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We calculate the fourth moment (r 4> of the average monomer-monomer separation in a flexible linear 
polymer in the excluded volume limit. The ratio (r 4>/(r'>' is a universal number expressible in terms of the 
exponents 'Y and v. The ratio is 8% smaller for the excluded volume chain than for the ideal chain. To 
account for the excluded volume interaction we use field theory methods to renormalize the Mayer
Fixman cluster expansion. Our approximation method of expanding in dimension of space minus four 
introduces an estimated uncertainty of 1%. The end point moment ratio (':)/(',:)2 behaves similarly. 

I. INTRODUCTION 

The spatial monomer distribution in a randomly coil
ing polymer is a fundamental property which can be 
measured directly by light1 or neutron2 scattering. 
These experiments measure the structure function S(q), 

defined as the Fourier transform of the monomer den
sity autocorrelation function (p(O) p(r) _ (p)2. The 
structure function for a noninteracting chain of n mono
mers' with no self-repulsion, has been understood since 
Debye's 1947 derivation3 : 

2 
S(q) =2n2(Q2 -1 +e-Q )/Q4 , (1) 

where Q-qn1/2• However, the corresponding problem 
for a self-repelling chain remains unsolved. This is 
despite valuable forma14,5 and phenomenologica18- 1o con
tributions. By exploiting the renormalization symmetry 
of the polymer field theoryll one may establish a scaling 
law for S(q): 

S(q) =n'11 (Bqrt') , (2) 

where the critical exponent II is a pure number which 
may be calculated with great precision. 12 The quantity 
B is a system -dependent constant and the" scaling func
tion" 11 (x) has the form 1 - r + O(x4

) for small x. This 
scaling law and the predicted II agree well with experi
ments, 13 provided the polymer is sufficiently long and 
the solvent suffiCiently good. 

We here calculate 11 (x) approximately for small x using 
methods of renormalized field theory. Spec ifically, we 
calculate the coefficient of x\ which we denote by 1;, to 
first order in E;: 4 - d, where d denotes the dimension of 
space. This 1; varies as the fourth moment of the mono
mer-monomer distance: I; =3/10(r4><~)-2 in three di,. 
mensions. For an ideal chain 1;=3/4. For the excluded 
volume limit we find I; =0. 690 ± 1%-8% smaller. This 
suggests that the density profile drops off more sharply 
at large distance than in an ideal chain. Our result 
yields a precise estimate in three dimensions and it in
volves the exponent II. Our result also depends on a 
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second exponent y which has not thus far been measured 
in polymers. This y is the exponent governing the n de
pendence of the polymer partition function. 7 

The appealing "swollen Gaussian" argument of Ptitsyn9 

and Benoitl° allows one to estimate 1;. Here one assumes 
that any two monomers i and i +k are distributed in space 
as in an ideal chain, except that their mean separation 
goes as kV instead of k 1/2 • Using the Flory value 11=3/5, 
one finds that I; is 10% larger than in an ideal chain, in 
contrast to our result. 

Our method is equivalent to the field theory of poly
mers formulated by De Gennes14 and Des Cloizeaux15 

and extended by ourselves. 11 Thus, our·theory may be 
viewed as a Landau-Ginzberg-Wilson16 theory for a 
phase transition of a system with a zero-component or
der parameter. 14 On the other .hand, our theory may be 
viewed as an extension of Fixman' S17 adaptation of the 
Mayer cluster expansion to polymers. In this article 
we use the Fixman language to describe the renormaliza
tion process, thus avoiding features of the field theory 
not needed here. We may thus motivate as simply as 
possible the use of the epsilon expansion method for 
polymers. In Sec. II we recall the cluster expansion 
prescription. In Sec. III we show how the expansion is 
renormalized to treat the excluded volume limit. In 
Sec. IV we calculate I; and discuss our results. 

II. CLUSTER EXPANSION 

Our system is a grand canonical ensemble of single 
chains including all lengths n, at temperature T, with a 
monomer potential kT s controlling the average length. 
A chain may be represented18 as a sequence of points 
rl on a (hyper)cubic lattice in d dimensional space. 
Eachrl is one lattice spacing 1 from its predecessor. 
A short-ranged repulsive potential v(r) acts between 
every pair of monomers at distance r. We may cal
culate the structure function S(q) in terms of a certain 
constrained partition function Y(y, s) defined by 

Y(y, s)=t 2::' e-snexp [_ 2::v(rl-rJ)/kT] . 
n=O (0, yl 1< J 

(3) 
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FIG. 1. The single zeroth order 4!/(22 1 1) first-order and 
6! /(23 2!) second-order diagrams for Y (q, t) defined in the 
text. Letters (a)-(g) label the zeroth- and first-order dia
grams. In diagram (g) the wave vector variables for each Qo 
andj are indicated. 

The primed sum is a sum over allowed configurations of 
the chain without the repulSion, but constrained so that 
some point of the chain passes through the origin and 
some other point passes through the point y. Apart from 
a q-independent factor the grand canonical structure 
function S(q, s) is the spatial Fourier transform of Y(y, 
s). We denote this transform by Y(q, s). Given Y(q, 
s) one may readily determine the monodisperse structure 
function Sn(q), as we show below. In calculating Y(q, s) 
it is useful to define the fixed-end partition function Q(y, 

s); this is the weighted number of configurations which 
begin at the origin and end at y: 

., 

Q(y, s)= L L' 
n::O {ro=O,rl, •• ·,rn=Y} 

e-snexp [_ L v(rl-rJ)/kT]. 
1< J 

(4) 

The Fourier transform of Q(y, s) is denoted Q(q, s); 

the Q(q, s) for an ideal chain, denoted Qo(q, s), has a 
simple closed form in our lattice model. To obtain the 
long chain behavior we shall be interested in that range 
of s for which the average length N is much greater than 
1. This occurs near a critical value sc, at which N- "". 

For s < sc' Yand Q are undefined. In the lattice model 
with no repulsion Sc =In(2d), and with repulsion Sc de
creases. 

The calculation of Y is based on a cluster expansion17
•

19 

in powers ofj (r) = (e-u(r)/ kT -1). The exponential inside 
Eq. (3), and thence Y itself, may be expressed as a power 
series inj (r). The cluster diagrams for the expansion 
(Fig. 1) represent the polymer chain with the constrained 
pOints, and show the (negative) Mayer factors j acting be
tween various parts of the chain. These diagrams are 
simpler to calculate than those of the original Fixman 
formulation, owing to our use of the monomer chemical 
potential s. We outline the differences between our ex
pansion and the original one in the Appendix, Each 
diagram represents a certain convolution of fixed-end 
partition function factors Qo(P, s), andj(p), the Fourier 
transform of j(r). Each segment of the solid line in the 
diagrams corresponds to a Qo factor, and each dashed 
line to anj factor. Thus, the diagram of Fig. l(g) cor
responds to the expression 

Qo(O, s) f. dd Zp/(2rrY" 
IP .. I,lpyl, .. ·,(./ I 

xj(p)iIo(p, s)Qo(p+q, s)Qo(O, s). (5) 

Figure 1 includes all topologically distinct diagrams with 
up to two dashed lines. The sum of the convolutions 
represented in Fig. 1 is equal to Y(q, s), expanded to 
second order in the Mayer factors j. We note the 
resemblance between these diagrams and, for example, 
those of Fig. TIL 3 of Yamakawa's text. 6 Our diagrams 
also resemble those of phase transition field theory. 16,20 

When expressed in the detailed form of Fig. 1, our 
diagrams require no symmetry factors; each diagram 
enters the sum with equal weight. 

In the limit of large distances ql« 1 and long chains 
s - sc« 1, the expansion may be Simplified after re
stating it in terms of s -sc rather than s. Thenj(p) 

becomes independent of p over the range of interest, 
and the boundaries of the loop integrations f d~ precede 

to .infinity. The change of variable from s to s - Sc 

causes a modification in the evaluation of the diagrams, 
as explained in the Appendix. In the long-chain limit 
the Qo(q, s) factors may be written in the Simple form 
Tc/(q2+t), where the constant Tc=escZ-2, and t=2dZ-2 

x (s - sJ. With these changes, factors of Tc and Z may 
be combined with the j factors. Then the expansion for 
Y becomes a factor T! times an expansion inj~Zd/(2rr)d 
= je2·cZ~-4/(2rr'l =u. The diagrams are otherwise inde
pendent of 1. Thus, to first order Y(q, t) takes the form 

+u (6) 
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where the letter in parentheses under each term indi
cates the diagram in Fig. 1 which corresponds to it. 
This may be condensed into the form 

t) =27 3(1/t 2) [ 1 _ 2uI(t) utI (t) 
c l +t rr+t - (q2 +t)2 

2uJ(q, t) u aJ(q, t)] 
+ q2 +t 2 at ' 

(7) 

where 

I ( t) '= f d d P -:-.----,,-.-;-1_...,...---...,-
q, (p2+t)[(p+q)2+tl (8) 

and I(t) '= f ddp p-2(p2 + f)-l. 

III. RENORMALIZATION 

This theory provides the continuum (1- 0; s - sJ be
havior for weak repulSion, i. e., for small u. For the 
perturbation to be weak, the dimensionless interaction 
parameter ut(d-4)/2 must be small compared to 1. At 
this stage the expansion is equivalent to that used by 
Zimm2l and others22•2s to calculate properties of poly
mers in nearly ideal solvents. For the excluded volume 
limit of fixed repulsion u and long chains (t-O) the ex
pansion evidently cannot be used as it stands for d = 3, 
since the interaction parameter diverges. However for 
d? 4 the parameter remains finite. To make the ex
pansion tractable, we are led to consider d~ 4. 

The "renormalization" of the perturbation theory 
is a way of exploiting the d - 4 limit of the expansion 
to obtain systematic approximations to the d =3 behavior. 
First we generalize the integrals f ddp of the expansion 
to noninteger d, following a standard prescription. 24 
Thus, in terms of our E: '= 4 - d, 

I(q, t) = (1/2)S(d) r(2 - E:/2) r(E:/2) 
1 

X fa [t+x(1-x)q2]-&/2dx, (9) 

I(t) = (1/2) S(d) r(2 - E:/2) r(E:/2)(1 - E:/2)-lr'/ 2 , 

where r is Euler's gamma function and S(d) '= [211"/ 2/ 
r(d/2)] is the surface area of a d-dimensional sphere. 
As d - 4, the t - 0 divergence becomes weaker, but the 
wave vector integrations become large [Eq. (8)]. This 
latter divergence appears in Eq. (9) as a pole in E: from 
r (€/2). These integration divergences hold the informa
tion about the anomalous scaling properties of the theory; 
to extract the information, one notes that the divergent 
parts may be absorbed into factors Z l multiplying the 
chemical potential t, the interaction parameter u, and 
Y itself. Thus, the expansion for YR '=Zl Y is finite to 
all orders for d:::,4 when expressed in terms of tR '=Z2t 
and 

(10) 

The Z I factors may be chosen independent of t and q. 
One says that the perturbation theory is renormalizable. 
Thus, the integration divergences which appear as d - 4 
are handled in the same way as the Sc divergences noted 
in the Appendix. As in that case, the divergences may 
be removed in each order by a redefinition of the vari
ables. As with sc' one may find which Z factors are 
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FIG. 2. 
order. 

Diagrams for the effective interaction r(4) to second 

required by a detailed analysis of divergent subdia
grams. 24 

We first determine UR' To lowest order in u, Zs and 
thus uR [Eq. (10)] may be determined by requiring that 
the "effective interaction" r(4) be finite as E-O, when 
expressed in terms of uR • The function r(4) (Pl, P2' Ps, 
P4) is defined as the sum of irreducible diagrammatic 
pieces to which four polymer lines of wavevector Pl' ... , 
P4 may be attached (Fig. 2). Irreducible subdiagrams 
are those which cannot be separated into two parts by 
cutting a single polymer line. To next lowest order, 

r(4)(Pl' P2' Ps, P4)=u{1+u[I(Pl+P3' t)+I(p3+P4' t) 

+I(Pt +P2' t) +I(Pl +P4, t)]}. (11) 

To make the integrals dimensionless, we express PI and 
t as multiples of some inverse length parameter x: 

Pt=PtX, t=7/. 

The parameter X is chosen to be comparable to the wave 
vectors of interest in the problem; and thus in the ex
cluded volume limit Xl- O. Expanding r(4) near d =4 
and inserting uR , we obtain 

r(4) =UR [z3S(d)]-1 {1 + (uR X-'/Z3)[ E- l (4 - 2E:)- (E:/2)] 

1 

x Sa dx [In(t +X(1 - X)(Pl +P3)2] +In[t +X(1 - X)(P3 +P4)2] 

+ ln[t +x(l - X)(Pl + P2)2] + ln[t +x(l - X)(Pl + P4)2] + O(u~) }. 
(12) 

We now choose the first-order part of Zs to cancel the 
1/ E: term: Zs = 1 + (4/ E:)g where we denote the dimension
less interaction uR X-' as g. 

These equations show that g depends on U and X in the 
combination UX-& - j(l X)-', which goes to infinity, since 
Xl- 0 in the limit of interest. 

To obtain g in this limit, we cannot use Eq. (10) di
rectly, but renormalization group theory24 shows that 
(ag/alnx)li.1 has a finite expansion in g. To second or
der one obtains 

(13) 

The expansion on the right side remains finite as X - 0 
and/or E: - O. Indeed, this differential equation for g (X) 
implies that as x- 0, g goes to a fixed finite value given 
by the vanishing of the [ ] expression above. Thus, 
g- - €/4. We denote the limiting value by g*. Since 
the limiting value of the renormalized coupling g * is 
of order E:, one may consistently expand YR or the ex
ponents in E: using only a finite number of diagrams. 
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One may then set E: = 1 (d = 3) in the expansion to obtain 
useful estimates of Y. To order E: one finds, from Eq. 
(7) 

YR (q, t R) =: 2T~ X-6 t1 (1 +qZ)-l 

x (1 + g { 2 ~~~~) -1 - ( dx In[l u(l - x) qZ] 

+t(l +qZ) fol dX[l u(l _X)qZ]-l +O(d}+O(gZ») 

(14) 

where TR :tRx-Z and qZ : qZ/tR , and the values zi1/Z =zz 

= 1 -g/(d of the renormalization factors have been 
used. This expression is consistent with the (indepen
dently known)11.Z5 scaling law for YR , viz., YR 

=rl-1'z(qtl':), where y=l +d8 +O(E:Z) and v=1/2 H/16 
+ o (E:Z). Comparing the perturbation expansion with 
the scaling law formula expanded in q and E:, one finds 

[h(qrV)]-l =Cl {I +[1 + (d96)] (czqrV)Z 

+(d160)(c~rV)4+0(E:q6)+O(~)}, (15) 

where Cl and Cz are unknown (and nonuniversal) constant 
factors. 

IV. RESULTS AND DISCUSSION 

The above prediction, describing as it does the cor
relations of a grand canonical chain-length distribution, 
cannot be compared directly with experiments. Thus, 
the formula above must be translatedZ6 into the analogous 
formula for Y for the experimental chain-length distri
bution. We first calculate the canonical Yn(q) for chains 
of length n. The problem in general terms is to de
termine the coeffiCients O'o(n), O'z(n), and O'4(n) in the 
limit of large n, given the coefficients ao, az, and a4: 

Y(q, t) =aorY-Z +az t- y
- 2- Zv l +a4t-Y-Z-4Vq4 

+ ••• +ak rl'-Z- kv l+··· 
~ 

:; L e-sn Y,(q) 
n=O 
~ 

= L e- sn [O'o(n) + O'Z(n) I + O'4(n)q4 + ... + O'k(n)l 
,=0 

+ ••• ] , (16) 

where t = C3 (s - sc)' This is readily accomplished, the 
nonintegral powers of t giving rise to Euler r functions 
involving the exponents: 

O'k(n) =a
k 

cjY-Z-kv n(l'+Z)+kv-l eSc" /r(y +2 +kv) • (17) 

Since, for fixed n, Sn(q) is just a fixed multiple of Yn(q), 

the ratio t defined after Eq. (2) is a ratio involVing 0'0, 

O'z, and 0'4: 

t=(O'4/O'O)/(O'Z/O'O)Z=K(Y, v)(a4/ao)/(az/ao)Z, (18) 

where the constant K may be expressed in terms of Ke 

[Eq. (28)]: 

K(Y, v)=[r(y+2v+2)]z/[r(y+4v+2)r(y+2)] , 

_ (y+l +2v)2(y+2v)2K,(y, v) 
- (y + 1 +4v)(y +4v)(y + Oy 

(19) 

(20) 

:rABLE 1. The coefficients Ke [Eq. (28)] and K [Eq. (19)] com
puted using different approximations for"y and v. 

Approximation "Y K. (~te) K (~tl 

Ideal chain ~ 1 3 
2 ~ 

First order ! (1 H/8) IH/8 ! (1-</16) ~ (1 - 5./96) 

"Flory" 3 0.4072 0.6745 , 
"Best" 0.588 1.1615 0.4544 0.694 

Swollen Gaussian J ! 0.829 5 
[see after Eq. (21)J 

The polydisperse ratio (a/ao)(az/aotZ bears a simple 
relationship to the corresponding ratio for l/Y; indeed, 
if, for small q, (y)-l =Ao +Azq2 +A4q4 +"', then (a4/aO)/ 

(aa / ao)Z = 1 - (Ad Ao)/ (Az / Ao)z. The right side is given 
by Eq. (15), giving 

t = K(y, v)[l - d16P + O(~)] • (21) 

This result for t shows that one may obtain precise 
estimates for polymer correlation functions using re
normalization methods. Using the best available esti
mates12 for y(1.162) and v(O. 588), one obtains t =0.690 
± 1%. Here the error estimate is based on the O(E:) 
correction in Eq. (21). If we set d =4, the self-repell
ing chain behaves like the ideal chain: y-1, v-l/2, 

and t - 3/4. We recover the result of the swollen Gaus
sian method by neglecting the O(E:) correction in Eq. 
(21) and using Eq. (20) for K, with y=l, v=3/5, and 
Ke = 1/2, the ideal chain value. Table I illustrates that 
t is sensitive to the values of both yand v. To our 
knowledge this is the first prediction that relates the 
exponent y to S(q). Figure 3 shows how this prediction 
appears in a plot of S(q). To check the present predic
tion clearly requires great experimental precision. 
From the graph one sees that over the range where the 
expansion of S(q) to O(q4) is accurate, the ideal chain 
and the self-repelling chain differ only slightly from each 
other, when expressed in terms of the scaled variable 
x [Eq. (2)]. The S(q) of the self -repelling chain is 
smaller than for the ideal chain in tliis range. The 
reverse is true at large q, where the self-repelling 
S(q) fallsz6 as q- 1/ v , while the ideal S(q) falls faster, 
as q-z. Thus, there must be some universal x value 
at which the ideal and self-repelling S(q) are equal. 

Remarkably, our calculation shows that excluded
volume effects reduce t. As mentioned above, this. 
contradicts the results of the swollen Gaussian chain 
hypothesis9• 10 and Koyama's result. 8 This difference 
can be understoodz7 as an effect of a "correlation hole" 
in the monomer-monomer distribution function. The 
existence of a correlation hole for the chain ends has 
first been pointed out by Des Cloizeaux. 15 The same ef
fect causes a reduction in t for the end-end correla
tions as we show below. 

The present method may be used to calculate arbitrary 
Taylor coefficients of S(q). Each power of q beyond if 
has a universal coefficient analogous to t. It is believed 
that the E: expansions for these are only asymptotic; but 
experience with phase transition problems indicates that 
the O(E:) and O(E:Z) estimates are reliable. To confirm the 
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FIG. 3. Comparison of scaled S (q) for ideal and self-repelling 
chains for small q. Too variable x2 = const. q2 is defined to 
make S (q) =S (0) [1 +X2 +O(x4)]. The solid line is computed with 
t = 0.690, as calculated here. 

precision of our result, we plan to extend our calculation 
to 0(£2). Expansions to higher orders in g * may be re
summed using Borel summation methods to give very 
precise results. 12.28 

To calculate the value of I; expected in a given experi
ment, one must know the fraction P(n) of polymers in the 
sample of each length n. The quantity measured in a 
scattering experiment is the average S(q): 

(S(q» = LP(n)S"(q) • (22) 

Since Sn(q) has ll the form n'1(qri'), 

(S(q» = {3ol(n2) + {3 2q2 <n2+2V ) + (34 q4(n2,+4v ) + ..• (23) 

where ({341{30}({321{30)-2=1;. The ratio (I;) of-the mea
sured q coefficients is thus 

(24) 

The average (1;)1 for ideal chains is obtained by setting 
v =1/2. 

Numerically, I; proves somewhat sensitive to the chain 
length distribution. We have evaluated I; for the Schulz29 

distributions -P(n) - na- 1e-cn , where (I;) may be expressed 
in terms of K(Y, v) [Eq. (19)]: 

(1;)=I;IK(a, v). (25) 

Since the grand canonical P(n) is itself a Schulz distribu
tion,30 we may recover the grand canonical (1;)[= (a. I 
ao}(a2Iao)-2] by setting a = yin Eq. (25). In Fig. 4 we 
plot (I;) for Schulz distributions vs the ratio Mw 1M" 

of weight-averaged to number-averaged molecular 
weight. Evidently, the chain length distribution P(n) 
must be well known in order to make a stringent test 
of our prediction. This sensitivity to P(n) may be re
duced by comparing (I;) with its ideal-chain value (I;) I' 
From the figure one sees that (I;) - (I; > I is relatively 
insensitive to P(n). This difference may be readily 
measured by dissolving a single polymer sample in 
good and in theta solvents. 

An alternate method for calculating I; would be to £ 

expand Yn(q) rather than Y(q, n. The recent formula
tion of Des Cloizeaux31 would allow this to be done di
rectly. We may accomplish the same thing by £ ex
panding the factor K(Y, v) to first order. Then we ob
tain I; = 3/4(1 - 5E:!96), some 2% greater than our best 
estimate: I; =0. 690. 

Our method may be readily adapted to calculating the 
end point structure function, the Fourier transform of 
the end point density a(x).l1 The quantity I;e analogous 
to I; may be found by first calculating the end-constrained 
partition function Q(q, t). For this quantity we may 
simply use Bray's32 extensive calculation developed for 
phase transitions. Bray's order parameter correlation 
function is proportional to Q if the number of order 
parameter components is set to zero15 : 

Q(q, tR)"l 

=C4t;"Y {I +q2 - 'Til [1. 504 +0.001 +O(C)] 1100 +0(q6)} , 

(26) 

where 1/=2-ylv is of 0(£2), and q is a constant times 
qrv. In three dimensions12 -1/=0.026±O.001. Equation 
(26) is believed32 to be an excellent approximation for 
d =3. We analyze this function as we did Y [Eq. (16)] 
to obtain 

I;e = Ke(Y, v) {I + 1/[1. 504 +0. 001 E:+ O(C)] 1100} , (27) 

where 

Ke(Y, v) =r2(y+2v)/[r(y+4v)r(y)] . (28) 

(s) 

1.0 AVERAGE ( FOR 
SCHULZ DISTRIBUTIONS 
VS Mw/Mn 

0.8 
- - - : IDEAL CHAIN 

: EXCLUDED 
VOLUME 
LIMIT 

1.5 
Mw/Mn 

2.0 

FIG. 4. The averages <t) and <t)I for a Schulz distribution 
of excluded-volume or ideal chains plotted against the ratio of 
molecular weights Mw/Mn. 
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This K. differs from K because the formula for Q analogous 
to Eq. (16) has an extra overall t 2 factor. 

The end point ratio t. is 1/2 for a free chain. Using 
the best available exponents, one obtains 0.455 for the 
self-repelling chain. Expanding the exponents to first 
order in E, one obtains t. = 1/2 - E/32, which is 3% 
smaller at d = 3. Again the interaction reduces the 
ratio, in agreement with calculations for the nearly 
ideal chain. 33 With a distribution P(n) of chain lengths, 
the average t. is given by 

<t. > = t. <n4P > <n2~>-2 • 

For a Schulz distribution of chain lengths of index a the 
moment ratio is [K.(a, 11)]-1. 
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APPENDIX: GRAND CANONICAL AND 
CANONICAL FIXMAN EXPANSIONS COMPARED 

We illustrate the simplicity gained in the grand 
canonical formalism by computing Y(y) for the ideal 
chain with both methods. In either formalism Y(y) 
is the number of random chain configurations which pass 
through 0 and y. In both pictures Y(y) is represented 
by the diagram in Fig. 1 (a) and is a product of ideal 
fixed-end chain partition functions Qo(x). In the canon
ical formalism the expression is 

Yn(Y) =2 L L Qo(nl> rO)QO(n2, y)Qo(n -n1 -n2' rn -y) • 
"1n2 TOT" 

(AI) 

In the grand canonical formalism the sums over n1 and 
n2 no longer appear: 

Y(y, s) =2 L Qo(ro, s)Qo(y, s)Qo(rn - y, s), (A2) 
"O"n 

where Qo(x, s)=L:ne-snQo(x, n). By Fourier transform
ing Y(y) to form Y(q, s) one effects a further simplifica
tion: 

(A3) 

where Qo(q, s)=L:"e''''''Qo(x, s). The same simplifica
tion seen here occurs throughout the grand canonical 
Fixman expansion. This is why we prefer the grand 
canonical method. 

In the long chain limit Qo(x, n) has the form 

(2d)n[rr/(4n1 2)]d/2 e-h(4rl1
2) • 

This implies that for q« 1"1 and for s near In(2d), Qo(q, 
s) has the form 

2d1"2/[q2 + (s -In(2d)) 2dl"2] • 

One may readily perform the Fixman expansion for long 
chains using the long chain form of Qo(x, n) shown above. 
However, one cannot directly perform the grand canon
ical expansion using the corresponding Qo(q, s). Certain 
integrations in the expansion diverge at large wave vec-

tor. Thus, for example, in Fig. 1 (e) the indicated inte
gral J ddp {(p +q 'f + [s -In(2d)] 2dt2}-1 diverges. The 
problem is that the chemical potential s is not an ap
propriate variable. The divergences do not appear when 
the expansion is expressed in terms of s - sc(f), where 
sc(f) is the critical chemical potential, at which the 
partition function Q(q =0, s) becomes infinite. (At s =sc 
the average length N must also become infinite.) 

To see the effect of shifting Sc on the diagrams we ex
press the Qo factors in terms of their s-shifted counter
parts: 

Qo(q, s -In(2d)) = Qo(q, s - sc) + ~Qo • 

Here ~Qo is itself an expansion in powers of i which may 
be found using the definitions of Qo and of Sc above. 
Collecting like powers of i, including those from ~Qo, 
we have the desired modified expansion as a func-
tion of s -sc' Then the terms may be arranged to show 
that the integrals are manifestly finite. Thus, for ex
ample, the divergent piece in Fig. 1 (f) noted above be
comes the" subtracted" integral 

To calculate universal properties the actual value of Sc 

is not needed. The process of shifting the s variable, 
called "mass renormalization," is explained in Ref. 34. 
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