A FORMALISM FOR DYNAMIC PROGRAMMING
Stephen M. Pollock
Robert L. Smith
Technical Report 85-8
Department of Industrial and Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109

A FORMALISM FOR DYNAMIC PROGRAMMING

Stephen M. Pollock
Department of Industrial
and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109

Abstract

Robert L. Smith

Department of Industrial
and Operations Engineering
The University of Michigan
Ann Arbor, Michigan 48109

We introduce a formal structure for Dynamic Programming that associates a

unique dynamic programming functional equation to every decision tree. Since in

general, the computational complexity of the resulting functional equation is

dependent on the decision tree chosen, the art of dynamic programming is shown

to lie in the choice of decision tree to represent the problem.

A Formalism for Dynamic Programming

Dynamic Programming (DP) is a methodology developed by Richard Bellman in
the early 1950's for efficiently solving problems involving sequential decision
making. There is extensive literature dealing with its theoretical foundations
as well as with its applications to a wide variety of problems (see, for example
Denardo [1932]). Typical examples include equipment replacement, capacity
expansion, £esource allocation, andlinventory plannigg. In general, these
problems involve making a sequence of decisions (or a single decision that can
be viewed as a sequence) that eventually optimizes some criterion, usually cost
or profit.

What distinguishes dynamic programming from other optimization techniques,
and in particular linear programming, is that although it is restricted to fewer
decision variables, it allows far greater complexity in the problem's
constraints and objective function. The formulation of a problem, however, in
terms of a DP formalism, is usually presented as an arcane matter, and as a
process that most people find, after the fact, to be an "aha" experience
(Dreyfus & Law [1977]). In this paper we introduce a novel approach to
formulation of problems in the dynamic programming framework; specifically we
develop a formalism that we argue takes much of the mystery out of the so-called
art of dynamic programming.

1. Deterministic Decision Trees

We begin with the fundamental concept of a deterministic decision tree

(DDT). A DDT is a graph representation of the underlying sequential decision
problem, where arcs correspond to possible decisions and nodes correspond to
opportunities to select from these decisions. The graph is a tree rooted

at the original decision node, and every path in a DDT corresponds to a (feasible)

sequence of decisions. Moreover, associated with everv decision arc, there is a

corresponding cost of making that decision, and the overall objective is to

choose a feasible decision seqﬁence that minimizes the sum+ of the associated
decision costs. This is clearly the equivalent to finding the minimum length path
in the DDT whose arc lengths are decision costs.

For example, suppose we have a piece of equipment that is one year old, and
we wish to decide on a replacement strategy over the next three years. At the
beginning of each year we can keep the existing equipment or buy a new piece of
equipment. The purchase price, salvage values and operating costs are given in

Table 1. The objective is to minimize the total cost over three years.

Age of Equipment in Years
at Beginning of Year

0 1 2 3
Purchase Price 10 -- -- -
Operating Cost (per year) 0 .5 .75 1
Salvage Value at end 8 7 5 4.25

of year

Table 1 - Cost Data For Equipment Replacement Example

The DDT for this problem is given in Figure 1, where the possible decisions
at each node, representing yearly decision points, are to replace (R) by a new
piece of equipment or keep (K) the current equipment. The minimum cost sequence

of decisions is KKK leading to a total cost of -2. An obvious solution method

.1.

We will not address here the more general problem class which includes criteria

such as the product and the maximum of the minimum of associated decision costs.

for this small problem is simple inspection: complete enumeration of all

feasible paths.

Insert Figure 1 Here

Explicit enumeration of all sequences clearly becomes infeasible for large
problems. For a general problem of T periods, and D decisions per period, there
are DT distinct paths or feasible decision sequences. Each path requires T
additions to evaluate its cost, for a total of TDT additions. Finally, we
need to perform DI-1 comparisons. The total computation thus involves (T+1)DpT-1
elementary operations: an exponential amount of effort. Here is where dynamic
programming enters. It prunes most of the tree's branches, typically reducing
the computational effort to a polynomial function of problem size (in this case,
the numbers D and T).

3. Aggregation of Nodes

Our notion of the key idea of DP is to aggregate nodes in the decision tree
from which the remaining decision sequences are indistinguishable as we look
forward in time. That is, nodes can be aggregated if they are the roots of
(smaller) decision trees that are identical in structure and costs. This defines
an equivalence relation which partitions the nodes of a DDT into aggregate
classes. Once this aggregation is accomplished we can form a network, called

the Dynamic Programming Network (DPN), whose nodes (called states) correspond to

the classes of this partition. The construction of the rest of the DPN is
straightforward: each arc in the DPN corresponds to a set of arcs in the DDT;
the cost assigned to each DPN arc is the smallest of the costs associated with
the set of corresponding arcs of the decision tree.

Figure 2 illustrates the aggregation process for the equipment replacement

example. The shaded sets correspond to the aggregate classes. Note, for

example, that d and f in the DDT are in the same class D in the DPN, since they

are both roots of an identical tree.

Insert Figure 2 Here

The corresponding Dynamic Programming Network is given in Figure 3.

Insert Figure 3 Here

What has been gained by this new representation? First, there are in
general fewer nodes and fewer arcs in the DPN than in the original DDT, since

redundant subtrees have been aggregated.

Second, every shortest route in the decision tree corresponds to a shortest
route in the dynamic programming network, and vice versa. If the decision tree
is finite (as in our example), it can be readily proven that all nodes of the
DDT associated with a given aggregate node of the DPN must lie along distinct
paths of the DDT. This means that there cannot be any directed cycles in the
dynamic programming network: we have thus transformed the problem to finding the

shortest route in a general acyclic finite network.

Finally, the nodes of the dynamic programming network typically have a
natural interpretation, providing a reason for the use of the term "state." 1In
the example, the DPN nodes can be labelled by a two component state variable:
the age of the current equipment, and the number of years left in the study.
Indeed, some reflection on the cost structure makes it clear that this is the only
information on past decisions needed to determine the effect possible future decisions

can have on total costs. Note, however, that this insight was not in principle

a necessary prerequisite to being able to formulate the dynamic programming

representation of Figure 3. This is what makes our approach different than the
usual one. We note, however, that a computer implementation of the aggregation
procedure would in general take an exponential amount of effort since every arc

of the decision tree must be checked.
4

Construction of the Dynamic Programming Network from the

original DDT completes the formulation phase of Dynamic Programming.

Efficiently finding the shortest path in the dynamic programming network

constitutes the solution phase of Dynamic Programming. (Moreover, for finite

decision trees, this solution phase reduces to the problem of finding the
shortest path in a general acyclic finite network.)

4, Formal Discussion

We now develop and summarize the preceding in a more formal manner.

Definition: A (Directed) Graph (N,A) is a set of nodes N

together with a set of directed node pairs (u,v) € ACN x N called arcs where

NxN={(uv)| u ve N}, A tree (N,A,r,) is a directed graph with a
distinguished node r, (called the root) from which there is a unique directed

path to all other nodes.

Definition: A (directed) cycle is a directed path in a graph that begins and

ends at the same node.

Definition: A decision tree (N,A,C,ro) is a tree (N,A,r;) rooted at r,

together with a cost function C that associates a cost C(u,v) with every arc (u,v)e A.

Definition:
Two nodes u and v in a decision tree (N,A,C,ro) are equivalent if the tree

rooted from node u is identical in structure and costs with the tree rooted at
v. More formally, u and v are equivalent if and only if there is an isomorphism
between the trees rooted at u and v that preserves arc costs.

We can then partition the nodes of the decision tree into mutually exclusive
and exhaustive aggregate classes By, B,, B3, ... of nodes, such that every node
in a class is equivalent to all other nodes of that class and to no other nodes

outside that class.

Definition:

The Dynamic Programming Network (N,A,C) associated with the decision tree

(N,A,C,r) consists of the nodes sy, sp, 83, ** eN (called DP states)
corresponding to the classes By, By, B3, ... If ueB;, we say u corresponds to s;.
The arcs of the DPN are constructed as follows: An arc (Si’ sj)e A if and

only if there is an arc (k,%) € A for corresponding k € B; and % € B The arc

j) = min C(k,z).
ke B:

Le B%
]

cost (or length) is defined to be C(s;, s

The construction of a DPN ends the formulation phase of DP.

Using these definitions, it is possible to prove the following results (the

proofs, being straightforward, are omitted).

Theorem: Every optimal (minimum cost) path of the decision tree corresponds to

a shortest (minimum length) path in the dynamic programming network.

Moreover, we are now able to give the key result that allows for efficient

calculation of a shortest path in the DP network, the well-known Principle of

Optimality. Note that it is now sufficient without loss of generality to state

this abstract principle only in terms of a shortest route problem.

Lemma 1 (Principle of Optimality): If a shortest route in a DP network from

node s to node t passes through a node w, then this route must contain a
shortest route from w to t.

This Principle of Optimality can now be used, in the usual way, to obtain a
functional equation that may be solved for the length of a shortest path out of
the root node. In particular, let f(s) be the length of a shortest route out of
any node s € N in the dynamic programming network. f, called the optimal

value function, is the unique solution to the functional equation

£(s) = min {C(s,t) + £(t)}
(s,t)e A (1)
where

£(s) =0 if {(s,t)|(s,t) e A} = 4.

It is sometimes convenient (for gaining insight or neatness in coding)

to group the DP states into other classes called stages.

Definition: A stage variable corresponds to the indices of a partition Nj,
Ny, N3, ... of the nodes of the DP network, with the property that for s€ Nj,

,£) e Aonly if € € Njiy4p-

Stages are often a surrogate for the time dimension over which decisions can be
thought to be sequenced, and thus can help in defining the states of
a problem,

Application of the various methods to solve the functional equation (1)

represent the solution phase of dynamic programming. We restrict consideration

here to solution methods for finite decision trees.

Lemma 2: Suppose the decision tree (N,A,C,ro) has a finite number of nodes
and arcs. If both u and v correspond to s, then u and v cannot lie along the same

directed path out of r..

Corollary: The DPN corresponding to a finite decision tree cannot have
directed cycles.

It is the Corollary that allows a simple recursive procedure to find the
shortest route in the DPN in the finite network case. Label the n nodes of the
DP network (N,A,C) with node numbers i =0, 1, 2, ..., n with the property that:

arc (i, j)e Aonly if i < j for all i and j; 0 is the root node, and n is the (unique)

terminal node. This is always possible since (N,A,C) is an acyclic finite network.

We can now describe a technique, known as recursive fixing (Denardo [1982]), for

solution of (1).

Recursive Fixing

1. i+n and f(n)+« 0.
2. If i =0, stop; otherwise set i<« i-l and continue.

3. f(i)+min {C(i,j) + £(j)}. Go to step 2.
A

Recursive fixing requires at most n-1 additions and comparisons for each of n
nodes. This produces a computational complexity that is order nz, and hence

polynomial in the number of states.

5. Non-Unique Formulations

We have shown how the functional equation for a given problem can be
uniquely derived from the DDT formulation of the problem via the DPN. Hence if
we want to generate a different functional equation (i.e. a differemt DP
formulation), we must first represent the problem with a different decision
tree. The resulting number of states (and therefore the worst case computational
complexity of recursive fixing for solving the functional equation) can vary
significantly depending upon the choice of the original DDT. Thus the "art'" of
dynamic programming can be completely encapsulated by the choice of the decision
tree. This can be illustrated by considering several different formulations of
the classic knapsack problem.

The knapsack problem is to pack a maximal value knapsack of weight not

exceeding W from N item types. Item type i (i = 1,2,...,N) has weight w; and

value v;, There are an infinite number of each item type available. If Xy is

the number of items of type i packed in the knapsack, then the problem can be

expressed as the following mathematical program:

max lel + v2x2 + ... + vaN
subject to
wlxl + W2X2 + e + WNXN &)

x; 20 integer for i =1, 2, «., N

Perhaps the most natural decision tree is that generated by the sequence of
decisions Xy, Xp, «oey Xy i.e. how many type l items, how many type 2 items,
etc.... to place in the knapsack. For example, consider the problem with the data
as given in Table 2.

Item Type 1 1 2 3

Weight W, 2 3 4

Value v 2 5 8

W = weight available = 5

Table 2 - Data for Knapsack Problem

The DDT is shown in Figure 4, followed by the aggregation of nodes that leads to

the DPN (shown in Figure 5).

Insert Figure 4 Here

Insert Figure 5 Here

As formulated in Figure 5, an appropriate state description for the nodes of
the DPN might be the pair (number of item types for which allocations have been
made, useable weight remaining for unallocated item types). Note that, strictly
speaking, nodes f, g, h and i of the DDT are equivalent, given the particular data
elements of the problem. Indeed, if the weight of item 3 were 3 rather thamn 4, then
nodes f and g would not be equivalent, since the decision x3=l would then be
bossible from node g, but not from node f. The range of possible state values is thus
complexly dependent on the item weights, making it difficult to write down thé
functional equation in advance of its solution.

It is possible to make all weights feasible from 0, 1, 2,..., W by re-formulating
the problem to include slack items with weight 1 and value 0. Specifically, we
allow at every value of i, the option to include any feasible number of slack items
with items of type i. Letting xi be the number of slack items included with the
Xy items of type i, we obtaiﬁ the DDT shown partly in Figure 6. The resulting

DPN is given in Figure 7.

Insert Figure 6 Here

Insert Figure 7 Here

The state variable that results from the DPN (Figure 7) now becomes s = (n,w):
at that node there has been allocated a weight of at most w to the first n

items, where n is seen to be a stage variable. The DPN thus gives us the

following optimal value function for the general case (where we use the conventional
notation of subscripting with the stage variable)

fn(w) = maximum value knapsack of weight at most w

using item types i = 1, 2,...n.

10

The functional equation becomes:
vox + f,1(w - wyx) for n=1,2,..,N

max
W
X ¢ -] W

n

0’1’.o',w

f (w) = ﬂ X integer

l

Recursive Fixing, therefore, solves a series of knapsack problems, increasing the

0 forn =0, w=0,1,...,W.

number of items considered by one each time until all N items are considered.
The computational complexity for solution of this formulation of the knapsack
problem is seen to be of order NWZ, since there are N stages, each with order w2
arcs connecting them. Although we have not done so, one can»establish rigorously
that f,(w) satisfies the functional equation above by mathematically demonstrating
that all decision trees out of nodes with the same values of n and w must be
identical.

There is, however, still a third way to construct the DDT: each decision can
be an item type number for the next item to be added to the knapsack. Figure 8
gives this decision tree where ti is the ith item type chosen to include in the
knapsack for i=0, 1, 2, 3 where again item type 0 is a slack item of unit weight

and zero value.

Insert Figure 8 Here

The aggregation step then identifies a natural state variable: w, the
weight of a knapsack sufficient to hold items added thus far. These are shown in

Table 3.

11

Value of State Variable w Corresponding Nodes of DDT

0 0

1 1

2 2,5

3 3, 6, 9, 15

4 4, 7, 10, 12, 16, 18, 21, 25

5 8, 11, 13, 14, 17, 19, 20, 22, 23,

24, 26, 27, 28, 29, 30

Table 3 - Aggregation for DDT of Figure 8
The resulting DPN is shown in Figure 9; one that is quite different from that in

Figure 5.

Insert Figure 9 Here

The associated functional equation becomes (with f(w) interpreted as the maximal

value knapsack of weight at most w)

max {f(w-1), max (vi + f(w—wi))}for w=1,2,...,W
i=1, 2, ...,N

f(w) = with w, < w

i

0 for w = 0.

The computational complexity of recursive fixing applied to this last functional
equation is only of order NW. This is strictly better than the previous
formulation for all values of W and N.

There are more efficient procedures than recursive fixing to solve these

functional equations, for example, reaching with acceleration devices (see

12

Denardo [1982]). However, in general, the third formulation vields uniformly
better computational complexity. Thus we have seen how the art in dynamic
programming can be subsumed in the choice of best decision tree
representation of the problem. The corresponding functional equation then

follows uniquely from that decision tree choice.

6. Conclusion

We have demonstrated, by a simple formalism with examples, a method for
formulating dynamic programming representations of sequential decision problems. The
procedure requires an initial deterministic decision tree, from which a node
aggregation operation produces a network. This network, in turn, allows a
computationally attractive shortest (or longest) path solution via a DP
functional équation. We have made no claims to offering new insights into
appropriate solution methods for these functional equations, nor advice on how
to abstract and conceive of the original DDT. In fact we argue the latter task
represents the art of Dynamic Programming. We do show, however, that an
aggregation process not only gives a direct way to write appropriate recursive
equations, but also automatically identifies that elusive feature of Dynamic

Programming: the state variable.

Acknowledgement

The work of Robert L. Smith was supported by the National Science Foundation
under Grant No. ECS-8409682.

13

-0.75

0.5

-2(Min)

T I . |

FIRST SECOND THIRD SALVAGE TOTAL
YEAR YEAR YEAR (NO DECISION) COST

DECISIONS

FIGURE 1

DECISION TREE FOR EQUIPMENT REPLACEMENT EXAMPLE

14

FIGURE 2

AGGREGATE CLASSES FOR EQUIPMENT REPLACEMENT EXAMPLE

15

FIGURE 3

THE DYNAMIC PROGRAMMING NETWORK
FOR THE EQUIPMENT REPLACEMENT EXAMPLE

16

LA BTN
L TE TR TR

o
[
\
»
(O8]
1]
o
o
\
(o]

FIGURE 4

DDT 1 FOR KNAPSACK PROBLEM

FIGURE 5

DPN 1 FOR KNAPSACK PROBLEM

17

FIGURE 6

DDT 2 FOR THE KNAPSACK PROBLEM

FIGURE 7

DPN 2 FOR KNAPSACK PROBLEM

18

)3
AP
~"O & &)
Q ‘Jfg D17
20 18t,=0 . 28
A4 4
S“ 2 6 P —Qi(>* *£L4>
ﬂ\" () &
W ' 2 19
[)
Z t3=0 0 20
g 8
» 21 t,=0 2
Q 4=V o 29
9<,// O’C >0
40 O > t=
) LA a1 10 t,=0
2- 2 370 0 23
= s —>0O— =0
8%9
S
o ? 11
~ [4
o Q¢
\»
N o 12 £5%0 0 24
« s ” >0 =0
® 2 ¢
@ B
d
, 13
®
8 4 t2=0 14
O 0’0
FIGURE 8

DDT 3 FOR KNAPSACK PROBLEM

19

FIGURE 9

DPN 3 FOR KNAPSACK PROBLEM

20

References

1. Denardo, Eric V. (1982), Dynamic Programming: Models and Applications,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

2. Dreyfus, S. E. and A. Law (1978), The Art and Theory of Dynamic Programming,

Academic Press, New York.

