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We construct infinitely accurate approximate solutions to systems of hyperbolic
partial differential equations which model short wavelength dispersive nonlinear
phenomena. The principal themes are the followidg.The natural framework for

the study of dispersion is waveleng¢tsolutions of systems of partial differential
operators ined. The naturale-characteristic equation andeikonal equations are

not homogeneous. This corresponds exactly to the fact that the speeds of propaga-
tion, which are called group velocities, depend on the length of the wave number.
(2) The basic dynamic equations are expressed in terms of the opefatdss a
result growth or decay tends to occur at the catastrophicefdfe The analysis is
limited to conservative or nearly conservative modé3sIf a phasegp(x)/e satisfies

the naturale-eikonal equation, the natural harmonic phases(x)/e, generally do

not. One needs to impose a coherence hypothesis for the harm@nits typical
examples the set of harmonics which are eikonal is finite. The fact that high har-
monics are not eikonal suppresses the wave steepening which is characteristic of
guasilinear wave equations. It also explains why a variety of monochromatic mod-
els are appropriate in nonlinear settings where harmonics would normally be ex-
pected to appeaf5) We study wavelengtl solutions of nonlinear equations &

for times O(1). For a given system, there is a critical expongnso that for
amplitudesO(eP), one has simultaneously smooth existence fo©(1), andnon-

linear behavior in the principal term of the approximate solutions. This is the
amplitude for which the time scale of nonlinear interactiorOigl). (6) The ap-
proximate solutions have residual each of whose derivativex &) for all n>0.

In addition, we prove that there are exact solutions of the partial differential equa-
tions, that is with zero residual, so that the difference between the exact solution
and the approximate solutions is infinitely small. This is a stability result for the
approximate solutions. €1997 American Institute of Physics.
[S0022-24887)00602-9

I. INTRODUCTION

This paper presents a method for constructing rigorously justified infinitely accurate approxi-
mate solutions to systems of hyperbolic partial differential equations which model short wave-
length dispersive nonlinear phenomena. A tool of general utility is created. It is important to note
that there are a variety of more or lead hoc methods to arrive at the leading term of the
approximate solutions. We provide a framework which justifies many such arguments and can
serve to arbitrate controversies where contradictory simplifications are proposed.

The classical use of the expression dispersion is to describe the fact that white light is split
into a rainbow of colors on passing through a prism. The shorter wavelength light, bluish in color,
is bent more than the longer wavelengths which are redish in color. The reason is that the short
wavelength light travels more slowly through glass than does the longer wavelengths. This de-
pendence of speed on wavelength is called dispersion.

The cause of this phenomenon is that the light forces the electrons in atoms and molecules to
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oscillate. The oscillating electrons emit light. The total field is a combination of the incident and
emitted fields which in nonobvious fashion leads to an effective speed of propagation which is
different than the speed in a vacuum. The resonant frequency of the atomic oscillators in glass is
in the near ultraviolet so that blue tones are closer to resonance than red. This explains why
dispersion is stronger for shorter wavelengths. The reason that glass is dispersive and air is not is
because there are many more atoms per unit volume in glass. The reader is referred to Ref. 1 for
a particularly good presentation of the physics. The key is that the frequency of the exciting light
and the resonant frequencies of the atoms are both very large and of comparable magnitude. In the
infrared and x-ray regions of the electromagnetic spectrum, dispersive effects are much less
important. The need for this tuning is well expressed in the introduction to dispersion in Ref. 2:

“...to study the important subject of rapidly varying electromagnetic fields whose fre-
guencies are not restricted to be small in comparison with the frequencies which charac-
terize the establishment of the electric and magnetic polarisation of the substances con-
cerned.”

In units so that the speed of light in vacuum is equal to one, wavelengtactromagnetic
waves have perio®(e/27). The atomic oscillators to be near resonance will also have period of
the same order. A harmonic oscillator with this frequency has an equation of the form

d?p
€ W-I—p:O.

Note in particular the appearance of the differential operatiddt. Pursued systematically as in

Ref. 3, this idea leads to models for linear and nonlinear dispersion, as in Sec. I, which have the
following form. An unknownRN- or CN- valued fieldu(t,y) defined forx: = (t,y) e R** ¢ satisfies

a system of partial differential equations

L(u,ed)u+F(u)=0, (1.1

where

d
|_(u,g):=2O AL (W)€, +Lo:=Ly(u,€)+L. (1.2
=

Order J hypothesisThe nonlinear functions F and Aare smooth on a neighborhood 0f
and the nonlinear terms are of ordeE2 in the sense that

la|<J-2=033A,0)=0 and |B|<J-1=d{F(0)=0. 1.3

The system is symmetric hyperbolic in the sense that
A (W)=A,(u)* and Ay0)>0. (1.4
The simplest such equation és,u= * cu whose solutions are of the forev ¢V<f(y). Unlessc is

purely imaginary the solutions are either negligibly small or explosively large. In order that our
system be neither strongly dissipative nor strongly explosive, we assume that

Lo=—L§. (1.5
The linearized equation at=0 is

L(0,ed,)v=0. (1.6
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This is a constant coefficient system of linegr differential equations. The hypothegis.5) is
equivalent to conservation of the quanti#,u,u) for this linearized system. The discussion of
dispersion suggests that one seek solutions of wavelé@d@gh and with that in mind, note that
there exist plane wave solutions= e'#¥'¢r exactly wherr eker L(0,i 8). This kernel is nontrivial
exactly wheng is a solution of thee-characteristic equation

d

o=detL(o,ﬁ)=de<E iB,A,0)+Lo|. (1.7

u=0

The solutionsB are by definition the points of the-characteristic variety denotedechar. The
presence of the terh, in (1.7) shows that this variety depends on the lower-order terms in the
equation, and is defined by an equation which need not be homogenegus in

Definition: For any BeR" Y let m(B) denote orthogonal projection onto the kernel of
L(0,ipB).

In particular 7(B) is nonzero exactly whege e char.

There are at least three distinct ways to arrive atahsatzfor the approximate solutions of
this article. The idea of modulated plane waves, sometimes called the slowly varying envelope
hypothesis, is the most classical. A second is Whitham’s averaged Lagrangian fnetiicd
requires a variational form. Both of these methods are intuitively appealing and predict the leading
term in an approximate solution. Since the leading term is the most interesting, one might think
that such methods should be sufficient. However, if the approximate solution is constructed only
up to the principal term, then the residual in the equation is of the same order of magnitude as the
approximation itself. This explains in part why it is difficult to show that such approximations are
in fact accurate. One of the key recent advances for nondispersive problems, by Choquet-Bruhat,
Majda, Rosales, Hunter, Keller, Joly, Metivier, and Ratich,is the development of a third
strategy which follows the lines of WKB expansions is a systematic way. In addition to flexibility,
this approach has the dual advantage of often suggesting improved approximations, and wide
applicability. This is partly why it is the only one of the approaches which has lead to rigorous
results for nonlinear problems. A survey of recent progress including a more complete bibliogra-
phy can be found in Ref. 14.

The natural starting point for all approaches are problems which are explicitly solvable.
Consider the linear constant coefficient oscillatory initial value problem

L(0,ed,)v=0, v<(0y)=g(y)e Ve, (1.8

The solution is given exactly by

1 : ) )
ve(t,y)= W Agllszd fRdelH(fvﬂ)tel(X*y)- ”Aé’zg(y)e' (y)le dydy, (1.9

v

where

Ay Y2 (1.10

If the e-characteristic variety has the property that over the pairtéy) it consists of a finite
number of smooth nonintersecting sheets in the sense thatiforla neighborhood of

{dy(y):y e suppg}

the equation
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L(Oji7,in)=0
has exactlyK distinct roots

() <7o(m)<---<7¢(7m),

then there ar& natural phases for the probleth.8) namely, the solutions of the eikonal equation

detL(0id¢)=0, ¢(0y)=uyl(y), (1.1

which are the solutions of th€ reduced equations

= Tk(dydi),  P(0Y)=u(y), 1sks=K. (1.12

The nonlinear equationél.12 are uniquely solvable for small time. Applying the method of
stationary phase for such times shows thaé-a$ the solution given byl.9) is equal to a sum of
K terms

K )
ve=2 v, vi=alex)e e a(ex)~ D, eay(X). (1.13
k=1 j=0

The leading profiles, o are polarized and have initial values according to

m(déao=age, axo(0y)=m(dd(x))a(y). (1.149

They are determined by a set of ordinary differential equations, aka transport equations, along
curves in space-time, aka, rays, moving at the natural group veloeitigg(d¢(x)). In Propo-
sition 3.3 we will see that these transport equations are equivalent to the system

m(d(x))L1(0,05) m(db(X))ay o( X) =0. (1.19

In addition to the asymptotic evaluation of exact solutions we would also like to cite the paper by
Lewis '® who constructs asymptotic solutions of dispersive linear problems which need not have
explicit solutions. His models for the dispersion of light do not have natural energy estimates
which prevents him from proving that his approximate solutions are close to exact solutions. We
give an example where approximate solutions are in fact far from exact solutions after Theorem
3.7.

There is a large literature on relaxation problems which is also related to our work. The
problems are singular limits of nonlineas equations for which decay like V¢ is present in
some modes. The goal is to extract a correct description for a relaxed system in which these modes
are not preser(see Ref. 16 and its bibliographyAn important part of the analysis are hypotheses
which exclude explosive modes and guarantee stability as does our conservation hygbiBesis

It is reasonable to seek approximate solutions similar to thog&3nbut in contexts where
they are not derived by an asymptotic analysis of an explicit solution, in particular for nonlinear
problems. With this in mind suppose thafx) satisfies the eikonal equation. The first nonlinear
phenomenon to discuss is the creation of harmonics. Nonlinear functions applied to expressions of
the form a(e,x)e'®™’¢ will produce harmonics, that is expression with phasés for neZ.
Negative values oh come from nonlinear functions such as the complex conjugate. The value
n=0 appears clearly for example for the nonlinear functigf. An important difference between
the case of dispersive geometric optics and the nondispersivefoasxample, Refs. 9-13s
that if ¢ satisfies the eikonal equation, then for mosh¢ does not satisfy the eikonal equation.
The simplest case is the Klein—Gordon equatiéiu+u=0. If ¢ satisfies the eikonal equation
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¢t2=1+|¢y|2, then forn#*1, n¢ satisfies the eikonal equation at no points. Rer—1, n¢
satisfies the eikonal equation at all points. This is an example for which the following hypothesis
is satisfied.

Coherence hypothesis: The phagaes a smooth real solution of the eikonal equation @n
and or each m=2\0. If L(imdg(x)) is singular for one »x (), then it is singular for all x ().
When Limde(x)) is singular, the matrixam(mde(x)) is assumed to be a smooth function of x

Analogous coherence hypotheses were introduced by Majda and Rosatee study of
multiphase nondispersive problems. The interaction of harmonics of dispersive systems is in this
sense analogous to the interaction of distinct phases for nondispersive systems.

The next hypothesis avoids some small divisor problemsigs~ and is satisfied in all the
physical examples we have studied.

Strong finiteness hypothesis;(Ld ¢(x)) is nonsingular for all x ().

This hypothesis implies that

A:={meZ:detL(imd¢)=0} (1.1

is finite. The principal term in our approximate solutions is a sum of terms of the fbr8), one
term for each of the eikonal phasesp,

us=ePag(x,p(x)/€), ag(x,0):= 2 an(x)e'’, mmdp(x)am(x)=an(x). (1179

me 72

Roughlyu€ is a finite family of nonlinearly interacting dispersive waves whose amplitafés
discussed in the next paragraph.

The second nonlinear effect to take care of is that the strength of interaction and therefore the
time scale for interaction depends on the amplitude of the wave. The amplitude of the solution
(1.17 is eP. The exponenp is chosen so that the time scale for the nonlinear interactioD$lis
This vague phrase means that one cannot ignore the nonlinear effects if one wants an approxima-
tion for times independent of, but for times tending to zero witl they can be ignored. We
present two independent computationgofThe second is at the beginning of Sec. IV A. For the
first, suppose that and egu€ are O(eP). Then(1.1) takes the form

1 1
L1(0,05) + < Lo) Uezg O(eP)),

where the right-hand side comes from the nonlinear terms satisfiB Thanks to the conser-
vation hypothesis, the propagators for the linear operator on the left are uniformly bounded on the
standard Sobolev spaces. Thus the effect of the nonlinear terms over times of order one is esti-
mated to be of ordee?’~1. The critical exponenp is chosen so that this is equal ¢, the
amplitude of the solutions studied. Thus

1

p:J—_l' (1.1&

In Sec. V interaction coefficients,(x,{a,(x)}) are defined depending on the phaseand the
derivatives ofL(u,.) andF(u) with respect tou at u=0. Each functiorc,, is a homogeneous

polynomial in{a,,(x)} of degreel. The principal profilea, in (1.17) is uniquely determined from
its initial data by the coupled semilinear symmetric hyperbolic systems

m(Mdp(x))L1(0,05) m(Mde(X))am+ cm(x.{a,(x)})=0. 1.19
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The operators on the left are those(itb). Proposition 3.3 shows that where the characteristic
variety is simple they are transport operators at the group velocity. To guarantee uniqueness one
needs to suppose that the dom&ron which one works satisfies the following condition.

Determinacy hypothesi€2N ([0, T,]XRY) is a domain of determinacy for each of the sym-
metric hyperbolic operatorsr(mde)L4(d,) m(Mmdeg), me.Z.

Proposition 3.2 shows that this is automatically satisfieﬂmi([O,Tl]de) is a domain of
determinacy for(0,d,)

The principal term can be corrected to give infinitely accurate approximations. These are the
dispersive analogue of the constructions of Joly—Rauch and Gues in Refs. 9, 17, and 18. The
proofs of all these authors are descendents of the seminal article ¢f shawing that the
geometric optics approximate in the linear case is easily justified by constructing an infinitely
accurate approximation solution and then using energy estimates.

The nonlinear dispersive analogue of Lax’s result is harder. For one, the solutions tend to
infinity in the norms in which the Cauchy problem is well set. This suggests that they may become
increasingly sensitive to perturbations in the data, and therefore the approximate solutions need
not be accurate. In fact they are accurate as we prove in Sec. VI.

The approximate solutions have the form

us(x)= ePa(e,x, d(x)/€), with a(e,x,0)~ep_EN € la(x,0). (1.20
jep

The functionsa(e,x, ) and a;(x,6) are smooth in all their arguments and periodicéinTo
describe the main results introduce the projeckdr acting on trigonometric polynomials
d(x,0)==d,(x)e"’ by

Id:= >, m(ndg(x))d,(x)e"?. (1.29)

neN

The next theorem shows that infinitely accurate approximate solutions of the (fo2® are
uniquely determined once initial data are given Fba;(0yy).
Theorem: Suppose that &0 and for j=0

0;(y,0) e C5(RIXS), suppgC(QN{t=0})xS' and Ig;=g;.

Then there is a €]0, T,] and a unique solution g Cfo)((ﬂﬂ{0<tsT})><81) of (1.19 such
that ITay(0,y) =go(y). With this T, there are unique functionsjaCfo)((QO{OstsT})xsl)
satisfying the initial conditiondlIa;(0,y) =g;(y) and so that if J satisfies(1.20, then for all &
and M one has

d*(L(u¢, edy)us+F(u€))=0(eM)

uniformly onQN{0<t<T}.

This result is proved in Sec. IV in the semilinear case and in Sec. V for the quasilinear case.
That the approximate solution is infinitely close to exact solutions is given by the following result
which is weaker than that proved in Sec. VI.

Theorem: Suppose that land T are as in the previous theorem and thétis the unique
local solution of the initial value problem

L(wd)v+F(w =0, v(0y)=uq0y). (1.22
Then for small positive, v € exists and is smooth di©, T] xRY and for all @ and M one has

d%(uc—v€)=0(eM) (1.23
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uniformly on[0, T]XR9.

In Sec. Il we present three models from nonlinear optics, one linear, one semilinear, and one
quasilinear which together with the Klein—Gordon equation serve as examples throughout the
exposition. In Sec. lll, linear dispersion is discussed. Here many fundamental relations needed in
the sequel are proved and the scheme for handling the recursive definition of the @pfies
developed. While much of this material is known, we think that much is also new. In this section
we also show that for the simple nonconservative exarhpée): =€e’C1—1 there are asymptotic
solutions with infinitely small residual,(ed)u~0, so thatu® and v have disjoint support for
timest~1. In Sec. IV we construct approximate solutions with infinitely small residual in the
semilinear case. The important coherence, finiteness, and determinacy hypotheses are introduced.
In Sec. V the additional work for quasilinear terms is presented. The proof of stability is given in
Sec. VI.

II. TWO MODELS FROM NONLINEAR OPTICS

The speed of propagation of light in dense materials like glass and water depends on the
frequency. As a consequence white light passing through a prism is decomposed into a spectrum
of colors, a discovery of Newton. These phenomena are datledr dispersionHere the qualifier
linear means that the superposition principal holds.

The development of lasers allowed the exploration of high-intensity electromagnetic waves
and led to the discovery that the speed and therefore the refractive index depends also on the
intensity of the fieldn=n(w,l). Taylor expansion alt=0 yields

N(w,l)~ng(w)+ny(w)l +---
where the notations are those standard in the physics literature. Truncatingnattémm yields
N(w)=ng(w)+nz(w)l, (2.9)

which is called the&kerr nonlinearity The common sigm,>0 means that speed of propagation is
a decreasing function of intensity of the light.

A. The Lorentz model for linear dispersion

Materials which exhibit an appreciable nonlinear index are usually dispersive in the classical
sense; the speed depends on frequency. Thus the point of departure for modeling the nonlinear
index are models of linear dispersion. The standard model, due to LdPastdjscussed in Ref.

3. In particular its relation to excellent textbook treatmeiitsfs. 1 and 2LLis discussed. In units
normalized so that the speed of light is equal to 1, the equations read

E.=curlB—P,, B,=—curlE, €29?P+P=yE. (2.2
div(E+P)=0, divB=0, (2.3

The unknowns are the electric and magnetic fieltls3, and the polarization per unit volume,

The last equation fronf2.2) shows that the local polarization responds to the electric field as a
field of harmonic oscillators. Equatiof2.3) is satisfied for all times as soon as it is satisfied at
t=0. Thus, it is a constraint on the initial data.

The key observation is the appearance of the small paranaetenich has the order of
magnitude of the wavelength of light divided by the next smallest characteristic length in the
problem. For example for the propagation of a bullet- or cigar-shaped laser pulse through an
ordinagy sized glass lens, the smallest length scale is the spotsize typically of order 1 mm, and then
e<10°.

To convert(2.2) to a first-order system, introduce
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Q:=e€4P, u:=(E,B,P,Q). (2.9
The dynamics then reads
eE;=e curl B—€eP;, eB;=—ecurlE, €eP,=Q, €4,Q+P=yE. (2.5

There is a natural quadratic energy. Multiplying teequation byE, the B equation byB, the P
equation byP, and theQ equation byy Q, then integrating the sum of the resulting expressions
over RY yields the conservation law

. (2.6

1 1

Ozaf Agug,ug)dy, A :=dia%l,l,—l,—|

t Rd< oUo, Ug)dy 0 7'y

Multiplying equations(2.5) and (2.6) by A, expresses the fundamental systéh®) in the form
d

L(ed)u=0, L(&):= EO E,A,+Lo, 2.7
=

where the 1X12 matricesA, are real symmetric, and

o 0 0 1
0O 0 0 0
L=l 0 0 0 -1
~1 0 1y O

is real antisymmetric. This is a dispersive symmetric hyperbolic system in the sense of Sec. Ill.
The key ingredient in the modeling of dispersion is the fact of studying wavelengshillations
of a system ined.

Nonlinear optical models are characterized by the fact that the polariZatiesponds to the
electric field in a nonlinear way. Two standard models are described below. For each of the
nonlinear models, the linearizationwat0 is given by the Lorentz model. Thus the Lorentz model
yields a good description of solutions of the nonlinear equations for very weak fields. The asymp-
totic analysis of this paper describes high-frequency solutions for which the nonlinear effects are
important.

B. The anharmonic oscillator model

The change here is to model the response of the polarization astemmonic oscillator
e’Py+VV(P)=yE (2.9

(see Refs. 22 and 23The medium is supposed to be centrosymmetric which mean¥tlsaan
even function, i.e., satisfieé(— P)=V(P). For low fields, the classical harmonic oscillator is a
good approximation. Denote ky,~10' m™* the electric field felt by an electron in a Hydrogen
atom. For very high fields, i.eE>E_, | >10'" W/cn?, ionization processes occur and typically
the materials through which the light is passing are damaged. There is an intermediate range
| ~10*2 W/cn? where the intensity is low enough to avoid breakdown but high enough so that the
perturbations of the harmonic oscillator have to be taken into account. This regime, sometimes
called that of weak nonlinearity, is the field of nonlinear optics.

Replacinge by E/E,, B by cB/E,, andP by P/eyE, gives dimensionless fields. The regime
of weak nonlinearity discussed above corresponds to dimensionless fields small compared to one.
It is thus reasonable to introduce the Taylor expansion of the smooth real-valued potential
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P2 alP|*
VP =gt

a>0. (2.9

The asymptotic analysis of Sec. IV shows that the coefficieistessentially the same quantity as
the Kerr Law constanh, and is of magnitud®©(1) in the nondimensional units above.

It may seem that for fields small compared to one, the nonlinear term will be negligible.
However, the natural eikonal equation and polarization identities are such that the leading-order
linear terms in(2.8) exactly compensate, so that the nonlinear term is crucial.

Introducing the unknowm from (2.4), this model is a dispersive semilinear symmetric hy-
perbolic system. It is semilinear because the nonlin®#(P) does not involve derivatives.

C. Instantaneous nonlinear response

This model supposes that the nonlinear response of the polarization is instantaneous and given
by

Pv=Pn(E), Pn(—E)=—Pp(E), dEP\(0)=0 for |B|<2.

In the dimensionless units above, the fields of interest are small compared to one &yddiue
be replaced by the leading term in its Taylor expansion

Pn=a|E|%E,

where the constant~0O(1) is essentially tha, in Kerr's Law. The polarization is the sum of this
instantaneous cubic term and the term of Lorentz. The system of equations defining the dynamics
is then

E.=curl B—(P+a|E|?E);, B=—curlE, €?#’P+P=+E, (2.10
div(E+ «|E|?E+P)=0, divB=0. (2.12)

For the unknowru as in Sec. Il A, this is a dispersive symmetric hyperbolic system which is
quasilinear because of the term|E|°E);.

lll. ASYMPTOTIC ANALYSIS OF LINEAR DISPERSIVE HYPERBOLIC SYSTEMS

This section presents background material on dispersive symmetric hyperbolic equations.
Symmetric hyperbolicity hypothesis: Suppose that

d
a
L(d):=2 A . T Lo=AadotAgdi - +Agdg+Lo. (3.1)
n=0 j

The system of partial differential operatorgd). is supposed to be a constant coefficient conser-
vative symmetric hyperbolic system of order one with timelike variabte{, that is, the coeffi-
cients A, are NXN Hermitian symmetric matrices withystrictly positive and k is an anti-
Hermitian matrix

Aside: One could consider systems with e-dependent coefficients satisfying

Aj(X,é):Aj(X,f)*, AO>C|>0,

92 {AL Lot eL*(RY™Y),  Lo(x,00+L3(x,0=0,
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for some constant. The analysis for nonlinear phases extends without essential modification to
this case. The price to pay is heavier notation. Physically, the variable coefficients represent a
medium whose properties vary smoothly from point to point.

The goal is to describe oscillatory solutions Iofed)u€=(L,(ed)+Ly)u*=0 which have
wavelengthe<l. The presence of the operatassmakes the system singular. Exactly the same
sort of singularity is familiar from the semiclassical limit in quantum mechanics. It has the
peculiarity of rendering the principal part and lower-order terms in the equation of the same order.
That is, the natural principal symbol involves the lower-order terms as well as the terms of order
1. The natural eikonal equation is not homogeneousdrand equivalently, the natural principal
symbol is not homogeneous & This is nearly equivalent to the fact that dispersive phenomena,
where speeds depend on the modulus of the wave number, can be modeled.

A. Plane waves and dispersion relations

The point of departure is the fact that linear partial differential operators with constant coef-
ficients act simply on exponential functions of the foeti*'r whereBeR**9 andr eCN. Such
expressions are callg@ane wavesOne has

L(ed)(e'PXery=e X< (ig)r=e'P¥(L(iB)+Lo)r. (3.2
There is a fundamental dichotomy.l{i B) is invertible, then the equation
L(ed)uc=e'P¥p (3.3
has a unique plane wave solution
uc=e'f¥eL(iB) b, (3.9

and the homogeneous equatiofed)u=0 has no plane wave solutions.

On the other hand, iE(i B) is not invertible, there are plane wave solutions of the homoge-
neous equation, and the inhomogeneous equation has plane wave solutions only for special values
of b, those which satisfyr(8)b=0 where=(B) is defined as follows.

Definitions: The covectoBe R is e-characteristic denotedBe echar(L) when

detL(iB)=0. (3.5

Equation (5) is called theispersion relation. For BeR**9, 7() denotes the spectral projection
of L(iB) onto its kernel. Define a partial inverse(®) from CN to itself by

Q(B)m(B)=0, Q(BL(iBp)w=(1—m(B))w for all weCN. (3.6)

Remarks:(1) For Be e char, the projection(B) is equal to

1
m(B):=5— (z—L(ip)) tdz (3.7

|z=r

wherer is so small that 0 is the only eigenvalue inside the contour. Symmetric hyperbolicity
implies thatL (i 8) is an anti-Hermitian matrix, ser(8) is an orthogonal projector and the alge-
braic and geometric multiplicity of the eigenvalue 0 are equal. Here the geometric multiplicity is
defined as dim kel (i B8), while the algebraic multiplicity is defined to be order of the raetO
of the equation dézl—L(iB))=0.

(2) BeR* %\e char=m(B)=0.

(3) The matrixQ is given by the contour integral
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o 1 R
QB3 § 5 @Lip) Pz 38

Symmetric hyperbolicity implies tha®(B) is anti-Hermitian.

(4) For Be echar,r belongs to the kernel df(iB) if and only ifu¢:=e r are plane wave
solutions of the equatioh(ed)u=0. The equatior(3) has a plane wave solution if and only if
7(B)b=0, in which case the solutions are given by the vectosatisfying

r—Q(B)bekerL(iB).

Proposition 3.1: For eachneRY there are at most N values such that(r,7)eechar. If
n<m<---<7 are the values, then

iB.xle

k
CN=> kerL(irm,in)
m=1

is an orthogonal decomposition with respect to the scalar product determineg.by A
Proof: SinceL (i 8)=i(L,(B)—iLy), it follows that 8:=(7,7) belongs toechar if and only if
7 satisfies

d
det( A+ X, 7A—iLo|=0.
i=o

SinceA is positive definite and:jtonjAj—iLo is Hermitian symmetric, the result follows from
the spectral theorem. ]

It follows that forr eCN the initial value problem
L(ed)u=0, u_o=€'"7Yr

has the exact solution

k k
. i )Xl _
us: = 21 e'lm.mxler - where r—% 'm
=

is the decomposition af into elements of kek (i 7,1 7).

In the Proposition the scalar product with respecAggplays an important role. This is tied to
the fact that the time variableplays a distinguished role in the decompositi@r (7,7). For a
different time variable the orthogonality of the kernels would be with respect to a different scalar
product. The projectors(3) on the kernel are chosen orthogonal with respect to the scalar product
in CN which is the scalar product for which the symlid{i 8) is anti-Hermitian.

Example:For the Klein—Gordon operatdr(ed)=€’[]+1, Be echar if and only if it satisfies
the dispersion relatio 3=8%+---+ 83+ 1. This is a second-order analogue, studied by seeking
plane wave solutions€=e'#*¢c. The identity

(20+1)u=ePXe(— B2+ Bi+---+ By+1)

yields the dispersion relation.

Example:Compute plane wave solutions of the Lorentz model from Sec. Il A by seeking
exact solutions of the forne®*¢(e, b, p, q). This yields the system of homogeneous linear
equations

ire—ip/\b=—q, tb+n/\e=0, irp=q, irq=—p+ye (3.9
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Fix 7 and seek the values= 7(7) belonging to the variety.
There are always solutions with=0. The corresponding vectors are those with

eln, bllyp, p=vye g=0. (3.10
This is a two-dimensional family. None of the nonzero elements of this family satisfy the con-
straint (2.5).
For 7#0 one can eliminaté andq from the system to obtain the reduced system
r%e+ p/\(g/\e)=—72p, (—72%+1)p=re
In the first equation, simplify the double cross product and multiply-by1 to eliminatep to find
(72=1) (7%= 7?|+|n)(m]) = y7?)e=0. (3.1
The physically relevant solutions satisfy the constrajiet=0, which yields the dispersion relation
0=(r2=1)(7?=|p?)—yr?=71—(L+y+|9) 72+| 7% (3.12
Note that this equation is not homogeneous jrm;. The spectral projection(B) corresponding to

the roots of(3.11) is orthogonal projection on the kernel which is the set of vectors satisfying

eln, 7b=—7ne e g=iTp. (3.13

P== 2+1
Note that the phase velocity,=—77/ |5* so that the tripley 4, €, b is an oriented triple irR>.
Equation (3.13 defines a kernel of dimension two parametrized by the veatarsg by the

mapping

-7 Y iTy
=le, —AN
el n—K(e) (e, - (=) _72+1e, _7_2+1e

Note that fore L #,

2 2(1+ 2) 1/2
IK(@l=wd, wron=(1s G T

Set
S(u)=S(E,B,P,Q): =E+ z/\B+ —TZ+1 P —27211 .
We next show that
v2a(u)=K(p,. (S(u)))=K S(U)—% : (3.14

Since both sides are linear it suffices to prd@el4 for u either belonging to or orthogonal to
ker 7r((u). We use two identities satisfied for alL .

u,K(e))=(S(u),e) and S(K(e)=re
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The first identity shows that(u) =0 if and only if p,, (S(u))=0, so(3.14 holds foru eker .
For O#u_lker 7, choosee L n so thatu=K(e). Then

K(po1 (S(U)=K(p,. (SK(€))))=K((p,. (v*))=K(r’e)=1u

verifying (3.14) in these cases and therefore completing the prog8df4).
The dispersion relation yields a quadratic equation#@rwhich is explicitly solvable. The
resulting expression is rarely used. The simple explicit representation

|77|2=72<1— Tzfl) (319

for » as a function ofr is often preferred.

The remaining solutions of the homogeneous linear system are thoseelwitivhich in
addition to those withr=0 yield a family with 7>—1—+=0. This inventory of 12 solutions for
each# shows that equatio(B.5) is exactly

727 2= 1= p)[(7 2= 1)(7 2= | 7’|}~ y7 22=0.

B. Approximate solutions with varying amplitude and linear phases

We construct solutions which on scaled) look like plane waves, but whose amplitudes are
smoothly varying on scale®(1). The residuals are infinitely small. Seek asymptotic solutions of
the equation

L(ed)uc=(L,(€d)+Louc=b(x,e)e'P>¢, b(x,e)~§0‘, (), (3.16
=
with
uc=e'fxeq(x,e), a(x,os)~_§O elaj(x). (3.17
=

Plugginguc into the partial differential operator yields
L(ed)us=e'P¥e(L,(ed)a+L(iB)a). (3.18

The strategy is to expand

©

L(iB)a+L1(ea)a—b~20 eei(x), (3.19
=

and to choose the coefficiers so that all thec; vanish identically.
Setting the leading term if8.19 equal to zero yields

There is a fundamental dichotomy.l{iB) is nonsingular, thel, is determined fronb, by the
linear algebraic equatiof3.20. An entire asymptotic expansion is determined by slatal
algebraic equations. This is in exact analogy to elliptic high-frequency asymptetiesRefs. 24
and 25.

The situation is more interesting whéri 8) is singular. In that case, multiplying.20 by
m(B) yields the constraint
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m(B)be=0. (3.2))
Multiply (3.20 by Q(B) to find
(I =7(B))ar=Q(B)bo. (3.22

Equation(3.20 holds if and only if(3.21) and(3.22 hold.
Settingc,=0 in (3.19 yields

(Lot Ly(iB))as+Ly(d)ag=Db;.

Typical of two scale expansions, this equation involves coefficiaptand a; of two different
powers ofe. Multiplying by 7(8) eliminates thea, term. This yields

m(B)b1=m(B)L1(d)ag=m(B)Li(d)m(B)ag+ m(B)L1(d)(I —7(B))ag.

Using (3.22 gives

m(B)L1(d)m(B)ag=m(B)b1—7(B)L1(d)Q(B)by. (3.23

Equation(3.23 yields an initial value problem forr(8) a, involving the first-order partial differ-
ential operatorr(B)L 1(d)7(B). That this problem is solvable is guaranteed by the following simple
but important Proposition.

Proposition 3.2: If L4(4d,) is a symmetric hyperbolic operator ar@weHom(C") is an
orthogonal projector, thenrL,(4d,) 7 is symmetric hyperbolic operator acting on functions with
values inRange.

Proof: The coefficient of; is equal to the restriction af A; 7 to Ranger which is Hermitian
sinceA; and m are.

The coefficient olly=4, is the restriction ofr Aymr to Ranger so is positive definite sinc,
is. ]

Thus, equationi3.23 is a linear symmetric hyperbolic system and so determir{@a, from
its initial data. Sincél —7(8))a, is already known, this completes the determinatioapflf 7(3)
has rank one, them(B)L,(d)7(B) is a directional derivative in the direction of a constant coeffi-
cient vector field. Such transport operators also can arise wiignhas rank greater than one.
When #(B)L,(d)m(B) is a directional derivativer(B)a, is determined by solving ordinary differ-
ential equations along the integral curves of the vector field. The classic example which leads to
an operator which is not a directional derivativecanical refraction In Proposition 3.3 we show
that this exceptional behavior occurs only for poimfdswhere two or more sheets of the
e-Characteristic variety intersect.

Example: For the Klein—Gordon operato’C]1+1, suppose thap satisfies the dispersion
relation B5=82+---+B5+ 1. Then

d
(GZD +1)uc~ eiﬁ.x/E(GZi ( ﬂo(?t_jzo ﬁ] (9J

ag+O(€?)

This yields the transport equation

d
(Boat_on Bjaj)aozo-

The amplitudea, is rigidly transported with velocity given by
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V,:=group velocity= —(B1,---,Bq)
9 = -
For comparison, the phase velocity is given by
v4:=phase velocity ~Bo(B1---Ba)
" (Bi+--+By
1 d

The appearance of phase velocities which depenBpis the signature oflispersion

The next proposition gives a sufficient condition for the symmetric hyperbolic operator
7(B)L,(B)7(B) to be a simple directional derivative.

Proposition 3.3: Suppose that the-characteristic variety of L is a graph near
B=(7,m)eR*" % in the sense that for near 7 there is a unique poin€r(7),7) e echarnear B.
Thent(7) is a smooth function o and if one defines the transport operator at the group velocity

by

aT J Jd
(y)—::—+vg.ay,

g
V(Bi):i= = 2
then w(B)L1(d)7(B) is the simple directional derivative

m(B)L1(d) m(B)=m(B)Agm(B)V(dy).
Proof: Since

d

L(iB)=AFZ i7l+ X, inAg Y2A A Y2+ Ay VALA 2| AT?,
=1

the solutionsr are the eigenvalues of the Hermitian matrix

d
H(77)1=Ao”2(i|-o—j2O WiAi)Aollz-

Choose >0 so that fory nearn there is exactly one eigenvalue in the disk of ceigand radius
r. The smoothness af(7) then follows from the contour integral representation

1
Trace(z ﬁz_rz(zl—H(n))l dz)
m(n)= .
1
Tracs(ﬂ jglzlr(zl—H(,]))—l dz)

Differentiate the identity (i 7(#),i ) m(7(#),7)=0 with respect toy; to find

dr(n)

Aot Aj |7 (7(n),7)=0.

9
L(7(7n),7) (9—77] w(7(n),n)+i

Multiplying by @(7(#),n) eliminates the first term to give

ar(n)
an

(7( 77),77)< Aot Aj | m(7(n),7)=0.

i
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Using this for the summands on the right-hand side of the identity
d

d
7(B)L1(dx) (B)=m(B)Aom(B) 7+ 2, m(BAT(B) - -

=1 (9XJ

yields the desired relation

d
|

m(B)La(dx) m(B)=m(B)Aem(B)| =

S am &XJ

Example:For the Lorentz model consider#0 and8=(r,7) e echar with 72¢{0,1+}. Thenr?

satisfies(3.13 which has a pair of distinct positive solutions for eaglsince
discriminant= (| 7|2+ 1+ v)2— 4| 7|2= (| 7|2+ (y—1))>— (y— 1)?+ (1+ y)?>0.

Equation(3.15 shows that the graph ¢#f? as a function ofr2 rises from 0 tox as 72 increases
from 0 to 1. There are no solutions with? between 1 and ty. The graph then rises from 0 to
% approaching the linéz|?=r2 from below asr?—~. The slope is always positive in fact,

d| 5/ y
G, 7=

The group velocity is computed as follows. The chain rule yields

-1 d|77|2 -1 l ¥ -1
(de) 2| n|= 2||(1 Tl)z) 2|7|.

—52>0.

dr?
d|7|

d|7| B d|r dr?2 d|7]|2_
dl7| dr*d|9l* d[7|

This yields

group velocity=vy(7,7)=—-V  7(n)=— g

-1
Y
+—— .
Y 2—1>2>
The transport operator simplifies a little. Usi(@6) and(3.14) one shows that

m(1,7)Agm(7,1m)=pu(7,9)7(T,7),
where

2 (1+ 2) 2 2(1+ 2)
u(rn):=|1+— +’(y1 T) )/ 1+%+’)(/1_—T72-)2) 2/11g Vg

It follows that for linear phases the transport equation is simply

7 YAt

1+— 2 (1 722

((9»[+vg.c7y)e=0
where theb, p, g components of, are computed frone using(3.13.

The next Proposition shows that whether or not the operatqgfd)s is a simple transport
operator, its sound speeds are always between the smallest and largest sound spegtls of
Recall that the sound speedsy) defined for unit vectors;e RY are the roots of ddt,(—c,n)
(see Ref. 2B Note that only the principal part df is involved in this definition, in contrast to the
definition of echar and the group velocities bf(ed).

Proposition 3.4: If Li(J) is a symmetric hyperbolic operator ande Hom(CV)\0 is an or-
thogonal projector, then the sound speeds of the symmetric hyperbolic opetaiGh = defined
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on Range m-valued functions lie between the largest and smallest sound speedgf Ib
particular, when the hypotheses of Proposition 3.3 are satisfied, the group velocities are no larger
than the largest sound speed of.L

Proof: The sound speeds bf(d) are the eigenvalues of the matkik = — = ;A; with respect
to the positive matriXA,. They are the critical values of the Rayleigh quotient

(Hv,v)
<AOU10>.

The sound speeds of the systeth,(d)7 are the critical values of the same function restricted to
the subspace Range Therefore they lie between the maximum and minimum of the Rayleigh
guotient defined on all vectors. These extrema are exactly the largest and smallest speeds of the
original system, which proves the result. ]

Even when the hypotheses of Proposition 3.3 are not satisfied, this proposition shows that the
domains of influence for the reduced operateism are always contained in the convex domain
of influence ofL;.

Returning to the construction of asymptotic solutions, the coeffig@entith j=2 is given by

Onceay,...,a;_1 are determined, the coefficieaf is determined from the equatio¥ g)c;=0

and m(B)c; ;1 =0. The former implies that

(I=m(B8))a;=Q(B)(bj—Li(d)a;-1), (3.29

which determinegl —#(3))a; from terms already known. The latter yields an evolution equation
for m(B)a;,

m(B)Li(d)m(B)a;=—m(B)L1()Q(B)(bj—Li(d)aj_1)+ 7(B)b;, (3.26

which serves to determine(8)a; uniquely from its initial values aft=0}. This completes the
determination of the amplitudes of the formal asymptotic solution from the initial values of
m(B)aj|i=o provided that the constraiit8.21) is satisfied. These computations prove the first two
of the following three fundamental theorems.

Theorem 3.5: Suppose that 0, that a(e,x) and b(e,x) belong to C(]0, 1]x[0,T]xRY)
and have spacetiime support in ane-independent compact subset[6f T]xRY and satisfy

© o

a(e,x)~§0: éaj(x) and b(e,x)~§O: elb;(x), (3.27)

in the sense that;aand b belong to Q‘O)([O,T]XR") and

VaeN? YmeN,3C, Vee]0,1], Vxe[0, T]XRY: a;f( a(e,x)—i eiaj(x)) <CeM'?,
o (3.29
with a similar expression for (&,x). For e<]0, 1] define
ué(x):=e'#*ea(¢,x). (3.29
Then
L(ed)u‘—eP¥b(e,x)~0 in Cfy([0,T]XRY) (3.30
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if (3.21)-(3.23) and the sequence of equations (3.25) and (3.26) are satisfied.
Theorem 3.6:Given

0i(y) eC5(RY) and bjeC{) ([0, TIXRY)
with supports in a fixed compact set and satisfying

7m(B)gj=9; and m(B)by=0,

there are uniquely determined functiong>d e C4([0,T] xRY) satisfying (3.22) and (3.23), the
sequence of equations (3.25) and (3,2@)dthe initial conditions

m(B)aj(0y)=g;(y). (3.31

Borel's theorem guarantees that fyr,b; as in Theorem 3.6, there exise,x) andb(e,x) as in
Theorem 3.5, which constructs approximate solutions give(Bt9.

Theorem 3.7: Suppose that U is defined as in Theorem 3.5, and that
v(e,x) e C*(]0, 1] X[0,T] XRY), with suppu (e, .) contained in ane-independent compact set,
satisfies

L(ed)v(e,x)—€eP*¥eb(e,x)~0 and v(e0y)—u(0y)~0 (3.32
in C{5)([0,T] xRY) and C5(RY), respectively Then
v(e,X)—u(x)~0 in CJ([0,T]XRY). (3.33

An important case is when the right-hand sides of (3.32) and (3.33) vanish in whicl csitkee
exact solution of the problem to whicH is an approximate solutian

Proof: The differenceu®— ug,,satisfiesL (u—v (€.x))=0O(€”). To show that the difference
is small, one needs to estimate how fast solutionsw£0 can grow.

There is subtlety here because of tkein front of the ¢,. Solutions of the equation
(ed,—1)u=0 are multiples o&"€ so grow very rapidly. If this happened in our problem, the fact
that the residuals ar®(e”) would be more than compensated by this exponential explosion. It is
to avoid this that we assumed the conservation hypothgsisLg = 0. This hypothesis shows that
J{Aqu,u)dx,---dxq is independent ok, for solutions ofLu=0.

With this hypothesis, the basic energy identity reads

d
MZO €d, (A, u,u)=2 ReL(ed)u,uy.
This implies immediately that for anyl and s there is a constanC so that for all
we Cly)([0,TIXRY)

[Wllhsro, jxrey<C ”W(O)”\HS(Rd)_l—%||L(€(9)WHH5([O,T]><R“) . (3.39
Following the work of Lax® on the nondispersive case, apply this estimate to
W:=U¢—v(€,X).
The potentially explosive factor dis absorbed by the infinitely small residuals and one obtains

[WllusoTyxrey=<C(s,m)e™
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for all m. Sobolev’s Theorem completes the proof. ]
Example:The conservation hypothesis is crucial for Theorem 3.7. Two examples for which it
is not satisfied are the Klein—Gordon operator with negative coefficient

L(edy)=€’0—1

for which the natural conserved energy has indefinite dersitg+ e°uj—u® and the first order
system analogue

1 0
0 -1

0 1

L(edy)=d;+ 10

dyt

For each of these thecharacteristic equation is?=7°—1. For|7|>1 there are nice plane waves
and one can construct approximate solutions

us=e' (Mt Wlea(x)+eay(x)+--), L(€d,)u‘~0
whose profiles are determined by transport equations along group lines whose velocity is given by

-7
Ug:: —0",]7'2 (7]2_1)172

with |vg| >1. In particular the principal profile is given by the explicit relation
ao(t,y)=ag(0y—vgt).

If the initial data for them()a; are supported ify|<r, then the profiles are supported in the
tube|y— vgt| <r and the solutioru® can also be taken with support in this tube. The sound speeds
of the operatord are =1, so that for alle#0

suppv “C{|y|=<r+|t[}.

For |t|>2r/(|vg| —1) the supports of the exact and approximate solutions are disjoint!

This apparent contradiction is resolved by noting that the analogue of Theorem 3.8 is not true.
The infinitely small residual cannot be removed. The fantilyd) is not uniformly stable, so
though the residuals are infinitely small the error is not. The apparently infinitely accurate ap-
proximate solutions are worthless!

C. Nonlinear phases

It is not difficult to extend the analysis to nonlinear phagés) so that the oscillating factor
is equal toe'?™’¢. To do this requires the introduction of a few additional concepts.
The eikonal equation becomes

detL(id ¢(x))=0. (3.3

This asserts that for ak, d$(x) € e char. In the case of the Klein—Gordon equation, the eikonal
equation is

di=|¢y|2+1. (3.36

For the Lorentz model, the interesting oscillations have phases satisfying the eikonal equation

(pF—1)(dF—|¢y|?) + yopZ=0. (3.37
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In both cases, given initial value#(0y) with ¢,(0y)#0 and a valueg,(0y) satisfying the
equation at0,y), there is a unique smooth local solutign To verify this it suffices to show that
the initial value problem is noncharacteristic. For the Klein—Gordon equation compute

api—|by|>—1)
Iy

For the Lorentz model, the noncharacteristic condition is equivalent to the nonvanishing of the
discriminant computed after Proposition 3.3.

There are several things to notice. First, as is usual in the theory of first order partial differ-
ential equations, the time derivative must be given at one point. Second, using the determinant in
(3.39, the eikonal equation that one finds is

=2¢=*2\1+]|¢y|°#0.

(pE—1)(pZ—|¢py|D) + ypD) 2P ($Z—1— y)=0. (3.39

For this equation, the surfa¢e=0} is characteristic for any satisfying(3.33), because the square
of the equation appears as a facteor many problems of mathematical physics, one has char-
acteristics of high multiplicity for which the characteristic equation is reducible, and to construct
solutions of the eikonal equation, one studies the factors and not the expression of the full
determinant.
The eikonal equation being nonlinear, solutions are often only locally defined. Thus the compu-
tations of the previous section must be performed locally.

Eikonal phase hypothesi§)CR**9 is open and the phas¢eC”(Q;R) satisfies the eikonal
equation (3.35), has nonvanishing differential, am@l ¢(x)) is a smooth function of.

It follows that

QA (x)= (1= m(dp(x)) (m(dp(x))+L(idp(x))

is also smooth. The analysis for linear phages, Be echar, extends without substantial modi-
fication to the case of nonlinear phases satisfying the above hypothesis. The main difference is that
the exact and approximate solutions are regarded as functiofis lorthe next section, nonlinear
problems with nonlinear phases are considered, and the linear case can be extracted as a special
case of those computations. In the absence of sources, that isbw@nthe principal profile is
determined from the equations

m(d@(X))L1(d) m(db(x))ag=0, m(dd(x))ag(X)=ag(X). (3.39

If for all x, B:=d¢(x) satisfies the constant multiplicity hypothesis of Proposition 3.2, then that
result implies that the differential operator on the left is equal to

d
JT
D (1)

=0 dn;

w(d¢<x))Aow<d¢<x>>( o o %) +m@O0)(L() m(db(0)).
=, B(x
(3.40
The essential part is a variable coefficient vector field
V(d@(X);d5)=diTvg(d).dy

which at eachx has speed given by the group velocity associatedi#fx).
Equation(3.39 reads

(9 +vg(de).dy+ p(X))(m(dp)Agm(dp)ag) =0, (3.41
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wherep(x) e Hom(kerL(id ¢(x)) is defined by

m(d ) ((L(dx) m(dep(X)) = (V(de; d5) m(d ) Agm(dep))) m(dep) = p(X)W(d¢)AoW(d¢Eé 12

If 7 has rank one, thep is scalar valued.

As in the case of nondispersive geometric optics the transport equatit yields an energy
balance law in tubes of rays. The symmetric part of the opegatahich yields growth or decay
in the transport, compensates the shrinking or expansion of ray tubes. The analysis is as in the
nondispersive case presented, for example, in Ref. 25.

IV. APPROXIMATE SOLUTIONS OF SEMILINEAR DISPERSIVE SYSTEMS

A. Equations for the profiles

The first two problems presented by nonlinearity are the creation and interaction of harmonics
and the fact that the amplitude of the principal term becomes important. With the notation
¢(x) e C*(Q) from the last subsection, we seek approximate solutions

u=ePay(x,p(x)/e)+h.o.t.,

where ay(x, ) is periodic in 6. Fractional values op do occur. Taylor expansion df(u€)
introduces terms ir™P for all meN.

From the last section we know that the equation of evolution for the coefficiedt edmes
from the €'*! term in the expansion of u+ F(u€). This suggests that the set of exponents
appearing in our ansatz be closed under multiplication by non-negative integers and by addition of
1. As we will see, the natural indicgs are rational, so that closure under multiplication by
integers alone is sufficient.

Seek asymptotic solutions of the form

u¢=ePa(e,x,d(x)/e), where a(e,x,6)~_2N elaj(x,0). 4.2
iep

and a(e,x,#) anda;(x,6) are smooth functions 72 periodic with respect t®. For simplicity
consider the differential equation without sources, thdi=€. This leads to the problem

L(ed)u+F(u€):=Lq(edy)uc+Lou+F(uc)~0. 4.2

Order J hypothesis: The nonlinear term 5§ a smooth function of its arguments whose partial
derivatives of order less than or equal te-1=1 vanish at the origin. Then the Taylor expansion
at the origin is

F(u)=®(u)+O(fuP’*?), (4.3

where®d is a homogeneous polynomial in uofidegree 2.

In particular,u=0 satisfies the equation=Q_(ed,)u~+F(u). The functionu® defined by(4.1)
is a perturbation of this background state.

Examples:If F is a homogeneous polynomial, thén=®. For exampleF(u)=|u|?u with
J=3. The anharmonic oscillator model is an example with3. When the hypothesis is satisfied
for J=3, then it is satisfied for all J' <J.

The termL(ed)u€ is of ordere? while F(u€) is of ordere ™. The equation of evolution for
ag comes from thesP** term inLu®+F(u€). We want this equation to involvé. This leads to
the following choice of amplitude.
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Definition. For nonlinearities satisfying (4.3}he standard normalization is to choose p so
that pJ=p+1, that is

1
P:=3-71

With this choice F(u€) is smaller than the other two terms on the lef{#R2). For this reason the
nonlinearity does not affect the definition of the dispersion relation. The nonlinearity is important
at the next order which determines the evolution of the principal profile.

Examples:For quadratic nonlinearitiegg=1, while for cubic nonlinearitiesp=3. For the
Klein—Gordon equation,

(e?0+1)u+F(eV,u)=0,
one has the same rules as for first order dispersive systems, that is for quadratic arf, ¢hbic
standard normalizations ape=1 andp=3, respectively. [
Compute
L(ed)uc=c(e.x,p(x)/e€),
where

c(e,X,0):=Lq(edy)a+Loa+Li(dp(x))dza+F(a).

The strategy is to expand

C(e,x,0)~eijZpN elci(x,0),

and to choose the coefficierass so that all thec; vanish identically.
Setting the coefficient, of € equal to zero yields

0=L(dp(x)dg)ag=(L1(dp(x))dy+Lo)ag. (4.9

As in the last section there is a hyperbolic-elliptic dichotomy in the analysis of this equation.
Introduce the Fourier series

ap(x,0) =mEZ agm(x)e™’ (4.5
to find
O=L(imd¢)agm:=(L(imdp(x))+Lg)agm- (4.6)

If all the matricesL (imd¢) are nonsingular, theg,, all vanish. On the other hand, if there is an
m=0 suchL(imde(x)) is singular for allx, the corresponding terms lead to propagating oscil-
lations.

There are intermediate cases whefemde(x)) may be singular at some but not all The
crucial coherence hypothesis is imposed to avoid these.

Coherence hypothesis: For eacha#\O, if L (imd¢(x)) is singular for one x (), then it is
singular for all xe Q). When L(imdg¢(x)) is singular, the matrixam(mdg(x)) is assumed to be a
smooth function of x
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The simplest example is whep(x) is a linear function ok, in which case.(imd¢(x)) does
not depend orx. The coherence hypothesis says that for the harmanigsthe eikonal equation
is either satisfied for alk or for none.

For nondispersive geometric optics, that is problems Wit rather tharl (ed), the eikonal
equation is homogeneous so thad is automatically a solution of the eikonal equation forrall
Thus the analogue of the above hypothesis for single phasdispersive geometric optics is
automatically satisfied. Coherence hypotheses play a crucial role in nondispersitiphase
nonlinear geometric.

The analysis is simplified if there are only a finite numberofor which md¢ satisfies the
eikonal equation. This is guaranteed by the following hypothesis which is satisfied in all the
physical models we have studied.

Strong finiteness hypothesis;(Ld ¢(x)) is nonsingular for all x ().

Writing

Lﬂmd¢@»=m(h0d@x»+%LJ

shows that there is amy=0 so thatL(imd¢(x)) ! exists for|m|=mj, and that uniformly on
compact subsets @b,

ILimasoo =0
~ofY),

Let .7 denote the finite set
:={meZ:detL(imd¢)=0}.

Example:lf ¢ satisfies the eikonal equatid8.19 for the Klein—Gordon equation, then farg,
compute

(M@)2—|(mep)y |2+ 1= (M?— 1)($?— | ,|2) =1~ m2.

Thus form#£1, m¢ does not satisfy the eikonal equation. In addition, vithdenoting the part
homogeneous of degree 2,

Lo(de) = ¢7—|y|?=—1

which vanishes nowhere so the strong finiteness hypothesis is satisfied.
Example: Suppose thaip) satisfies the eikonal equatiai3.37) for the Lorentz model. A
calculation like that in Sec. Ill shows that

detLy(7,7)=7%7 2= 9[>
It follows that for such eikonaip.

— vy
detL,(d¢)= .
etLi(d¢) 1

Thus if ¢, ¢{0,1}, this is nonsingular. In additiorm¢ satisfies

(M?—1)y(mg)?
-1

(M) ?—1)((M)>—[mepy )+ y(mepy) > = (M* = 1) (M) >~ [mp,| %) =
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S0 (3.38 shows that if¢, €{0,1,1+ v}, thenmd is eikonal only forme{0,1,—1}. [

It is rare that nontrivial harmonics satisfy the eikonal equation. In the scientific literature,
whenmg is eikonal the phase$ andm¢ are often said to bphase matched

Aside: The possibility of an infinity of harmonics which satisfy the eikonal equation can be
handled with a suitable small divisor hypothesis. What is needed is that there is a c@hstaat
an integerM such that

I(Ly(imdp(x))+Lo) " H=C(L1+[m|)™,
for mde(x) & echar and also
IQ(mdp(x)=C(1+m)h™.
We do not pursue this point of view but impose the finiteness hypothesis above. [
In order to treat the dichotomy of propagating versus nonpropagating oscillations, introduce
the projection of the Fourier series on the set of harmonics which satisfy the eikonal equation.

Definition: When dXx, 6) is a 27 periodic function iné, I1d, the projection orechar harmon-
ics, is defined by

Ild: = ZZ m(mdg(x)) dy(x)eme. 4.7

me

In addition, Q denotes the partial inverse of(¢d,) defined by

Qd::mZZ Q(mde(x)) di(x)em?. (4.9

Remarksi(1) In the definition ofll one could have taken the sum only ovee. 7 since for
the otherm, m(md¢(x))=0.

(2) The finiteness assumption shows thHE is a trigonometric polynomial. That is, it has at
most a finite number of nonvanishing Fourier coefficients each of which is a functionTdfus,
I1d is determined by a finite number, of functionsxoflt is useful to think of the image difl as
consisting of vector valued functions rf

(3) The estimate fot(imd¢) ~* following the strong finiteness hypothesis shows Qés a
continuous map o€”(Q X S') to itself. Q is an operator of order1 in 4,. [

With this definition, Eq.(4.6) is equivalent to

Ha0=a0. (49)

We next find evolution equations which determifl@, from its initial data. Setting,;=0 in the
expansion oft(e,x, ) yields

L(dg(x)dg)as+Li(dx)ag+ P(ag) =0. (4.10
Multiplying by II, equivalently settindIc,=0 eliminates the, term to yield
TIL,(dy)ap+ TP (ay)=0.
Using (4.9) yields

TIL ,(d,) Mag+ TId (MMay) =0. (4.1D)
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The examples in the next subsection and the existence theorem in Sec. IV C show that the
nonlinear evolution equatior4.11) determines the finite-dimensional vector-valued function
ap=IIa, from its initial values, at least locally in time. _

Next a linear recurrence to determiagfor j >0 is found. Forj >0, the coefficient; of e P
is given by

ci=L(dp(x)dp)aj+Li(dy)a;_1+ P (ap)aj_1+Gj(a<j-1), (4.12

where by convention we sej =0 whenk<O.
Once thea, are known forl <j, (I -II)a; is determined by settin@c;=0 to find

(I-Iaj=—Q(L(dy)a;_1+P'(ag)a; 1+ Gj(a<j-1))- (4.13

Recall thatj=np andp may be smaller than one. An interesting special case is the ranpeD
where the source terms witl<j—1 all vanish to give

Ilaj=a; for Os=j<Ll.
The equatiorllc;, ;=0 is used to determine the propagating dde; of a;. One has
IIL (0 ) Ma;+1d ' (ag)a;= —II(Gj(a ;) + L1(d,) (I —IDay) (4.19

where the right-hand side is known froi#.13 and the inductive hypothesis. Fpe1, this yields
a finite set of coupledinear hyperbolic equations which determiiika; from their initial data.
Example:In the range &) <1, the equation is the linear equation

IIL (9, IMa;+ 1P’ (ap)a; -1 =0 for 0<j<1.

Thus if the initial values of these profiles vanish, the profiles vanish for all time. In this case the
first profile after the principal profile, is the profilea;. This yields an interesting class of
expansions of typé4.1) where the elements @N between 0 and 1 are absent. [

Theorem 4.1: Suppose thalCR**¢ is an open set and the phage= C*(Q;R) satisfies the
coherence and strong finiteness hypothgagad that

u‘=ePa(e,x,p(x)/€) with a(ex,0)~ > eaj(x,6)
jepN
in C*(QxSY). Then
L(ed)u+F(u)~0 in C*(Q)

if (4.7), (4.9), (4.11), and the infinite sequence of relations (4.13) and (4.14) are satisfied.

B. Examples
1. The nonlinear Klein —Gordon equation
The equation is

e’0u+u+F(eV,u)=0, (4.15

where the Taylor expansion &f=®(u) +h.o.t begins with nonzero terms homogeneous of degree

J. The ansatzfor the real scalar-valued® is given by(4.1) with p=1/(J—1). One constructs
solutions with residuaD(€”). The term of ordek P yields the eikonal equatiof8.36). As already

verified the strong finiteness and coherence hypotheses are automatic and the only eikonal har-
monics are those witm==1. Reality implies thaty () :a_oy,l(x): =a(x) and then
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u~ ePay(x, p(x)/ )+ h.o.t., with ag(x,0)=a(x)e'’+a(x)e '’

The projectionll selects the Fourier componentdl that is
1Y, d,(x)eMm=d,(x)e'?+d_(x)e .

The analogue of Eq4.11) shows that the principal amplitude is determined from its initial data by
the transport equation

O
2 ¢tat—ay¢,Vy+T¢ dgag+ P (dd(Xx)dgan(X,6))=0. (4.16

The nonlinear term is equal to
D(dgpdzag) =D (dg)II((iae'’—iae '%)7). (4.17)

Even J If J is even, there are no termséri'? so the projection is equal to zero. In this case
the transport equation is linear. The nonlinear term does not affect the leading term in the asymp-
totic expansion. A A

Odd J: If J=2m+1 is odd, then one generates elfi term on choosingn+1 factorsiae'’
andm factors—iae . Reasoning similarly for the coefficient ef '’ shows that

I((iae'’—iae %)) = - (iala]’"e'’~iala]’"Te7'Y), (4.18

m!(m+1)
Thus the transport equation fag is equivalent to the transport equation

Ue JId(dep(x))
2 d)tﬁt—ﬁyd).Vy—F T at+ m

ala|’"1=o0. (4.19

This is an explicitly solvable nonlinear ordinary differential equation along the integral curves of
the vector field appearing on the left. As a special case con§i®u)=u? and linear phase
¢=rt+y. 7y satisfying the eikonal equatior?=|7°+1. The equation foa is the dissipative cubic
transport

3

37 )
(10— m.dy)a+ - alal*=0. (4.20

A second example is the phagdt,y): =v2t+|y|— 1 which satisfies the eikonal equation away
from y=0. The group velocities are equal ta/2<1. If initial data for the amplitudea; vanish on

ly|=<1, then, for the dissipative nonlinearit}, the transport equations for tlae are solvable for
0<t<v2. In this way one can construct infinitely accurate approximate solutiofi,if] x R

which correspond to waves surrounding and approaching the origin, a point where the phase is not
defined.

2. Small amplitudes

If the system(4.2) has nonlinearity of orde#=3 in the sense of4.3) and 2<J’ <J, then the
hypotheses are satisfied fdf and one can construct approximate solutions with the standard
normalization ford’, that is, of the form4.1) for p’:=1/(3' — 1)>p. These solutions are smaller
in amplitude than the standard scaling fband the equation defining the principal profdg is
linear.
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3. The anharmonic oscillator model

Suppose that«{0,+1} satisfies thee-characteristic equatio(8.13. Equations(3.14) show
that the orthogonal projector onto the kernelldf 7,i ) satisfies forvL 7,

H 2 2 2y\ —1 H
iT 7 y(1+71°9) —np/\v W iTy
W(Tan)(oaoyoy):m 1+?+ (1_7_2)2 ’ I ’ 1_7_21 1_7_2

V).
(4.2)

If ¢ satisfies the eikonal equati@8.37), thenm¢ is eikonal only forme{0,+1} and the coher-
ence and strong finiteness hypotheses are satisfied. The opHrasothen defined using three
spectral projectors, those on Kef+d¢) and kerl,. The first two kernels are described @21
with (7,7)=d¢. kerL, is the set of vectors satisfying=P— yE=0, so kel_,={(E,B, yE,0)}
and

1
7(0)(E,B,P,Q)=(0B,0,0 + mz (E+ yP,0,yE+ ¥?P,0). (4.22

The principal profile has the form
ag(x,0)=a,(x)e'’+ay(x)+a_(x)e '’ 4.23
where the polarizatioi4.8) holds exactly when
m(xdo(x))a~(x)=a. and m(0)ag(x)=ag(X). (4.29
Reality requires
a-=a, and ag=ag. (4.25
Introduce components
a.:=(E.,BL,P.,Q.), ag:=(Eq,Bp,Po=17vE(,Qp=0). (4.29
The evolution equation for the profile involves
®(u)=(0,0,0a|P|?P). 4.27
The first important observation is that0)®(u) =0, so the equation of evolution far, is
m(0)L1(d)ag(x)=0. (4.28

Note in particular thaty,=0 is a solution. This special case is examined in more detail below.
Equation(4.22 shows that Eq(4.28 holds if and only if the second component and the sum
of the first plusy times the third component of

Ll((?)AOZ ((9[E0_ Curl BO ,atBo‘F Curl Eo, PO ,Qo)

vanish. Using4.22 and the relatioP,= yE, from (4.24 shows that whei¥.24) holds,(4.28) is
equivalent to the modified Maxwell equations

dBo+curl Eg=0, (1+ %) &Eq—curl Bo=0. (4.29

Turn next to the determination af. . Oncea, is determined, the amplitude, is determined from
the evolution equation
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(di+vg.d9y+p(X))(TiAgaL) +m, P(a,e+ag+a,e '?)=0. (4.30
The nonlinear term fronf4.27) is « times
|P|2P=P.PP=(P,€+Py+P.e ¥).(P,e?+Py+P, e ) (P e’+Py+P, e '),

where the dot product is that without complex conjugates. The operat@icks out the terms in
e'? and multiplies them byr(r, 7), with (7,7)=d¢. There are six terms with the right exponent.
Three of them have two factoes’ and one factoe™'?, while the other three have twey's and
onee'’.
For simplicity we treat only the cas®=0. The terms ire'’ are then
2P, .P,P,+P,.P,P,=2|P,|?P,+P, .P.P..
The polarization from(4.20 and (4.24) shows that

Y
T T

Thus,
3 _
w+(1>(a)=a(r§t¢)2) 7.(d)(0,0,0,2E., |2E , +E, .E.E,). 4.31)

Equation(4.21) can be used to compute the action of the projectifd ). Equating theE
components on the two sides @£.30 and using the formula before Proposition 3.4 yields the
cubic transport equation

1 _
0= > (9 +vg.dy+p(X))(n(dp)EL)+c(dp)(2|EL[PEL +(E, .EL)EL),  (4.32
where

1+

_ y \} a9 layel?  Y(1+a)D)) t
c(dg):=|-— i — Vi 7t Y]
1-(0¢) 1- () (dr¢p) (1= (39))
Note that the denominators pf{d¢) andc(d¢) are identical, which yields a significant simpli-
fication for linear phases. The other componenta pfcan be found fronk | using the polariza-

tion (4.20. The cubic ordinary differential equatidd.32 is explicitly solvable(see Ref. 27, pp.
51-53. Taking the imaginary part of the scalar product with yields

((?t-f—vg.z9y+Rep(X))(M(d¢)|E+|Z)=O, (4.33

which is the natural conservation of energy.

C. Solvability of the profile equations

In all the examples of the previous sections, the equations determining the profiles, though not
exactly easy to find, were easy to solve once found. Even more, the nonlinear evolution equations
for the principal profiles were globally solvable when the phases were linear. With this experience,
the next result guaranteeing local existence and uniqueness of the infinite family of profiles should
not be surprising.

A key ingredient is solving initial value problems fafL(d,)II. The operatodIL,(d,)I1
maps trigonometric polynomials
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> an(x)em,  m(mdp)a,=an

me. 7

to themselves. To such a polynomial associate the finite set of coefficient funetipmgth
me. 7. ThenllIL(d,)II acts as

diagl m(md¢)L(d) w(mde) : me. #}.

The next hypothesis is crucial for the solvability of initial value problems.

Determinacy hypothesis:;F0 and QN([0,T,]xXRY) is a domain of determinacy for each of
the symmetric hyperbolic operators{mde)L 1(d,) m(md¢), me. 7.

Example:lt is often the case that each of the operato(snd¢)L(d,) m(mdg) is a transport
operator in which case the hypothesis asserts that every backward group velocity ray from a point
in ON([0,T,]XRY reaches =0 without leavingQN([0,T,]xRY).

Theorem 4.2: Suppose that the phasge C*(Q)) and T,>0 satisfy the coherence, strong
finiteness, and determinacy hypothesis. In additionOfsf € pN suppose given

9i(y,0) e C5(RIxSY), suppgC(QN{t=0})xS' with IIg;=g;.

Then there is a E]0,T,] and a unique solution g C*((QN{0<t<T})xS!) of (4.8) and
(4.11) such thallay(0y) =go(y).

Moreover for >0, the infinite sequence of equatiof%13 and (4.14) uniquely determine
functions ge C*((QN{0=<t=<T}) x S!) satisfying the initial conditiodla;(0yy)=g; .

Proof: The polarization4.9) implies that

ag=Ia,= 2/ an(x)e™?  w(mde(x))an=an. (4.34

me. 7

The unknown is the finite set of functioas,(x), me. 7, satisfyingm(md¢(x))a,=a,,. Thusa,
is a section of a finite-dimensional vector subbundlepgfc ,CN. The fiber changes from point
to point because of the projectiar(mdda(x)).

In Eq. (4.11) expand

1o 2 , am(X)eim¢(X) :mEE// Cm(x,{a’u(x)})eim({)(x)'

me. 7

where the value o€, atx is a polynomial of orded in the valuesga,(x)}. Thec, are smooth
in X and satisfy

m(Mdd(X))Cm(X,.)=Cm(X,.).

The equations foa, takes the form of #7 coupled equations

m(mde)L1(dy) m(Mdep)an+cm(x,{a,(x)})=0. (4.39

Proposition 3.2 shows th&t.39 is a semilinear symmetric hyperbolic system for the functiaps

which take values in kdr(imd¢(x)). Thanks to the domain of determinacy hypothesis, local

existence and uniqueness is a consequence of classical results for semilinear hyperbolic systems.
The recurrence for the succeeding profiles leads to algebraic equatighs 1dya; and linear

hyperbolic systems, with the same principal part ag4r89, for Ila;. The sources in those

systems are given in terms of already determined quantities. Again existence and uniqueness are

classical. [
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Remark: This existence theorem is simpler than those required for nondispersive systems
where the unknowns are functions»ofind one or more auxiliary variables. In the present case the
dependence on the auxiliary varialflesimplifies thanks to the strong finiteness assumption.

V. APPROXIMATE SOLUTIONS OF QUASILINEAR DISPERSIVE SYSTEMS

Suppose that

d
Jd
L(u,a):zgo A, (u) . (5.2)

is a quasilinear symmetric hyperbolic operator neai in the sense that the coefficiertg are
smooth Hermitian symmetric functions of their arguments on a neighborhood of 0. The vector-
valued unknown may be either real or complex value@orrespondingly the coefficients need to
be defined on neighborhoods R or CN.

Seek approximate solutions to the quasilinear dispersive hyperbolic problem

L(u¢ ed)uc+Louc+F(u€)=0.
The approximate solutions have the form
ué(x)=e€Pa(e,x,p(x)/e) with a(e,x,0)

smooth and periodic irm.
Order J hypothesis: The nonlinear functions F ang @&e smooth on a neighborhood of 0,
and the nonlinear terms are of ordeE2 in the sense that

la|<J-2=953£(0dh(x))=0 and |B|<I—1=d";F(0)=0. (5.2

The Taylor polynomial of order J of F at the origin is denot®du) as in (4.3), while for L we
write

d
A, (u)—=A,(0)=A ,(u)+O(|up’), A(u,§>:=/§0Aﬂ<u>§M,

where theA , are polynomials homogeneous of degreel]

The reason for the discrepancy in the orders is because the coeffidiempear in expres-
sionsA(u) edu so the order of the nonlinearity is one higher than the order of the zefo of

The critical exponent i9p=1/(J—1), in which case the nonlinear terms frdfand from
L(u,ed)u are bothO(eP™1). As in Sec. IV, theansatz(4.1) is in powerse! with j  pN.

Hypothesis: Suppose thate C*(Q;R) satisfies the eikonal equation with respect to the linear
dispersive operator (0,ed), and that the coherence, strong finiteness, and domain of dependence
hypotheses are satisfied. The projediband partial inverseQ are defined as in Secs. Ill and 1V,
using the lineare-differential operator L(0,ed).

Example:The instantaneous nonlinear polarization from Sec. Il C is an exampleJwith

Direct computation shows that

L(u¢ ed)uc+Louc+F(u€)=c(e,x,xdep(x)/€), c(€,x,0)~ Ep'EN eicj(x, 0). (5.3
iep

The strategy is to choose treg so thatc;=0 for all j. For j<0, definea;:=0. Setting the
coefficientc; =0 for 0<j <1 yields
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0=c;=L(0, d¢(x)dp)a; . (5.4)
This is equivalent to

Ilaj=a; for 0<j<1. (5.5
The main change with respect to the semilinear case occurs in the coeffigieiihe new

O(eP*?) quasilinear term is

d
0
> A (@) 57¢ dgao=A(a9,d¢)dga. (5.6
u=0 u

With this notation, setting, equal to zero yields
0=c;=L(0d¢dy)a;+L(0,0)ap+ A(ay,dd)dzas+gF(ap). (5.7
Multiplying by II eliminates thea; term and yields the evolution equation fir a,
0=TIL,(0,0)Iay+ A(ag,dd)dsap+P(ag). (5.9

Here there is an important remark. Equat{érB) looks like it is a quasilinear differential equation
in (x,0) because\ is homogeneous of degrde-1 in a,. It would be quasilinear in the nondis-
persive casé’3However, with the finite setZ one has

ay(x,0)= > an(x)em’. (5.9

me. 7

As in Sec. IV C, binomial-type expansion defines interaction coefficiegs,{a ,(x)}) by

(A (ag,d¢)dsa0+ P(ag))= E//Cm(x,{aﬂ(x)})eim'“i m(udé)Cn=Cn. (5.10

me .7

Herec,, is a polynomial of degreé in {ay(x)} with coefficients depending smoothly anWith
the above notation, Eq5.8) becomes

m(Mdp(x))L1(0,0x) m(Mde(X))am+ cm(x.{a,(x)})=0. (5.11

This is identical in form ta4.35. Only the interaction coefficients,, have changedlhe seem-
ingly quasilinear term contributes semilinear terms like those from F

Multiplying Eg. (5.7) by Q yields an expression fait —Il)a, in terms ofa,.

For j=2, setting the coefficients; equal to zero yields equations of the form

L(O,d¢(79)aj+q"(ao)aj71+A(ao:d¢)f9eaj71+Aﬁ(30:d¢)(aj71)3930=Gj(ak<jfl)(- "
51

The expressiorG involves derivatives of the functiona,, even though that is not explicitly
indicated.
Multiplying (5.12 by Q yields
(I-Iaj=Gj(ak<j-1)- (5.13

This done, multiplying the caset1 of (5.12 by II yields alinear evolution equation
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IIL,(0,0)Ha;+ I{P ' (ag)aj 1+ A(ag,dp)dgaj 1+ A(J(aovd¢)(aj—1)a0a0}:HGj(ak<j(—1)v4)
5.1

which determinedla; from its initial values. Note that acting on our trigonometric polynomials,
the operatow, is bounded.
These computations are summarized by the quasilinear versions of Theorems 4.1 and 4.2.
Theorem 5.1:If the eikonal, coherence, and strong finiteness hypotheses are satisfied and u
is given by (4.1) with g=1/(J—1), then

L(u,ed)(u)+F(USH~0 in C*(Q) (5.19

if (5.5 and (5.8), and the infinite sequence of equations (5.13) and (5.14) are satisfied
Theorem 5.2: Suppose in addition that the domain of dependence hypothesis is satisfied, that
T,>0 and for j=0

0i(y,0) e C5(RIXSY), suppgC(QN{t=0})xS' and IHg;=g;.

Then there is a £]0,T;] and a unique solution @ECECO)((QQ{O$I$T})XSI) of (5.5 and
(5.8 such that ITag(0y)=ge(y). With this T, there are unique functions
a;€ C(o)(AN{0=<t<T}) x 81 satisfying the initial conditiongla;(0y) =g;(y) and the infinite
sequence of equations (5.13) and (5.14)

Example:The instantaneous nonlinear response model yields cubic transport equations along
rays moving with the group velocity. The resulting nonlinear ordinary differential equations are
explicitly solvable and yield the standard expressions delf-phase modulatiofn nonlinear
optics. The computations resemble those for the Lorentz model in Sec. IV B 3 and are omitted.
They can be found in Ref. 27.

VI. STABILITY OF THE APPROXIMATE SOLUTIONS

In Secs. IV and V, infinitely accurate approximate solutions of nonlinear wave equations were
constructed. They are accurate in the limit of wavelengtiending to zero. The approximate
solutions have residuals each of whose derivatives converges to zero more rapidly than any power
of e. In this sense they are in fact very accurate. Nevertheless it remains to show that there are
solutions of the exact equations which are close to the approximate solutions. This is a stability
result which asserts that removing the infinitely small residual does not perturb the solution much.
The approximate solutions of Secs. IV and V are thereby shown to be asymptotic to exact
solutions.

The results of this section are closely related to and were inspired by the important stability
results of O. Gue’'® They differ in two essential ways. First the underlying equation is an
operator ined which makes the problem a little more sensitive. This potential instability is com-
pensated by the conservation hypothesis at the beginning of Sec. Ill. If the background operator
were not conservativeor more generally dissipatiyethe errors could be amplified by factors of
the forme¢ which would overwhelm the residuals of ordét.

In addition to the conservation hypothesis which is essential, we also assume more regularity
of the approximate solutions® than does Gues. Roughly where he assubfebounds on the
derivativesed we assumd.” bounds. The reason for our choice is that in practice one usually
controls very well the approximate solutions so that one has such sup norm bounds, for example
in the constructions of Secs. IV and V. Second, this allows a simplification of the proof as was
remarked in Ref. 27. Theorems wilt? hypotheses like those of Gues are also valid in the
dispersive setting.

Consider the quasilinear operator

L(u,ed)u+F(u)
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whose nonlinear terms are of ordémearu=0 in the sense that the following strengthening of
(5.2 is satisfied.

la|<J-2=953A,(0)=0 and |B|<J-1=4;F(0)=0. (6.1)

This is equivalent to supposin®.2) is valid for all phases.
Suppose that the family®e Cg([0, T]xRY) satisfies

L(usd)us+F(u€)=re (6.2

with residualsr<~0 in the sense that they are supported in a compact subsgl, 8]xRY
independent ok and for alle andn

lim G_nH(?grEHLx([Q T]XRd):O' (63)

e—0
The goal is to compare® to solutionsv € of the initial value problem
L(v€,0)v+F(w)=he, ov0y)=u0y)+g(y), (6.9
where
he~0 in C{o,([0, TIXRY) and g°~0 in C/y(RY. (6.5)

The case oth =0 and g°=0 is especially interesting but no easier th@b5). The standard
existence theorem for quasilinear hyperbolic equations with smooth coefficients and data implies
the existence and unicity of a regular solutiwhon [0, T [ X R for a possibly small positive ..

The goal is to prove that this time of existence is greater than or eqiialand thaty *—u€~0 on

[0, T]XRY. Since theH® norms of the data explode as soonsasp, the standard local existence
theorems yield a domain of existence which shrinks toward)} when e—0.

In Secs. IV and V, approximate solutions were constructed with the fd¥ate,x, ¢(x)/e)
where the profile or envelopa is smooth and periodic i. Here p=1/(J—1) is the critical
exponent. These are special example$6o?) and (6.3). With the above notation the statements
for the quasilinear and semilinear cases are identical.

Theorem 6.1: Suppose that £ 1/(J— 1), u¢=ePU* satisfies (6.2), (6.3) and for al

sup [|[(€dx) *U | =0, Tjxrty<e and  supl|(edy) “U(t)[| 2(ga) <. (6.6)
0<e<1l 0<e<1l
o<t<T

Then there is ang;e]0,1 so that for e<¢, the solutionv to (6.4) exists and is smooth on
[0, TIXR® and in addition

ve~u® in C{([0, TIXRY). (6.7)

Note that the family of approximate solutiofis} is not bounded iH® as soon as>p. The fact
that the approximate solutions are large in these norms is the source of the difficulty.
Proof: The proof in the semilinear case, that is when the coefficients @é not depend on
u, contains the main ideas and is somewhat simpler. For that reason we present first the proof in
the semilinear case, and then present the quasilinear case.
Step 1. Taylor expansion absorbs the critical exponBeffine V¢, W¢, andw® by

ve€=€PVE, we=p°—u¢, and We=V-U". (6.9
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The large letter issP times the small. The equation for is equivalent to the following initial
value problem foW¢,

L(€d)ePWe+F(ePU+ ePW)—F(ePU)=h—r, WS0y)=€ Pg°-. (6.9

The right-hand sides are0.
Write

F(u+w)—F(u)=G(u,w)w, G(u,w)w:= folFu(u+sw)ds.

ThenG(u,w) is a smooth matrix valued function whose derivatives of ord@r-2 vanish at the
origin. Taylor’'s theorem yields

1(1-s)72(d
G“):fo (-2 (d_s

j—1

1(1—s)i=2
Glsfds= fo (<j—s;>!

((£-9))71G)(s¢)ds.

The factors{ on the right show that each element of the ma@ixs the product of a polynomial
homogeneous of degrele-1 with a smooth function ofi,w. Therefore

F(ePUS+ ePWe) — F(ePU) = ePIH (e, U, WE)WE, (6.10

whereH is a smooth matrix-valued function of its arguments.
Plug this into(6.9) and divide bye”*!= ¢’ to find the singular system

€_ye

WeH H (e, U WWe=—55—. (6.11)

1
Ll(t?x)+; Lo

Step 2: H estimates for the singular linear operatoFhough thel, term in (6.11) has a
coefficient which explodes, the matrix is antisymmetric so this term does not lead to explosion
of L2 norms. Also the division of the term on the right by is not dangerous sinde —r¢~0.

It remains to avoid the difficulties posed by the fact that the derivativeld ‘oére large. This
prevents one from simply differentiating the equat{éril). The remedy is to apply derivatives
and usg6.6).

The first remark in the previous paragraph shows that ther€is@ so that for all 6t, 0<e
and allwe C([0t]xXR?)

w(o)

t 1
|W(t)||L2(Rd)$C(”W(O)||L2(Rd)+f ‘(L1(0)+ —Lo dU)- (6.13
0 € L2(RY)

For integers=0 define a family of norms each equivalent to the nornHiitRY) by
2 @ 112
||W|‘H§(Rd)::‘%3 (edy) W||L2(Rd)' (6.19

Commuting with the operators), shows that with the same constant ag6rl.3 one has

d(r). (6.19
H3(RY

t 1
||W(t)||H§(Rd)$C(|W(0)||H§(Rd)+jo ('—1((9)4'; Lo)W(U)
For s>d/2, a straightforward scaling yields the Sobolev estimate,
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||W||L°C(Rd)$C(S)G_d/2||W||H§(Rd)- (6.16

Step 3. Estimate for the nonlinear terithe remaining key ingredient in the proof is the following
estimate for the nonlinear term.

Lemma 6.2: Suppose that€d Cfo)([O,T]de) satisfies (6.6). Then there is a constant
C=C(s,U®) so that for alloe[0,T], e 0,1], and We H(RY) satisfying

W[ =re)<1, (6.17
one has

HH(EaUEvW)W”Hi(Rd)gC”W”Hi(Rd) . (6.18

Proof of LemmaWith |a|<s, Leibniz’s rule shows thateg,) *{H(e,U,W)W} is a finite sum
of terms of the form

Hf(e,ue,W)E[ (eay)ﬂjui—k[ ()W, X B+ n=a, (6.19

where there is always at least omg. Assumptiond6.6) and(6.17) guarantee that all the factors
except the derivatives af are bounded. To estimate the product of the derivatived/ afise the
following result.

Gagliardo-Nirenberg e-inequalities: If We H'(R%) NL*(RY) and 0<|a|<r, then

JeWe L2/l@l(RY).

Moreover, there is a constant€C(|a|,s,d) so that for all e ]0, =],

|allr

(6.20

1-|all
”(Gay)aWHLZI’/a(Rd)$C||W||Loc(;d)r( |B;:r ||(an)'8W|||_2(Rd)

Proof of Gagliarde-Nirenberge-inequality: The inequality is classical far=1. Applying that
inequality toV(x): =W(ex) proves(6.20.
Let r:=X|y,|=s. The Gagliardo—Nirenberg inequalities imply that

[yl
| Ceay) Wil zr1y = CIWI 5 o, - (6.21

Holder’s inequality shows that

sC||W||H§(Rd) ,
L2(RY)

Lo
and the proof of the Lemma is complete. [
Step 4. End of semilinear prodfe proceed to estimat&“for0 < t < T, (e) < T where
T, (e):=sudte[0,T]: W =0, tjxrey=<1}.

SinceW<(0,.)~0 in C°0°(Rd) one can choose;>0 so that
e<e1=|We(0)|| =Rre)<1.

ThenT, (€) > 0 fore<g.
ForO0=<t < T, the basic energy inequality implies that
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dt|.
He

t he(t)—re(t
||W6(0)||H§+ fo ‘ H(e, U(t), We(1))W<(t) — %

WD) e=C

Using the Lemma anéb.5) yields for alln

IWS(t)[us=<C(s,n)

t
6”+f0(||Wf(t)||H§+ 6”)dt)-

Gronwall’'s inequality implies
[We(t)[[lys<C(s,n,T)e". (6.22

First takes=n>d/2 and choose&,<e¢; so that(6.22) in concert with Sobolev’s inequalit{6.16)
implies thaf| We(t)||_=rey < 3. It then follows that fore<e, T, (€) = T which proves that € exists
for 0<t<T and that inequality6.22 holds throughout this region.

This done, choose>d/2+|a| Then Sobolev’s inequality implies

|9y WD)l (rey < C(8) € P2 AfWE(H) [ isre)
=<C(s) 6_|a|_d/2||W€||Hs+\a\(Rd)s C(s,n,T) N~ di2—lal

Since this is true for alh, this shows that all thg derivatives ofW¢ are O(¢”).

To obtain the same result for the time derivativesVéf it suffices to use the differential
equation to express these derivatives in termg derivatives. This shows that all derivatives of
W< are O(€”) in sup norm, and therefore the proof in the semilinear case is complete.

Step 5. Taylor's theorem and the quasilinear terimsthe quasilinear case, the initial value
problem forv € is equivalent to the following initial value problem fov<:

L(ePU“+ ePW¢, €d) e?We+ F(ePU+ ePW) — F(ePU€) + (L(ePU+ ePWE, €9)
—L(€PU% €9))ePUc=he—r*, (6.23
We(0y)=€ Pgc~0. (6.249
The coefficients in the last difference on the left(6f23 are of the form

A, (PUS+ ePWe) — A, (PU9)

whereA , vanishes to orded—1 at the origin. The Taylor theorem argumentstép 1shows this
difference is of the form

€PU7DH (e,U,WeWe.

Thus the last difference on the right has the form
> PITUH ,(6,US W )Weed, ePUS: = ePIH(€, U, e9U ¢, W) WE.
y23

This yields the equation

1
(Ll(uf,a)+; LO)W5+ H(e,U€ edUs, W) WE~0. (6.25
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Step 6. H estimates in the quasilinear caseghis is the part of the quasilinear argument which
really requires more work than the semilinear case. The problem is that the linear operator

1
e, x,d):=Li(vE(X),d)+ . Lo

in (6.29 has variable coefficientsZ,(e,x):=A ,(v*(X)).
The first step is to remark that it is the Lipshitz norm of the coefficients which is important.
This is a consequence of the classical energy identity

d d.4
&tfRd<U(t),AOU(t)>dy=2 Re fR<U(t),,%u(t)>dy+ fRd<U(t),(Z ™ ")u(t)>dy.
o
(6.26

The coefficients of# are of the formA(ePV*<). Hypothesis(6.1) shows that this coefficient is of
the form

A(0)+ ePI"DH(e, Vo). (6.27)
Recall thatp(J—1)=1, so the derivates of such an expression are sums of terms of the form
(0H)(€,VE)eaV©.

Therefore, the sup norm of the derivatives of the coefficients is bounded by the sup nbfm of
and theed derivative ofV¢, that is

’ ( % a/ﬂ)

4=0 07Xlu
This suggests the introduction of the following definition.
Definition: On

gC(||V€||_°0<[o.TJXRd)"'E l€d, Veli=o0, Tixre) |- (6.28
L>([0, T]xRY) H

Qr:=[0, TIXRY,
the family of norms, each equivalent to the Lipshitz norm, is defined by

IVllLip 0 = ||V||L°°(QT)+0 SUPd”E%V”L*(nT) :
sus

The preceding computations prove the following basiestimate.
Proposition 6.3: For any KT>0 so that L is symmetric hyperbolic du|<K, there is a
constant G=C(K,L) so that if T>0 andv “= €V C(5({2+) satisfies

IVEliip cop =<K,

then for all0O<t<T, 0<e<o and We Cfo)(Qt),

¢ 1
0 € L2(RY)

This estimate is used fol: = (ed) “W€ in which case the right-hand side is estimated as follows.
Define
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Lemma 6.4: With the shorthand Z €4, , if |a|<seN, there is a constant € C(s,U°) so that
if 0<t<T,(€), then

1
‘(Ll(vfﬂ)Jr; Lo)Z“WE(t) <C[Wt)[lys(re) +O(€”). (6.31)

H3(RY)

Proof of Lemma 6.4Apply Z to (6.25. Expand theZ*H term using Leibniz’s rule and then
use thee-Gagliardo—Nirenberg estimates as in the proof of Lemma 6.2 to show that

[Z4{H (e, U", 6&UEaWE)WE}”LZ(Rd)gC”WE(t)”Hi(Rd) : (6.32

To prove Lemma 6.4 it suffices to prove the following commutator estimate:

The commutators with., and with A (0)d, vanish identically. Using6.27) and p(J—1)=1
shows that what remains to be estimated4s,[H(e,U“+W<)ed, ] W*. Leibniz’s rule shows that
this is equal to a sum of terms of the form

We sCHWE”Hi(Rd) . (633

L2(Rd)

1
Li(v%,0)+ ¢ Lo, 2°

G(G,UE,VG)(I_I ZaiUE)(IkI ZﬁkWE)Z”’e&MWE, y+§ aj-l-E B=a, |y|<s.
]
(6.39

Note that there are+1 derivatives in total. Th& term and the product of the derivatives 0f
each belongs t&.” so it suffices to estimate tHe? norm of the remaining factors.

First consider the case+0. If |3,|<1 for all k, estimate thé-? norm of Z”ed,,W* by theH?
norm of W€ and the rest of the factors in“. Otherwise, include th&?ed, term as one of thgg
terms. It suffices to show that

<C||WE||H§(Rd) .
L2(RY)

D Besstl, |Bdss= ’( 11 ZEKWG)
2

|Bk=

Define

r:=1+ ; (|8 —1)=s.
1Bk[=2

Each factor is & derivative of ordef8|—1 of aZW<e H' 1. The Gagliardo—Nirenberg inequal-
ity applied toW: =ZWF* yields
|ZBWe() |- viis-v=Clzwe {2 P <clwe It Y. 639

Hr—l
€

Holder’s inequality yields

gC”WE(I)HHL(Rd)gC”VVE('[)”Hi(Rd) . (6.36
L2(RY)

[ JL. 2w
Y
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Finally, if =0 in (6.34 use Eq.(6.295 to express theeg, derivative of W in terms of g,
derivatives plus a ternaH (e,U €, edU €, W)W* plus aO(€”). Each of the terms produced can be
analyzed by the methods above so the proof of Lemma 6.4 is complete. [
End of quasilinear proofApplying (6.29 and (6.34) together with Gronwall's inequality
shows that for all positive integersands there is a constar€(n,s) so that for all Gst<T,,

|;<s 1(€0,) “WE()|| L 2(re) <Ce". (6.37

Thanks to(6.24) and(6.25 for the time derivative, one can choosg>0 so that fore<e;

1
(¢4 € o <_-
‘%1 [Z4WE(0)|| = (Rra) >

ThenT, (e)>0 for e<e;.
Take s=n>1+d/2 and choose,<e¢; so that(6.37) in concert with(6.25 and Sobolev’s
inequality (6.16) implies that

1
W< Lip (0 () S 2

It then follows that fore<ey, T, (€) =T which proves that € exists for 0<t<T and that inequal-
ity (6.37) holds throughout this region. As at the end of the semilinear case, this implies the
conclusion(6.7) and the proof of Theorem 6.1 is complete. [
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