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A single fixed-point transformation which generates solutions to the field equations is discussed.

The method is applied to several examples.
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I. INTRODUCTION

There has been much recent interest in generating new
solutions to the vacuum field equations by transforming
known solutions.’~® One very useful transformation method
was developed by Geroch,* who generalized the work of
Ehlers® and Harrison.? The original method is applicable to
spaces which have one timelike Killing vector. Given a met-
ric g, with timelike Killing vector £ ¢, this transformation
technique will produce a new metric g, with the same Kill-
ing vector. As described by Geroch,* the new metric is gener-
ated from the base metric by projective transformations on
the scalar norm A and scalar twist w of the Killing vector,
where

/l = g ﬂé‘ a’
(1)

W, = é-abcdé‘bv §d (0)
The transformations are performed in the three-dimensional
manifold defined by the Killing trajectories. The covariant
derivative in this space is D,,.

The transformation is expressed in terms of a complex
Ernst potential 7 = w + id. The transformed potential is
given by

T'=(ar+b)/lcr+4d). (2)

In this original formulation, a particular parametrization
waschosen,a = d = cos yand b = — ¢ = sin y. This choice
is one of the simplest to make. It also has the nice physical
consequence of making the transform a rotatlon of potential
functions in the orbit space.®

This choice of parametrization has some other conse-
quences. Any bilinear transform leaves up to three points
fixed. The single parameter form has two fixed points corre-
spondingtor = (w, 4 ) = (0, + 1). Oneof the fixed points can
beidentified as infinity, where A takes on its asymptotic Min-
kowski value. The second fixed point is difficult to interpret.
Using Schwarzschild parameters, for example, the second
point occurs at » = M, a point inside the event horizon. Be-
cause of the ambiguity in the second fixed point, it is of inter-
est to examine the one-fixed-point form. The purpose of this
paper is to discuss the one-fixed-point transformation.

The next section contains a brief review of the formal-
ism and the one-fixed-point transform is written down. The
parameters of the transform are discussed. In this section we
derive the differential equation obeyed by the parameters. In
the last part of the paper, the transformation is applied to
some specific examples.
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Ii. THE TRANSFORMATION
A. The formalism

Start with a vacuum solution g, possessing a single
timelike Killing vector £ °. The norm A4 and twist @, of the
Killing vector are given by Eq. (1). The solution g, is de-
scribed by a set of equations on a four-dimensional space M:
£.- Geroch® has shown that g, is also described by a set of
equations written on the three-dimensional manifold H: A,

of Killing trajectories 4,, = A (g, — £,£,/4 ):
R, = —2r =7 *(D,7D,,7), (3a)
D?*r =2(r — 7)Y (D7)(D7), (3b)

where 7 = w + iA, and D is the covariant derivative in H.
Ernst’ has demonstrated that Eq. (3b) is derivable from an
action and is equivalent to the field equations in the axially
symmetric case. He gives a prescription for generating met-
ric components from potentials satisfying this Ernst equa-
tion.

To generate a new metric g,, fromg,,, one may goto H
and look for a new solution 7’ of Eq. (3b). Geroch’s 7’ is of the
form (2) which he writes as

= (cos(y)r + sin(y))/( — sin(y)r + cos(y)). (4)
It is easily verified that 7 will satisfy the Ernst equation for
constant y. Using 7', new metric components can be con-
structed.*

The fixed points corresponding to Eq. (4) are found by
setting 7' = 7. One obtains 7, = 7, = + i. The positive fixed
point corresponds to infinity, A = 1. The negative one is dif-
ficult to interpret. The choice of a fixed point at infinity is a
good one since it ensures the asymptotic behavior of the Kill-
ing norm and twist. Instead of Eq. (4), write down Eq. (2)
with the single fixed point 7§ = 7, = (0,1). One obtains®

/N — 7o) =l — 7} + B, (5)

where B’ is possibly complex. This equation can be put into a
linear form by defining the Ernst function

E=i—T/li+T7). (6)
With this substitution, Eq. (5) becomes
E'=¢ +iB, (7)

B = 23’. The usual projective transform has f a constant. In
the next section we will discuss the conditions that 8 must
meet in order that £’ represent a solution to the field equa-
tions. We will find that allowing B to be coordinate depen-
dent leads to interesting solutions.
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B. The parameter
1. Differential equation for the parameter

Equation (7) is to generate a new solution &’ to the equi-
valent field equations. It is necessary that £ * satisfy an Ernst
equation equivalent to Eq. (3b),”

%' — VD =2 ¥DEDE". )

This requirement can be used to determine 3. Substituting
Eq. (7) one obtains

¥ +B% —1)D Y =2¢(D'¢-D"Y — D'Br-D'Bp)
+ 48D YD By, (9a)

(" +B% — 1D "B
= —2Bx(D'Y-D'Y — D'Br + DB
+ 44D 'Y-D Py, (9b)

whereyy = £ — Im( B),5r = Re{ #). Wehaveassumed £ real
for simplicity. The covariant derivative in the transformed
space H' withh,, =h/, 1sD’.

In order that £’ be a solution to the field equations, it is
necessary that £ satisfy Eq. (9). One immediately notices the
only constant £ solution is the trivial transformation 3,

= const, Bz = 0. Physically significant solutions will have 8
coordinate dependent. This is a broad generalization of the
usual constant parameter projective transform. In order that
Eq. (5) still represents a fixed point at « we require
lim_, _ (B /r) = 0. The fixed-point condition is satisfied in
this limit.

2. Interpretation of 3

In order to understand the physical significance of the
real part of 3, examine the asymptotic form of Eq. (5). As-
suming /3 real, the imaginary part of Eq. (5) is

oo QLB +B A1 (10)
(1+B°f +(BVU— 1P

Consider H: h,, to be asymptotically flat in the sense of Ger-
och® and Ashtekar and Ashtekar.!®'! This means there ex-
ists a conformally related manifold H,: £2 *h,,, which at A,
the point at infinity, is smooth on the completed manifold.
Choose the conformal factor to be 2 = (4 — 1)?,

N =4 —173"2withlim_, 2 =lim_, 2'~1/7. Defin-
ing asymptotic twists w, = lim_, , w/42, and w;

=1lim__, /{2, and noting the imposed convergence of 3,
lim_,, B'/r = 0 implies lim 8 'w = 0, we have

Wy =@, + lim g (11)
—A

The one-fixed-point transform is a simple translation of a
scalar twist defined at infinity. In the case where the base
space is static, lim__, 3’ can be identified as a projected sca-
lar twist at infinity. This identification helps in understand-
ing the coordinate dependence of f'. Adding rotation to a
static space could, for example, reduce the symmetry from
spherical to axial. A coordinate dependent 8’ accomplishes
this.
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lil. APPLICATIONS
A. Schwarzschild metric

We will take the base space to be the Schwarzschild
metric in prolate spheroidal coordinates. The convenience of
this choice has been stressed by Vorhees.'? In these coordi-
nates § = x, with x = r/m — 1, r is the usual polar radius
and y = cos 8. In their usual form, the coordinates are nor-
malized to unit distance between foci. This is acceptable for
one space, say the base space, but is an overly restrictive
assumption to impose throughout the transformation. In
general we have

1 a oA d 94
D:2A:—_—(_ x2_d2 ____+_____ 1_ 2 _),
x> —dHI)\dx ( ! dx 8y( ) dy
D’A‘D’B:%‘<(x2—d2)a—Aa—B (12)
(x? — d*?) ox dx
., 04 9B
+(1—=y)— —)
dy dy
Substituting into Eq. (9), one finds a solution for £,
ImB=0,Ref=cy=ccos @, withc>+d*=1.
This solution generates the Kerr metric withc = — a/

2r,.

B. § = §(X)sﬁ =p( y), Breal

Again using prolate spheroidal coordinates we assume
£ is a general function of x, and /3 a real general function of y.
We will investigate what kinds of base spaces satisfying this
will generate new solutions & '(x, y).

Using Eq. (12) we see the last terms of Eq. (9) vanishes.
Equation (9) becomes

D ¢ (x)/E(x)= —D"B(y)/B(y)=const=c,, (13)
which is Legendre’s equation. £ (x) and £ ( y) will both then
satisfy a Legendre’s equation in their own coordinate with
¢, =L(L + 1). We have

Be(y)=a, P (y)+b.Q.(y)

(14)

Ep(x) =/ P (x) + 8.0 (x)

We can then say that for any space whose £ are either
polynomial or logarithmic in x, we can generate new solu-
tions. The Schwarzschild solution of part A is obviously a
special case of this with L = 1 and imposed asymptotic flat-
ness and regularity."’

C. Slow rotation

The identification of real # with an angular speed allows
Eq. (9) to be written in a slow rotation approximation, to first
order in 3, assuming /3 real. We obtain

(£2—1)D"?f=2D's-DE,
(15)

(*—1)D"B=2BD'E-D'E +45D'E-D'P.

The first equation merely says that in the slow rotation
limit, £ will continue to satisfy an Ernst equation in the new
metric. The second equation determines 3.

For example, using the solutions formed from & = £ (x},
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and general S (x, y) = B, (x) B,( y), we have two separated
equations from Eq. (15). One gives

B,(y) =2 a,PL(y)+b.Q.()); (16)

and the other is

d’B. . dE X =1
dx? % dx £2—1 b
22— 1) dE , _
(et vl =o (17)

When these equations are applied to the general Weyl solu-
tions, & = ((x 4+ 1)° + (x — 1)9)/((x + 1)° — (x — 1)°), the
slow rotation solution of Tomimatsu-Sato'* is reproduced.

In conclusion we have presented a one-fixed-point
method of generating solutions to the field equations. We
have shown that the method is especially adapted to base
spaces where & {x} is polynomial or logarithmic in the dis-
tance coordinate. An equation determining new solutions in
the slow rotation limit for general £ = £ (x) is derived.

The one-fixed-point method is significant not only be-
cause it generates new solutions but also because of the in-
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sights it provides about the importance of asymptotic behav-
ior. The matching point of the base and new space-times is

conformal infinity. At conformal infinity the transformation
is a simple translation of the angular speed.
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