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Approximation Analysis for Open Tandem Queues with Blocking:

Exponential and General Service Distributions

Stephen M. Pollock, John R. Birge, and Jeffrey M. Alden

University of Michigan, Ann Arbor, Michigan

Calculating occupancy probabilities for open finite tandem queueing systems using
Markov Process analysis is impractical for all but small systems due to the large number
of states. We offer an iterative procedure for approximating the marginal occupancy
probabilities for each queue of the system. The procedure is easy to implement, re-
quires little memory, and is computationally fast. Two implementations are presented:
one for exponential service distributions and one for general service distributions. Both

implementations give better accuracy than other approximation methods.

Introduction

Systems of servers in tandem (series), where the output of one server is the input to
the next one in line, can represent many processes of interest in manufacturing, computer
systems, telecommunications, etc. This is particularly true when the service times are
random variables. When the storage (“buffer”) space between servers is finite, so that an
upstream server can be “blocked” due to unavailability of space in the next buffer, the
resulting system becomes notoriously hard to analyze. (For an excellent review, see Perros
[1984].)

In particular, exact solutions (i.e., ones that provide the usual measures of queue-
ing performance) are available only for either infinite intermediate buffers (Gordon and
Newell [1967], Hordijk and Van Dijk [1981])—in which case solutions are obtained by using
product-form representations of state probabilities—or small numbers of servers and buffer
sizes (Asare [1978], Caseau and Pujolle [1979], Foster and Perros [1980], Gershwin [1983],
Gordon and Newell [1967], Hillier and Boling [1967], Konheim and Reiser [1976], and La-
betoulle and Pujolle [1977]). In these studies, service times at each server are assumed to
be negative exponentially distributed random variables or, in the case of Gershwin [1983],

a probability mixture of a discrete geometric random variable and a constant.
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One reason for the lack of success in studying this important class of problems is
that a comprehensive representation of the state-space of the system requires at least an
enumeration (if not a computation!) of state variables that grows combinatorially with
the number of servers. This unfortunate fact has led to a number of analyses based upon
approximation methods. Most of these (Altiok [1982], Boxma and Konheim [1981], Hillier
and Boling [1967], Suri and Diehl [1983], Takahashi et al. [1980]) collapse or aggregate
system states into “super-states” or “marginal states” that in turn serve to characterize

(to some degree of accuracy) the desired system performance measures.

We present here an approximation method that is similar to those presented in Perros
and Altiok (forthcoming) and Takahashi et al. (1980) , but with simplifications (each server
only considers the behavior of—or information from—its immediate neighbors), generaliz-

ability (it can be extended to non-exponential service times), and increased accuracy.

1.0 The M-server Tandem System: Exponential Service

The fundamental model we will study is identical to the model in Takahashi et al.
[1980]. There are M servers in tandem (see Figure 1). Each server has a buffer (waiting
room) for holding arrivals when it is busy. Each server has an exponentially distributed
service time. Units are assumed to arrive only at the first queue as a Poisson process with

a rate A.
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Figure 1. Tandem queueing system.

Let p; and B; be the service rate and buffer capacity for the ¢*# server, where § =
1,2,---, M. The #** queue is the combination of the ** server and its buffer. Thus, if N;

is the capacity of the i** queue (assumed finite for all but possibly the first queue), then
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N; = B; + 1. Note that the queues are numbered from 1 to M starting from the input

queue. Arrivals to any queue are served in a FIFO manner.

An arrival enters the first queue if it arrives at a time when the queue is not full;
otherwise, the arrival is lost. When a unit completes service at the 1** queue, it proceeds
to the (¥ + 1) queue if space is available. However, if the (# + 1)** queue is full at that
time, the unit must wait in the ¢** server until a departure occurs from the (i +1)** queue.
During this time the s** server cannot serve other units that might be waiting in its buffer.
In this case, the ¢** server is blocked, and the (f + 1)** queue is blocking. Thus, the first

queue cannot be blocking, and the M*" server cannot be blocked.

A complete (steady-state) analysis of this system would produce all state occupancy
probabilities, as well as related measures such as the expected number of units in each
queue (or buffer), the waiting time distribution at each server, and the throughput of the

system (since some arrivals can be turned away, the rate of units through the system is less

than A).

These measures are functions of the 2M + 1 parameters A, y; and B; (1 = 1,2,---, M).

The system state is the vector

S = (s1,82,...,8M),

where s; =0,1,2,---, N;, is the number of units in the s** queue and s; = N; + 1 indicates
that the i*® queue is blocking the (i — 1)** server. The total number of possible states is
then ITM | (N;+2). For even a reasonably sized system, e.g., M =8,N; =4 (1 = 1,2,--+,8),
this number is over 1.7 x 10%, and represents a considerable challenge for the computations

associated with a straightforward Markov Process analysis.

1.1 The Approximation Method: General Approach

Our general approach (labelled SIMP for “simple iterative myopic procedure”) is to
focus on the measures that seem to be important (for example, individual queue state de-
scriptions) and to seek an approximation that will pro.duce these measures fairly accurately.
We sacrifice the possibility of having good information about less important events (such

as a specific subset of servers being simultaneously idle).
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To do this, we analyze each queue separately, using information from only its nearest
neighbors in order to approximate, by a simple model, what is in fact a very complicated
and dependent state of affairs. In particular, we assume that the model for the i*» queue

is a simple M/M/1/N queue with the following conditions:

al) there are Poisson arrivals, with rate A}, as long as the ¢** queue is not blocking (that
is, as long as the number of units in the ** queue is less than or equal to N;). When

the 1** queue is blocking (s; = N; + 1), there are no arrivals.

a2) The (random variable) time to complete service has two components: the actual service
time (exponentially distributed with rate p;) plus a term due to the occasional and
probabilistic delay caused by blocking downstream.

a3) the service completion time (having two components, see a2) is exponentially dis-

tributed, with rate u;.

These approximations are, of course, a distortion of what is actually happening in
the system. Indeed, al) is by itself a heroic assumption—the input to each queue but
the first, being the (buffered) output of the preceding queue, is anything but Poisson; and
a3) actually contradicts a2). Nonetheless, these assumptions allow the computatioh of
approximate values for the i** queue (steady-state) occupancy probabilities. We can then

use these approximate values to evaluate measures of interest.

1.2 Definitions and Underlying Relationships
Let:
S; = {0,1,2,---,N;, N; + 1} be the state space for the i** queue,

s; = state of i*» queue (s; € S; is the number of units in the ** queue, except when

8 = N; + 1 in which case the i** queue is blocking the (5 — 1)** server),
A} = arrival rate to queue 1,
p; = service rate of server 1,

= Pr{i* queue is full} = Pr{s; = N;}+ Pr{s; = N; + 1},

S >
i 1l

Pr{s** queue is blocking} = Pr{s; = N; + 1},
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E; = expected time between acceptances into queue t,

T; = (random variable) time for server ¢ to complete service and pass unit on to next

queue, and

E[T;] = the expected value of T;.

These definitions, and the structure of the system, produce the following relationships:

1. The rate at which arrivals join the system is A times Pr{queue 1 is not full} =

A(1 - f1). Thus,

1
E, = m (1)

2. The expected time to complete service at server ¢ is the unblocked expected service
time 1/p; plus the expected delay due to blocking: Pr{a served unit at server ¢ will see queue
(#+1) full} times the expected time for server (:+1) to complete service. The terms required

for the computation are obtained from two additional (approximation) assumptions:
ad) A unit at server ¢ at the instance service is finished sees queue (1+1) in “steady-state”.

ab) The expected sojourn time in the blocking state for a queue is equal to its expected

service completion time.

Given these assumptions, the expected delay due to blocking is equal to server t’s

unconditional expected time to complete service. Thus,

E[Ti]=_l—+f‘+1_b‘.+1E[Ti+1]) i=1’2a""M) (2)
7% 1—biyy
where
E[TM+1] =0.

Since the viewpoint is that of server 1 at completion of unblocked service, it is necessary
to condition the (¢ + 1)** queue probability on not being blocking, which produces the
denominator of the second term. For the following discussion, we define the steady-state
probability that queue (¢ + 1) blocks server ¢ at the end of service as

L fix1 = biya

' 1= b4y
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3. The expected time between acceptances at queue s is 1/A} plus E[T;] times Pr{an
arrival sees queue ¢ full}, since in this latter case the arrival must wait for server ¢ to
complete its current service before being accepted into the queue. We again use assumptions
a4) and a5) to give

fi = b

E,-=,\‘+ T B, i=23 M. (3)

As before, the probability that queue 1 is full is conditioned on queue ¢ not blocking queue
(# — 1), since otherwise there could not be an arrival. Figure 2 shows a schematic represen-

tation of this process.

Delay in queue &

/]\ [Queue (5 + 1) blocking]

Service begins Queue (¢ + 1) full Service completion
in queue ¢ {a;} in queue (¢ + 1)
Service time in queue ¢

> v

[Queue (¢ + 1) not blocking] Done
Queue (¢ + 1) not full
{1 - a;}
£
Done
Time
Figure 2. Service completion time in queue 1.
4. By conservation of unit flow,

E;=E, i=12,--- M. (4)

5. The service completion rate is the reciprocal of the expected service completion

time. Thus,
.1

”’i:ﬁr 1=1,2,---, M, (5)



1.3 Finding the Occupancy Distributions: The M/M/1/N Model

Equations 1 through 4 together with standard M/M/1/N analysis suggest the following
iterative procedure to find the arrival rate (A}), expected completion time (E[T;]), and

occupancy probability distribution (Pr{s; = n}) for each queue.

0. (Setup) Set the values for A, y; , and N; for ¢ =1,2,---, M.

1. (Initialization) Set E[T;] = 1/pi, by =0, A} = A, and A} = A(1-f,) for{ =2,3,--- /M

where f; is given by Equation 6a.

2. (Find full and blocking probabilities) With p; = A} E[T;], set

(1= p1)p?"
fl = l_p;h'l'll 4 (60')
1
1- p; Ni+1
fiz(l__ppz'v'pf;z_—’ £=2’3)"':M) and (6b)
bizpifi) i=2’3""’M° (66)

3. (Calculate completion times) Use Equation 2 to solve for E(T;) in the order ¢ =
MM - 1,---,1.

4. (Update arrival rates) With E; = E; = 1/A(1 — f;) (from Equations 1 and 4), use
Equation 3 to solve for A} in the order 1 =1,2,--- , M.

5. (Convergence check) If updated values of A} show little change (i.e., convergence), then

go to Step 6,.else go to Step 2.

6. (Calculate occupancy probabilities) Set

Pr{s; =n} = (1—1——%, n=0,1,---,N;, and

1-p:)p} .
Pr{s,-:n}=(1—:—p%—'_)—_f_)'3, 1=2,3,---,Mand n=0,1,---,N; + 1,

7. Stop.
Queue 1 is given a slightly different treatment in Steps 2 and 6 because the queue
never blocks a previous queue.

To achieve convergence in the iterative procedure, it was sometimes necessary to intro-

duce a damping factor to reduce excessive oscillation in the values of consecutive iterates.



1.5 Computational Results: M/M/1/N Model

The approximation method was tested on three sets of problems in the literature with
exponential servers. In these problems, analytic solutions are often not available. In such
cases, the literature has used the results of large simulations to replace analytical values.
We use these results in our comparisions as previous authors have used them. Table 1 shows
the throughput for a 3-queue system each with a buffer of size one as reported in Takahashi
et al. [1980]. As can be seen, SIMP (using Equation 2) performs better (relative to the
simulation results) than Takahashi’s method, and almost‘ as well as Hillier and Boling’s
(Hillier and Boling [1967]) method which is more complicated than SIMP, which requires

only O(M) elementary operations per iteration.

Table 2 shows a comparison with the method of Altiok and Perros (forthcom;_ing)
for 3-queue systems with different buffer sizes. Again, SIMP (using Equation 2) performs

favorably as compared to the more complicated method.

Finally, Table 3 shows similarly good results for highly unbalanced systems of 3 and 5

queues.

2.0 Residual Service Time Considerations

The above approximation, although it yields suggestively good results, can be improved
by relaxing one assumption. Consider relationship (2) and Assumption a5). This represents
a correction to the expected service completion time in the event that queue ¢ “sees” server
(+ + 1) blocking it. Assumption a4) allows us to compute the probability of this event as
a;. Strictly speaking, the (random variable) service completion time for server 1 is the sum
of the unblocked service time (with pdf p;e™#* ) and the (random variable) length of time
that server (s+ + 1) will take to become unblocking, given server ¢ completes service and

finds server (¢ + 1) blocking. This second component is the (random variable) residual time

for server (¢ + 1) to become unblocking. We now assume

a5') the unblocked service of the unit in queue ¢ ends at a random point in server (i + 1)’s

service completion period.



This assumption is less restrictive than a5) and it will allow the consideration of general

service time distributions (Section 3).

The following relevant result is well known (see, for example Section 5.2 of Cooper
[1981]): Let T be a recurrence time with cdf Fr(t) and expectation E[T}], and let X be the
(random variable) time from a random point in the recurrence interval to the recurrence

event, then X (called the residual recurrence time) has the pdf

ox () = l‘E—ﬁr—]‘—’ (7a)

As a consequence, it can be shown that the moments of X are given by

E[x"] = (T"“;[-T;)—;[]T—] (75)
and in particular,
E[X]= fg"[‘T% (8)

To use this result, we note that, if
T; = (random variable) time for server ¢ to complete service, and
X; = (random variable) residual time for server 1 to complete service,

then T; is the sum of the unblocked service time (with pdf p;e~#*) plus the residual

completion time X;,;, conditional on server (¢ + 1) blocking.

Thus, given a5'),

1
E[T)) = e + o B[ X 41], (9)
which, by Equation 8, gives
1, BT,
E[Ti| = — +a—itl  y=MM-1,--+,1. 10
%] Hi 2E(T;44] (10)

Under a5’), Equation 10 should be used, in place of Equation 2, to augment the
(unblocked) average service time by a term that accounts for blocking. Similarly, E[T;]
in Equation 3 should be replaced by E[T?]/2E|[T;]. Note that Equation 10 requires that

E[T?, ,] be available. Indeed, the recursive use of Equation 10, starting with ¢ = M, requires
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the terms E[T*] for n = 1,2,--+,1. The Appendix shows, by a simple transform argument,

that these moments are given by:

n 3 (n - )BT/
E[T]__n ;( ) ]+1) n— JE[T..H] (11)

i
or written as a recursion in the index n,

ny _ RE[T ] B [T:-1+-+11 :
E[Tsl_ s +(n+1)E[T,+1]’ n=1,2... (12)

Thus, accounting for randomly interrupted residual service time requires replacing
Equation 2 of Step 3 in the algorithm with Equation 12 (with E[T3, ] = 0 for all j > 1)
and replacing E[T;] with E[T?]/2E(T;] in Equation 3 (used in Step 4). By using Equation
12, the complexity of SIMP now becomes O(M?) per iteration.

The results, using this modification are also given in Tables 1,2 and 3 under the heading
“SIMP Eq. (12)”. This modification slightly improves the accuracy of the model. Since, in
these cases, we have exponential servers that are frequently unblocked the expected residual
service time is appoximately equal to the expected service time and hence we do not expect
much change due to this modification. However, the results derived in this section are used

in Section 3.

3.0 General Service Time Distributions

The above discussion allows us to adapt the approximation method for general service
time distributions and eliminate Assumption a3). We are aware of only one analysis in
the literature not requiring exponential servers (Gershwin [1983]). Gershwin’s approach,
however, is restricted to a particular form of non-exponential service. Our method replaces
the M/M/1/N analysis in Step 2 (finding b; and f;) and Step 6 (calculating occupancy
distributions) with an M/G/1/N analysis. This generalization provides wider applicability
at the expense of more computation and greater data requirements—as will be seen, it
requires the Laplace transform of the service time distribution (and its derivatives) for

each queue.
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Traditional M/G/1/N analysis (see Section 5.9 of Cooper [1981]) examines the queue
at departure epochs. Following this approach, define for each queue ¢ the following (the

subscript ¢ is suppressed here for clarity):
S = (random variable) unblocked service time,
g(t) = service completion time probability distribution function,
A = arrival rate,
p = service rate (inverse of the first moment of g(.)),
P, = steady-state probability that a departure leaves n units behind,
a, = probability of n arrivals during a service time, and
II, = steady-state probability of n units in the queue.

Since the number of units left by a departure is given by the number of arrivals during
service and the number left by the previous departure,
Poy1 =05 (P —a,Py— Y @n_ji1P;), n=0,1,---,N -1, (13)
=1
where 3°° j=1 = 0. By defining 6§, = P, /P, 6, can be calculated recursively from (13) after

dividing by P,. Using the §,,, P, can obtained from

1
P, = Ef_ol 6" (14)
and then
P" = 5,,P0. (15)

P, is also the steady-state probability that an arrival sees n units in the queue (see
Section 5.3 of Cooper [1981]), and is simply the steady-state probability of n units in the

queue conditioned on the queue’s not being full. This, combined with conservation of flow,

gives
= b n=0,1,---,N -1, and (16a)
n - P0+p’ — Y ) )
1
My =1- , 16b
N Pot+p (165)
where p = A/p.
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The above equations provide a quick and easy method for obtaining the steady-state
probabilities II,, given the values of a,,. To find the values of a,, let f;(t), h;(t), and g;(2)
be the probability density functions of T}, S;, and X; and f:(") (s), h:(")(s), and g™ (s)

be the n** derivatives of their Laplace transforms. By definition, for the 1** queue

an=/0 at) et £ (t)dt,

n!

or equivalently,

an = S pem . (an)

n!
In the Appendix, we show that the n'? derivative of the Laplace transform of the
service completion time can be recursively obtained from
06 = - ek 0 +a X (7) R Es8 ) (18
Jj=1
The functions h:(")( ) are given as data, but the g (’)(s) must be evaluated. Taking
the Laplace transform and then the j** derivative of both sides of Equation 7a (with
X = X;41) gives

0 ey (2221 (D28 ).

which is equivalent to the following recursion in the index 7,

' *(J+1 s
0 = -2 (G 0 + B ), (190

where

w0y y_ 1- f;l-.l ()

9i41 (8) = SE[Tisy] (199)

Since, in the last queue, f,, 9 (5) = h;}j)(s) for all 5 > 0, we can recursively solve for

;(_"1“)(/\ ) and f'(")( A;) using Equations 19 and 18, in the order = M —1,M — 2,---,¢

We then use the results in Equation 17.

We also need the first moment E[T;] to determine the utilization p; = X; E[T;] used in
Equation 16. The generalization of Equation 11 for general service distributions is (see the

A di
ppendix) i J]E[T”l]

E[T"] = E[S"] + 12( ) (J+1)E[ﬂ’:11] (20)

=1
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By setting E[T}; . ,] = 0 for all n > 0 and noting that E[S]] = (=1)"A;™ (0), Equation 20
recursively gives, in the order | = M, M — 1,---,1, all the moments necessary to calculate

pi.

3.1 Finding the Occupancy Distributions: The M/G/1/M Model
The iterative procedure in the case of general service distributions follows.
0. (Setup) Set the values for A, N;, and provide a routine to calculate h:(")(s) (¢ =
1,2,---, M).
1. (Initialization) Set by =0, A} = A\, Af = A1 - f;) (1 = 2,3,--, M) where f; is given
by Equation 6a, i;, = N; — 1, and #; = N; (1 = 2,3,---,M). (f; is the maximum
number of arrivals during a service at queue .)
2. (Calculate moments) With E[T] = (-1)*AL™ (0) (n =1,2,---,M) and o; = (fiz1—
bi4+1)/(1—b;41) use Equation 20 to calculate E[T*] (n = 1,2,:--,1) recursively in the
ordert=M-1,M-2,---,1.
3. (Find full and blocking probabilities) For each queue § = 1,2,--+, M let p; = A} E[T}]
and perform Steps 3a to 3d.
3a. Set f;l(")(,\:‘) = h’;}")(/\f) forn=0,1,---,7;. If i = M then go to Step 3d.
3b. In theorder | = M —1,M —2,---,1 use Equations 19 and 18 to calculate g,*i';) (A7)
and f,'(")()\:) forn=0,1,---,7;.

3c. Calculate a, (n=0,1,:-+,7;) from Equation 17.

3d. Set N = f; + 1 and use Equations 13 to 16 to solve for IIy and IIy_,. f¢1 =1
then set f; = Iy, else set b; = IIy and f; = Iy + Iy_;.

4. (Update arrival rates) With E; = E; = 1/A(1 - f,) (from Equations 1 and 4), use
Equation 3 with E[T}] replaced by E[T?]/2E[T;] to solve for A} in the order i =
1,2,--, M.

5. (Convergence check) If the updated values of A} show little change (i.e., convergence),

then go to Step 6, else go to Step 2.
6. (Calculate occupancy probabilities) For each queue ¢ = 1,2,---, M, repeat Steps 3a to
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3d (giving II,) and set
Pr{s; =n}=1I,, n=0,1,---,7; + 1.
7. Stop.

3.2 Computational Results: The M/G/1/N Model

The SIMP M/M/1/N and M/G/1/N Model results are compared with the only avail-
able non-exponential service results in the literature: Gershwin [1983]. The compamsibn is
summarized in Table 4. The service time at queue ¢ in Gershwin’s model is one period with
probability 1 — p; and n periods with probability p;r*, n = 1,2, .. The server of the first
queue is never idle. We achieved this requirement by giving the first queue a buffer of 4 and
making the arrival rate large compared to the average service time. In Table 4, B is the
vector of buffer sizes, and p and r are the service time parameters (p;,r;) for each queue.
Again, simulation values replace exact values when analytical results are not available. We
note that the Gershwin model requires, amoung other things, the solution of a nonlinear
equation in one unknown in each iteration whereas we have only O(M?® + Eﬁl N?) com-
putations per iteration (from equation 20 and M/G/1/N analysis). Note also that the form
of Gershwin’s service distribution has a high variance, which leads to occasional, but very
long blocking delays, a phenomenon the M/M/1/N model would miss. The lower through-
put values for the M/G/1/N versus the M/M/1/N analysis indicate an improvement in
this area. The results in Table 4 are encouraging given the generality of the SIMP model

relative to the specific model of Gershwin and given the ease of SIMP’s computations.

4.0 Conclusions

We have presented an extremely simple-minded, yet fast and apparently accurate
approximation method for analyzing open tandem queues with blocking. The ability. to
incorporate non-exponential service times presents an opportunity to study the behavior
of more realistic systems than those considered previously, without the need to develop

special procedures for idiosyncratic service distributions.
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The conclusions about accuracy, of course, rest upon the evidence obtained to date
of the approach’s ability to produce, within acceptable percent differences, performance
measures of interest for previously analyzed systems. It remains to be seen whether we can
guarantee error bounds, or provide explicit advice on parameter values for which the ap-
proximation is unequivocally recommended. However, due to the simplicity of the approx-
imation, its straight-forward structure, and its ready use for general service distributions,
it holds promise to be a useful tool in the study of systems of queues. In particular, we are
currently engaged in extending the general approach to closed tandem queues, and more

general open networks.

Appendix. Computation of Completion Time Moments
T;, the completion time for the i** server, is the weighted sum of two random variables:

S; = (unblocked) service time for server ¢, and

X; = residual completion time for a randomly encountered (busy) server 1,
the latter weighted by o; = Pr{server ¢ will encounter a “block” from server ¢ + 1}.

Let fi(t), hi(t), and g;(t) be the probability density functions, and f;(s), h(s), and
g: (s) be the Laplace transforms, for the random variables T}, S;, and X;, respectively.

Then
17 (s) = (1 = )i (s) + auhi(s)g; (s). (A1)
From the moment-generating property of the Laplace transform, the n** moment of T; is

found by taking the n®* derivative of f;(s) and evaluating it at s = 0. Taking the n'*
derivative of both sides of (A1) (where f(*)(s) = ——ﬁ-’-)-) gives

n

f:(n)( )= (1 - a)h (n)( )+a¢2 (j) h*(" J)(s)gfi)l(s)' (A2)

Jj=1
Since X; is the residual time for the random variable T;, we have from Equation 7b

[ n+1

*(n) i+1
9irr (5) T = E[X}.]= BT DB

Thus, evaluating both sides of (42) at s = 0 gives

T L= B
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Since the 7 = 0 term in the sum is simply E[S}'], Equation A3 can also be written as
Equation 20. In the special case where the S; are exponentially distributed with rate p;,

then E[SP] = £ and A3 reduces to Equation 11.
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TABLE 1
Throughput Comparisons (from Takahashi et al. 1980)

I’ [ U3 Simul-  Hillier- Takahashi SIMP  SIMP  SIMP
ation  Boling et al. Eq. (2) Eq. (12) M/G/1
1.1 1.2 1.3 .709 712 .645 .689 .691 .694
1.2 14 1.6 762 167 .706 746 748 751
1.3 1.6 1.9 798 .807 .755 .790 .790 793
14 1.8 2.2 .828 837 793 823 824 .827
1.5 2.0 2.5 .855 .861 .824 .850 .850 .853
1.6 2.2 2.8 877 .880 .849 871 872 874
1.7 24 3.1 .889 .896 .870 .889 .889 .891
1.8 2.6 3.4 .902 .909 .887 904 .904 .906
1.9 2.8 3.7 915 .920 .901 915 915 917
2.0 3.0 4.0 .929 .929 913 .925 .926 .927
Max. Abs. Deviation .000 .009 .064 .020 .018 .015
Ave. Abs. Deviation .000 .005 032 .007 .006 .005
Ave. Abs. % Deviation .000 0.6 4.0 0.8 0.8 0.6

Arrivals to queue 1 constitute a Poisson process with rate 1; B; = 1 except B; = 2.
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TABLE 2

Comparisons with the Exact Solution and the Approximation of Altiok and Perros

Case Measure Exact Altiok SIMP SIMP SIMP
Solution and Perros Eq. (2) Egq. (12) M/G/1/N

(B1,Bz2,B3)=(0,2,2) P;(0) 281 .299 .208 .299 .299
(B1,k2,13)=(2,2,2) P,(0) .326 331 331 331 331
A=1.2 P,(3) .262 237 239 .239 237

P;(0) .400 .400 .400 .400 .400

P;(3) .182 .176 176 176 176

(B1,B3,B3)=(c0,1,1)  P;(0) .166 173 167 175 175
(B1,82,13)=(2,2,2) P,(0) .267 .268 .268 .268 .268
A=1.2 Py(2) 483 474 ATT 476 472

P;(0) .400 .400 .400 .400 .400

Ps(2) .323 .323 .323 .323 .323

(B1,Bz2,B3)=(0,1,1)  P;(0) .386 .402 .399 .402 .402
(B1,02,03)=(3,2.5,3.5) P2(0) .396 .396 .396 .396 .396
A=14 P,(2) .338 .325 .328 327 .325

P;(0) .600 .600 .600 .600 .600

Py(2) .149 .149 .149 .149 .149

(B:1,B2,B3)=(1,1,1)  P;(0) 118 127 131 131 128
(B1,12,03)=(2,2,2) P (2) 574 .588 .591 .589 .588
A=3 P,(0) 213 .239 .245 .240 .239

P,(2) 524 512 507 .513 512

P;(0)  .361 .382 .386 .383 .382

Ps(2) .356 .342 .338 .341 .343

(B:1,B:2,Bs)=(1,1,1)  P(0) .209 223 224 222 222
(B1,k2,13)=(3,4,2) P (2) 451 .459 .456 .459 .459
A=3 P,(0) .243 274 .268 276 274

P,(2) .503 473 476 467 474

P;(0) 176 .188 185 .189 .189

Ps(2) .608 .589 .593 .586 .587

Max. Abs. Deviation .000 .031 .032 .036 .031
Ave. Abs. Deviation .000 .011 .011 .012 .012
Ave. Abs. % Deviation .000 4.0 3.9 4.2 4.0
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TABLE 3

Throughput Comparisons with Simulation and the Approximation of Altiok and Perros

A
B Simulation Altiok SIMP SIMP SIMP
u (Exact) and Perros Eq. (2) Eq. (12) M/G/1/N
1.5
(1,1,2) 916 851 939 930 028
(2,3,1)
2
(3,2,1) 1.780 1.553 1669 1672 1.668
(4,3,2)
2
(1,1,2) 954 951 .965 959 959
(2,3,1)
3
(4,3,2,1,1) 1.277 1.196 1.248  1.262 1.265
(2,2,2,2,2)
3
(1,1,2,2,2) 1.438 1.357 1.400 1.405 1.407
(3,3,2,2,2)
2.5
(1,2,3,2,1) 1.295 1.113 1.259  1.263 1.263
(2,2,2,2,2)
3
(3,3,2.2,1) 1.647 1.399 1.682 1.681 1.682
(2,3,4,3,2)
2
(1,2,3,2,1) (1.294) 1.344 1.207 1.208 1.208
(2,2,2,2,2)
2
(1,1,1,1,1) (1.131) 1.086 1.079 1.088 1.086
(2,2,2,2,2)
Max. Abs. Deviation .000 .248 11 .108 112
Ave. Abs. Deviation .000 .109 .046 .041 .041
Ave. Abs. % Deviation .000 7.7 34 3.0 2.9
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TABLE 4

Throughput Comparisons with the Approximation of Gershwin (1983)

Simulation Gershwin SIMP SIMP SIMP
(Exact) Eq. (2) Eq. (12) M/G/1/N

S o

(4,5,5)
All .002 (.4545) 4542 .5519 .5525 4881
Al 1

(4,5,5)
All .002 (.8993) .8993 .7980 .7969 7591
All .05

(4,5,5)
All 1 (.3109) 3105 4139 4144 .3531
All 1

(4,10,10)
All .1 (3556)  .3563 4469  .4466  .3939
All .1

(4,10,10)
(.01,.013,.007) (7539)  .7546 7864  .7866  .7512
(.07,.1,.05)
(4,5,5,5)
All .05 8153 8716 7232 7243 7716
All .45

(4,10,10,10)
All .1 3364 3352 4393 4395  .3786
All .1

(4,10,10,10,10)
Al .1 3204 3228 4351 4354  .3607
All .1

B, =4,B; =10(i = 2,3,-+,12)
(.01,.013,.007,.01,.013,.007, |
.01,.013,.007,.01,.013,.007) 5916 6098 7494  .7495  .6892
(.07,.1,.05,.07,.1,.05,
07,.1,.05,.07,.1,.05)

B, =4,B; =10(i = 2,3,--,20)

All 1 2767 .2924 4243 4243 .3498

All .1

(4,40,40,40)

All .005 .8362 .8337 .8754 8754 .8484

All .05
Max. Abs. Deviation .0000 .0182 1578 1579 .1402
Ave. Abs. Deviation .0000 .0040 .0986 .0983 .0523
Ave. Abs. % Deviation .0000 52 23.52 23.51 11.40

The service time at queue ¢ is 1 period with probability 1 — p; and n periods with
probability p;r?.
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