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Using a micromechanics approach, we recently investigated the theoretical limits on achievable
moduli in nanotube mats by stiffening of bonds. However, the waviness intrinsic to many
manufacturing processes also clearly plays an important role in stiffness of these materials. To study
the effect of waviness on mechanical properties, we modeled fiber segments as sinusoids, generated
networks comprised of these fibers, and performed simulations of deformations of the networks. In
contradiction of classical work by Kallmes and Corte@Tappi J.43, 737 ~1960!#, we found the
number of fiber crossings in these networks to be independent of fiber waviness, leading to
identification of the number of fiber crossings as a necessary and sufficient parameter to specify
network geometry, for either wavy or straight fibers. Our mechanical modeling results suggest that
reducing the waviness of nanotube ropes would significantly improve Young’s moduli in these
materials. However, reduction of waviness would not produce the improvements achievable with
higher bond density; for random sheets, assuring connections among all intersecting ropes appears
to be the most direct route toward improving the overall sheet properties. There remains a persistent
discrepancy between statistically predicted bond densities and physical bond densities, based on
moduli of these materials. ©2004 American Institute of Physics.@DOI: 10.1063/1.1687989#

I. INTRODUCTION

Improvements in nanotube~NT! sheet properties have
been sought through stiffening of inter-rope/intertube
connections1–3 and alignment of fibers and ropes.4–7 Using a
micromechanics approach, we have recently investigated the
theoretical limits on achievable moduli by stiffening of
bonds.1 However, the waviness intrinsic to many manufac-
turing processes also clearly plays an important role in ma-
terial stiffness. For example, Fisheret al.8 studied NT curva-
ture in NT reinforced polymer composites, and demonstrated
that effective moduli are significantly reduced with increased
waviness of embedded NTs. Here, we further develop a gen-
eral methodology for linking NT, nanorope, and nanotube
mat properties.

Single-walled carbon nanotubes are synthesized in close-
packed bundles or ropes due to van der Waals forces.9,10 NT
ropes have very low bending rigidity,10 and thus readily form
into porous composites of entangled, randomly oriented
ropes and nanoscale impurities. Some of these impurities can
be removed by acid treatment; dispersion of the NTs is com-
monly achieved using a surfactant. Filtration of the resulting
suspension produces a porous NT mat, or ‘‘Bucky paper,’’11

comprised of nanoropes with intrinsic curvature.
Previously, in investigating the effect of bond properties

on modulus, we modeled the NT ropes as straight beams.1

We emphasize that our assumption of rigid bonds at fiber
crossings is clearly an idealization. Although several ap-

proaches have been devised recently to create higher densi-
ties of bonds in NT sheets,1 our method does offer a means
of determining the relative effects of improving bond density
with fiber straightening on sheet properties. We thus set out
the following three objectives:

~1! to develop a model for single NT rope curvature encom-
passing realistic arrangements of NTs in NT mats,

~2! to determine the effect of curvature on bond density and
other geometric descriptors of NT mats, and

~3! to determine the effect of curvature on segment re-
sponse, and overall mat properties.

We use both two-beam and network assemblies to study the
effects of curvature, and also comment on the relative impor-
tance of bonds, segment curvatures, and other geometric fea-
tures in NT mat properties.

II. MODEL DEVELOPMENT

Scanning electron microscope~SEM! images of NT
sheets reveal some straightening of the ropes along torn
edges.12 Thus, images analyzed here were taken in the sur-
face planes of the sheets, wherein various curvatures of ropes
and segments were observed@Fig. 1~a!#. Several nanoropes
in each image were selected for analysis, to provide input to
our geometric model~Fig. 2!. SEM images of each of the
two types of sheets considered@comprised of NTs manufac-
tured using laser ablation and high pressure carbon monox-
ide ~HiPCO! synthesis, respectively, and provided by the
NanoTech Institute of the University of Texas at Dallas# were
analyzed; five surface, sinusoidal ropes were selected from
each image.

a!Author to whom correspondence should be addressed; electronic mail:
amsastry@umich.edu
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PeriodT and amplitudeA were first determined for each
nanorope, represented by the sinusoid

y5A sin~vx1a!. ~1!

Period T can be written as 2p/v, where v is the angular
frequency. The running lengthL of a fiber fromx50 to x
5a, is given by

L5E
0

a
A11A2v2 cos2~vx1a!dx. ~2!

The coordinates of four points on each fiber, along with
the orientation angleu ~as shown in Fig. 2!, were recorded.13

These were rewritten in terms ofx8 andy8, where thex8–y8
coordinate system is rotated about thex–y coordinate sys-
tem by u. After translation and rotation, the sinusoid repre-
senting each nanorope has the form

y85y081A sin~vx81a!. ~3!

The four unknown parametersy08 , A, v, and a for each
nanorope were determined for each sinusoidal curve using
the four randomly selected coordinate points measured
@(xi8 ,yt8),i 51,2,3,4# via simultaneous solution of the fol-
lowing four equations (i 51,2,3,4):

yi85y081A sin~vxi81a!; ~4!

reduction of these two nonlinear equations via elimination of
y0 andA, as

sin~vx181a!2sin~vx281a!

sin~vx181a!2sin~vx381a!
5

y182y28

y182y38
~5!

and

sin~vx181a!2sin~vx281a!

sin~vx181a!2sin~vx481a!
5

y182y28

y182y48
, ~6!

allowed calculation ofA as

A5
y182y28

sin~vx181a!2sin~vx281a!
. ~7!

Amplitude A and angular frequencyv were thus found by
simultaneous, numerical solution of Eqs.~5! and ~6!; we
usedMATLAB to obtain the values reported here. The period

FIG. 1. SEM images of NT sheets showing~a! straight and sinusoidal seg-
ments and~b! closed loops.

FIG. 2. Parameters for~a! fiber geometry and~b! network generation.

5028 J. Appl. Phys., Vol. 95, No. 9, 1 May 2004 Berhan, Yi, and Sastry



T is simply 2p/v. Values ofT andA for the ropes sampled
are compiled in Table I. Ropes presenting as mildly curved
circular arcs were modeled as segments of a sinusoid having
largeT/A.

III. EFFECT OF FIBER WAVINESS ON NETWORK
GEOMETRY

We term the fiber length between crossings as a fiber
segment. We note that we use the term ‘‘crossing’’ to indicate
any fiber intersection in the geometry model, and ‘‘bond’’ to
indicate a fiber intersection in the micromechanical model;
use of the latter term indicates some finite torsional proper-
ties assigned to a crossing. The network geometry is speci-
fied by the total number of fiber crossings or intersections,
for a particular fiber geometry. Sinusoidal fibers can be
thought of as infinite, one-dimensional~1D! objects with pre-
scribedv ~or, alternatively, periodT!. Both the mean number
of crossings per fiber, and the mean distance between suc-
cessive intersections along a fiber~i.e., mean segment length!
can be calculated from this idealization, given the total num-
ber of fiber crossings.

In our simulations, random networks of sinusoidal fibers
were generated by depositingNf identical fibers of running
lengthL, phase anglea, centerline inclinationu, and ampli-
tudeA, in a unit cell, as shown in Fig. 2~b!. End pointsxi and
yi , and orientationsu i were randomly generated, and peri-
odic boundary conditions were imposed on the arrays. To
study the effect of increased waviness, period lengthsT were
systematically decreased, holding all other geometric param-
eters constant. Figure 3 shows sample random networks of
100 fibers, each comprised of fibers with amplitudeA
50.05, phase anglea50, running lengthL51, andv54p,
8p, 12p, and 0, respectively.

Kallmes and Corte14 postulated that the number of cross-
ings Nc for random networks of 1D fibers was related to
mean fiber lengthl̄ and mean fiber curlt̄ by

Nc5
~Nf l̄!2

Apt̄2
, ~8!

where curlt is defined as the ratio of the actual~running!
fiber lengthl to the straight distance between its ends. Our
own derivation contradicts this finding, as described in the
following paragraphs.

To allow correlation between this model and our own
using sinusoidal curves, we first define the straight distance
between the fiber ends asd, wherel andd are given by

l5E
0

a
A11A2v2 cos2~vx1a!dx, ~9!

d5Aa21A2@sin~va1a!2sina#2. ~10!

Variable a is the x coordinate of the fiber end point@i.e.,
value ofx for j5L, as shown in Fig. 2~a!#. The fiber curl is
given byt5l/d, or

t5
*0

aA11A2v2 cos2~vx1a!dx

Aa21A2@sin~va1a!2sina#2
. ~11!

This relation allows conversion fromv to t, given a fiber
running lengthl; in the present study,l was taken as unity.

Our expression for the relationship betweenv and num-
ber of crossings in a system is briefly described as follows;
we provide a more detailed discussion, and also discussion
of percolative properties of these arrangements, in another
paper.15 We initially consider two fibers of lengthL f , arbi-
trary shape, and random orientation, in an areaA @Fig. 4~a!#.
Each fiber is divided inton straight segments. The probabil-

TABLE I. Data for sinusoidal ropes in~a! HiPCO ~annealed! and ~b! laser-
ablated~unannealed! NT sheet samples measured from SEM images. For
both samples the mean rope diameter was 10 nm. Samples provided by the
NanoTech Institute at the University of Texas at Dallas.

period,T (nm) amplitude,A (nm) T/A

~a!

396 26 15.3
396 35 11.3
863 69 12.5

1001 258 3.9
2505 724 3.5

Mean 9.3

period,T (nm) amplitude,A (nm) T/A

~b!

1014 84 12.0
1163 158 7.4
1000 49 20.3
589 53 11.1

Mean 12.7

FIG. 3. Networks of 100 fibers ofL f51, A50.05,a50, and~a! v54p ~b!
v58p ~c! v512p ~d! v50.
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ity that the ith segment of one fiber will intersect thejth
segment of the other is shown as the shaded area divided by
the total areaA shown in Fig. 4~b!, given by

P5
l i l j

A
usinuu, ~12!

where l i and l j are the segment lengths, andu is the angle
between the segments. For fibers of random orientation, the
probability of intersection can be expressed as

P5
1

p E
0

p l i l j

A
usinuudu5

2l i l j

pA
. ~13!

For a network ofNf fibers, the total number of fiber seg-
ments is then simply the product ofn and Nf . WhenNf is
large, the number of fiber crossingsNc can be approximated
by

Nc'
1

2 (
i 51

nxNf

(
j 51

n* Nf 2l i l j

pA
5

L total
2

pA
, ~14!

whereL total is the total length of fibers in the network. For a
network ofNf fibers of lengthL f , the number of crossings is
thus

Nc'
~NfL f !

2

pA
. ~15!

A plot of the number of fiber crossings versus fiber geometry
or waviness is shown in Fig. 5, showing the independence of
number of fiber crossings and waviness, and our analytic
solution for this parameter.

IV. EFFECT OF FIBER CURVATURE ON RESPONSE

A. Two-beam model

We began by modeling two-beam assemblies of curved
segments, as shown in Fig. 6. A sinusoidal geometry@Eq.
~1!# with phase anglea50 and constant amplitudeA
50.05, was assumed for the curved segments. Angular fre-
quencyv was varied to maintain a unit running length in all
assemblies~i.e., in all assemblies,L151, whereL1 is the
running length of AB and BC!. Six cases were considered:
v50 ~i.e., the straight beam case!, v5p, 2p, 4p, 6p, and
8p. For each assembly, AB and BC were rigidly connected at
B. End A was pinned and end C was displaced byX, in thex

direction. Finite-element analyses were performed on these
assemblies to determine the resultant forceQc at C in thex
direction. For each simulation, each curved segment was di-
vided into sixteen elements per period, and each element was
modeled as a straight, two-node beam. Analyses were per-
formed for 0<g<p, where g is the intersection angle. In
each case, the normalized effective modulus was calculated
as

Eeff

E
5

QcL2

pr 2XE
, ~16!

whereL2 is the distance AC andr is the beam radius.
Figure 7 shows the results of the two-beam finite-

element analyses. Forg,11p/12, the effective modulus of
the two-beam assemblies increased with increasing fiber

FIG. 4. Two wavy fibers of lengthL f randomly placed in cell of areaA,
shown in~a!, and the probability that segments shown intersect, shown as
the shaded region divided by total areaA in ~b!.

FIG. 5. Predicted number of fibers vs number of fiber crossings per unit
area, using our approach and earlier work by Kallmes and Corte~see
Ref. 14!.

FIG. 6. Examples of two-beam assemblies used in finite-element analyses,
including ~a! a straight beam assembly showing reaction forces, and several
two-beam constructs, with angular frequenciesv of ~b! p, ~c! 2p, and
~d! 4p.
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waviness. Beyond this value ofg, the straight beam assem-
bly was the most rigid assembly. Forg5p, the normalized
effective modulus of the straight beam case is, of course,
unity, while the corresponding values of effective modulus
for the other cases considered range from 0.0002 forv5p to
0.000 14 forv58p.

B. Network model

In earlier work,1 we had shown that a random fibrous
network of coverage or area fractionH could be adequately
modeled using a two-dimensional~2D! network of Nf

straight beam elements of diameterd randomly distributed in
a unit cell with periodic boundary conditions enforced, pro-
vided that

Nfd52 log~12H !. ~17!

Briefly, the elastic response of a random fibrous network
is largely determined by the total number of fiber crossings,
mean number of crossings per fiber, and the mean distance
between successive crossing along a fiber, or segment
length.14 By equating the mean segment aspect ratio of the
real and simulated networks via Eq.~17!, we are able to
model the response of real materials using 2D network simu-
lations. Since the number of fiber crossings~and thus the
mean segment length! is independent of fiber waviness, as
shown in Fig. 5, Eq.~17! can be applied to networks of wavy
fibers as well.

Two-dimensional networks were generated by placement
of Nf fibers of diameterd, unit length, and random end
points and orientations, into a unit cell. Periodic boundary
conditions were enforced for all networks. For each combi-
nation of beam diameter, number of fibers, and curvature, ten
networks were generated and analyzed. Each curved beam
was divided into 50 straight segments, which were modeled
as Euler–Bernoulli beam elements of solid circular cross
section. The top boundary of the unit cell was given a dis-
placementdy, and the resultant forceF on the top boundary
was found. The effective modulusEeff of each network was
calculated as

Eeff5
F

dy"d
. ~18!

Dimensioned values ofEeff were normalized by the fibers’
Young’s modulusE. Four comparisons were made, as de-
scribed in the following paragraphs. In all the plots of net-
work results ~Figs. 8–11!, each data point represents the
mean normalizedEeff for the ten networks of that specific
fiber geometry; error bars represent61s for ten realizations.

~1! A comparison ofEeff versus the ratioA/d, a quantity
determined readily from image analysis of sheets, is
shown in Fig. 8. Constant diameter/fiber length ratios
(d/L50.002) and constant angular frequencies~v
510p! were used. Fiber amplitude was varied (0<A
<0.04). Two hundred fibers were used in each simula-
tion, giving networks of area fraction 33%@per Eq.
~17!#. This area fraction is close to the upper bound
~32%! reported for conventional unaligned NT sheets.1,5

~2! A comparison ofEeff versusT/d, another parameter de-
termined readily from image analysis, is shown in Fig. 9.
Constant diameter/fiber length ratios (d/L50.002), con-
stant fiber amplitude (A50.05) and variable angular fre-
quencies were used to generate the results. Again, the
number of fibers used in each simulation was 200, giving
an area fraction 33% for each network.

~3! A comparison ofEeff versus area fraction is shown in
Fig. 10. Constant diameter/fiber length ratios (d/L
50.002) were used to simulate networks of a range of
area fractions from 10%–50%, with the number of fibers
in each simulation calculated using Eq.~17!. Three fiber
geometries were considered: straight fibers~case 1!, and
wavy fibers having constant amplitude/diameter ratios
(A/d510) and period/amplitude ratios ofT/A510 ~case
2! andT/A55 ~case 3!.

~4! A comparison ofEeff versus area fraction is shown in
Fig. 11. Constant diameter/fiber length ratios (d/L
50.005) were used to simulate networks of a range of
area fractions from 10%–50%, with the number of fibers
in each simulation calculated using Eq.~17!. Three fiber
geometries were considered: straight fibers~case 1!, and

FIG. 7. NormalizedEeff vs intersection angle for two-beam models.

FIG. 8. NormalizedEeff vs A/d showing the effect of reducing fiber wavi-
ness via reduction in amplitude. For all simulations, fiber diameter50.002,
fiber length51, number of fibers5200, andv510p.
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wavy fibers having constant amplitude/diameter ratios
(A/d510) and period/amplitude ratios ofT/A510 ~case
2! andT/A55 ~case 3!.

V. DISCUSSION

The first objective of this work was to develop a model
for single NT rope curvature encompassing realistic arrange-
ments of NTs in NT mats. Our approach, using a sinusoid to
represent fiber segments, allowed reasonable characterization

of the geometries observed, with a few exceptions. For ex-
ample, some isolated areas of highly curled NTs were visible
in several images, forming closed loops on sheet surfaces
@Fig. 1~b!#. These looped regions could have been modeled
as connected segments of sinusoidal curves having low val-
ues ofT/A ~e.g., 2 or 3!. Only ropes that were clearly sinu-
soidal in shape were measured. Therefore, our reported av-
erage values ofT/A would certainly lead to lower-than-
probable moduli versus experimental materials, since the
majority of the segments in our images appeared to be
straight or very mild circular arcs~i.e., reported ratios are
smaller than actual averageT/A values!.

Selecting a single means of fitting a sinusoid to image
analysis data proved less trivial than anticipated. In the laser-
ablation-produced sheet, numerical solutions were unrealistic
for one curve, because solutions of Eqs.~5! and ~6! did not
converge for nearly aligned data points~i.e., y18'y28'y38
'y48). In cases such as this, the nonlinear problem is ill
defined, and locations of successive peaks in these fibers
must be estimated; amplitudes can be calculated from these.
Based on this experience, we recommend in semi-automated
image analysis of these systems that data points be collected
at locations within single periods, avoiding alignment, in or-
der to minimize the probability of divergence in solution.

Our second objective was to determine the effect of cur-
vature on bond density and other geometric descriptors of
NT sheets. In contradiction of classical work by Kallmes and
Corte,14 we found the number of fiber crossings to be inde-

FIG. 9. NormalizedEeff vs T/d showing the effect of reducing fiber wavi-
ness via increasing fiber period. For all simulations, fiber diameter50.002,
fiber length51, number of fibers5200,A50.05.~Dashed line is the average
normalizedEeff for a network of straight fibers of equal diameter.!

FIG. 10. NormalizedEeff vs area fraction for networks of straight fibers
~case 1! and sinusoidal fibers withA/d510 andT/A510 and 5~cases 2 and
3, respectively!. For all simulations, fiber length51, fiber diameter50.002.

FIG. 11. NormalizedEeff vs area fraction for networks of straight fibers
~case 1! and sinusoidal fibers withA/d510 andT/A510 and 5~cases 2 and
3, respectively!. For all simulations, fiber length51, fiber diameter50.001.
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pendent of fiber waviness, leading to the identification of the
number of fiber crossings as a necessary and sufficient pa-
rameter to specifying network geometry, for either wavy or
straight fibers. The immediate consequence of this is the in-
dependence of both the number of crossings per fiber and the
mean fiber segment length from fiber waviness.

Our third objective was to determine the effect of curva-
ture on segment response and overall sheet properties.
Clearly, the effective network modulus decreases when the
fiber waviness is increased, as illustrated by simulations of
networks of area fraction 33% in which we systematically
increased fiber amplitude~Fig. 8! or reduced fiber period
~Fig. 9!. For example, for networks with this area fraction,
the meanEeff of networks of wavy fibers withA/d510 is
55% that of an average straight fiber (A/d50) network~Fig.
8!. For a network of fibers withT/d5100 and area fraction
33%, the mean normalizedEeff is similarly about half that of
one comprised of straight fibers~Fig. 9!. As described previ-
ously, values ofA/d510 andT/d5100 ~i.e., T/A510) are
physically somewhat higher than actually present in NT
sheets, although these values clearly illustrate possible ben-
efits in reduction in waviness. Increases inEeff can be
achieved through fiber straightening via either reducing fiber
amplitude~Fig. 8! or increasing fiber period~Fig. 9!, relative
to fiber diameter. Figure 8 also illustrates that for networks of
a given area fraction, theEeff decreases with increased wavi-
ness, but tends to an asymptotic value at high degrees of
waviness. Our simulations ford/L50.002 ~Fig. 10! and
d/L50.001 ~Fig. 11! show that response of these networks
are within 10% of each other; thus, our simulation results are
not strongly dependent upon diameter, validating use of Eq.
~17! in selection of simulation parameters.

The effect of fiber waviness on network response is more
significant at lower area fractions. For networks of 50% area
fraction, the meanEeff for ‘‘case 3’’ networks~comprised of
wavy fibers withT/A55 andA/d510) was approximately
50% that of ‘‘case 1’’ networks~comprised of straight fibers!
as shown in Figs. 10 and 11. For networks of 10% area
fraction, the meanEeff for case 3 networks was less than 1%
that of case 1 networks.

In our earlier work,1 we developed upper bounds on the
effective modulus of NT sheets by considering random net-
works of straight beam elements rigidly connected at every
crossing point. The meanEeff of random beam networks with
every fiber crossing modeled as a torsion spring was found to
be within 20% of that of rigid jointed networks of the same
area fraction, even when a very compliant torsion spring of
rigidity parameter 0.05 was used1 ~Fig. 11 in Berhanet al.1!.
This suggests that, provided that a physical connection exists
at every fiber crossing, the network response is relatively
insensitive to the nature of these bonds. Figure 13 in that
same work1 showed that the theoretical upper bound ofEeff

was more than ten times theEeff of the actual NT sheets,
even if the area fractions of the sample materials were over-
estimated by image analysis of SEM images. These results,
together with those presented in Figs. 10 and 11, suggest that
the large deviation of the experimental results from the theo-
retically achievable upper bound can be attributed to two
factors: first, a significant discrepancy between fiber crossing

density ~predicted statistically! and fiber bond density, and
second, fiber waviness. The relative importance of these fac-
tors depends on the actual nanorope waviness~as described
by the ratios ofA/d and T/A), and the area fraction of the
real material.

Since the network response is largely due to bending for
the ranges of area fraction of interest, the results of the solid
cross-sectional simulations presented in Figs. 10 or 11 can be
applied to the NT sheets by using the moment of inertia of
the close-packed rope section to scale the results. An ex-
ample of this scaling is shown in Fig. 12, which shows the
normalizedEeff for NT sheets~modeled as straight segments!
using three different cross-section assumptions: a solid cir-
cular section, a hcp section with equal load sharing among
tubes, and a hcp model assuming only the perimeter ropes
are load bearing.

VI. CONCLUSIONSÕFUTURE WORK

Our geometric model allows proper scaling of simula-
tions of finite, 1D fibers, to produce networks with internal
characteristics identical to those resulting from infinite 1D
fibers. This may be of particular importance in consideration
of nanotube mats having no visible fiber ends.

Our mechanics simulations suggest that reduction of
waviness in NT ropes may be a plausible route toward im-
provement of the Young’s moduli of random NT sheets, re-
ported in our earlier work.1 However, it is of less importance
than achieving high bond density; for random sheets, assur-
ing connections among all intersecting ropes16–18 appears to
be the most direct route toward improving the overall sheet
properties. Clearly, there is a discrepancy between statisti-
cally predicted bond densities and physical bond densities,
based on moduli in these materials. Determining the require-
ments for a fiber crossing to become a fiber bond is of high-
est importance. Three-dimensional modeling may be useful
in this endeavor. Our work shows that presently, experimen-
tal moduli are approximately one-tenth the theoretical
moduli of ideal sheets. Use of more advanced image analysis
~e.g., confocal Raman spectroscopy19! in concert with three-
dimensional simulations, may allow identification of mecha-
nisms for bond formation. Achieving the theoretical moduli

FIG. 12. NormalizedEeff vs area fraction based on model used for cross
section of nanoropes~i.e., solid, hcp, and perimeter models!.
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will also require improvements in connections among indi-
vidual nanotubes within the ropes, for example, by cross-
linking.

Recently, magnetically aligned ribbons have been re-
ported to exhibit effective moduli that are more than ten
times those of conventionally manufactured NT sheets.7 Fur-
ther work may be useful in establishing the potential effects
of such alignment in NT sheets. This would involve a ap-
proach similar to that used in developing the upper bound on
Young’s moduli for random sheets, possibly using a distribu-
tion function to represent selective effects of magnetic align-
ment.
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