to 
treat is a configuration-interaction function con-
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FIG. 1. Electron-nuclear D(r,) and electron-electron P(r,j) 
radial distribution functions for the beryllium atom calculated 
from a configuration-interaction wavefunction of Boys. Both 
D(r,) and P(r;;) curves are normalized to unity. The total 
electron-nuclear D (r) and electron-electron P (r) radial distri­
bution functions may be obtained by multiplying the normalized 
curves by Nand N (N -1), respectively. 

structed from orthonormal basis orbitals, such as the 
beryllium wavefunction published by Boys.8 Let us 
assume that the wavefunction is of this form, being 
expressed as a linear combination 

a 

of determinantal functions Da representing different 
electronic configurations. The determinants 

are constructed from basis spin orbitals obeying the 
orthogonality relation 

irrespective of whether Ai and Ai occur in the same 
determinant or not. The expression for P(rij) derived 
from such a function is 

Terms with a={3 represent the contribution to P(rii) 
from the a configuration and can be expressed as a 
sum 

over all pairs of orbitals in the configuration. For a;t.{3 
there are three different cases: 

(a) If Da differs from Dfj in one spin orbital, say 
Am in Da and AT in Dfj, the contribution to P(rii) 

8 S. F. Boys, Proc. Roy. Soc. (London) A20I, 125 (1950). 

becomes 

(8) 

(b) If Da differs from Dfj in two spin orbitals, say 
Am and An in Da, and AT and A. in Dfj, the expression for 
Pafj(r) is 

f dr·dr· 
Pafj(r) = Am * (i) An *(j)Ar(i)A.(j) d~i/ 

- JAm *(i)An *(j)A.(i)AT(j) d~~~;i. 

(c) If Da differs from Dfj in three or more spin 
orbitals, Pafj(r) =0. Equation (6) may be rewritten, 
then, as 

P(rij) = L: L:Ca*CfjPafj(r) 
a fj 

and, for spherically symmetric systems, the method of 
Coulson and Nielson2 may be used to evaluate the 
Pafj(r) . 

RESULTS 

Distribution functions for the ground state of 
beryllium were calculated from an analytical self­
consistent-field (SCF) wavefunction of Roothaan, 
Sachs, and Weiss3 and from a configuration-interaction 

.004 llPCOIC(rij) 
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FIG. 2. Calculated and estimated correlation shifts in P(r;j) for 
the beryllium atom. The function AP •• I.(r;j) was calculated 
from atomic wavefunctions and APcst(r,j) was estimated employ­
ing the scheme outlined in the text. 
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(CI) function of Boys8 which accounts for 50% of the 
correlation energy. The accuracy of the calculations 
was checked by determining the total electronic 
energy utilizing Eq. (2). For both wavefunctions the 
energy agreed exactly with the published value. In 
Fig. 1 are plotted the electron-electron per) and 
electron-nuclear D(r) functions derived from the 
wavefunction of Boys. Shown in Fig. 2 are ~P cale(r), 
defined by 

~Peale(r) =PCI(r)-PscF(r), 

and ~Pe8t(r), the correlation correction function esti­
mated by the scheme of the previous section. 

The actual reference function ~P(Z*rI2) upon which 
~Pe8t(r) was based is the function derived in Paper II 
for the Be+ + ion. In Table I are listed the data used 
to set the radial and vertical scale factors of the com­
ponents in ~Pe8t(r). These data include estimates of 
correlation energies associated with various electron 
pairs in the beryllium atom6 and the positions of the 
maxima of the pair distribution curves Ph ,la, P28 ,28, 

Pb ,28 calculated from the SCF orbitals 
Figure 3 illustrates the calculated (CI-SCF) and 

estimated [from ~Pe8t(r)J shifts in I tot (</» arising 
from electron correlation. The curves were obtained by 
applica tion of Eq. (5). 

DISCUSSION 

The simple scheme proposed in the present paper 
correctly predicts the main features of the ~P(r) and 
~Itot(</» functions for Be. While the base lines of the 

0.10 
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o 
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FIG. 3. Shifts in the total intensity due to electron correlation. 
Alcalc and M .. t were derived from the corresponding shifts in 
Per) illustrated in Fig. 2. 

TABLE I. Pair-correlation energies Eil and radial values 'ma. for the 
maxima of the pair distribution functions in beryllium. 

Pair Eil(eV)a 'rna. (a.u.) 

Is-Is -1.196 0.44 

Is-2s -0.176 2.10 

2s-2s -1.195 3.25 

a Reference 6. 

predicted and calculated curves disagree somewhat, 
the maxima and minima are roughly coincident. It is 
not clear whether the discrepancy between the curves 
is due more to inaccuracies in the proposed scheme 
for estimating ~P(r) or to the inaccuracy of the 
correlated wavefunction which accounts for only 50% 
of the correlation energy. Recently, some considerably 
more accurate wavefunctions for Be have become 
available which can provide a more rigorous test.9 

We may conclude, provisionally, that the present 
scheme works at least approximately for predicting 
effects of Coulomb correlation on per) and I tot (</»' 
Even though the reference Coulomb hole function is 
based on K-shell behavior, the generalization seems to 
apply to the L shell also. Individual hz(r) functions 
are more diffuse than Dk(r) functions, and hence do 
not exhibit as striking variations in form. Perhaps this 
diffuseness tends to minimize the individuality of the 
~PkZ(r) contributions. 

The present results also strengthen our earlier con­
jecture that the largest relative effects on x-ray scatter­
ing may be expected for shells of smallest effective 
nuclear charge and greatest radius in the atom. Results 
of applying the present treatment to a system with 
many more electrons, namely to neon, may be found in 
Paper III of this series.lo The estimated ~Itot(</» 
should provide a useful indication of how accurate an 
experiment must be to yield a per) function with 
better than Hartree-Fock accuracy. Although current 
techniquesll seem to have approached this precision 
for lighter atoms, it is unlikely that critical experi­
mental tests will soon be made of even such crude 
theories of correlation effects as the present scheme. 

9 K. J. Miller and K. Ruedenberg, J. Chern. Phys. 43, S88 
(1965); A. Weiss, Phys. Rev. 122, 1826 (1961). 

10 R. M. Gavin, Jr., and L. S. Bartell, J. Chern. Phys. 44, 
3687 (1966). 

11 D. R. Chipman and L. D. Jennings, Phys. Rev. 132, 728 
(1963). 


