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Generating functions of the 12j and 15j angular momentum recoupling coefficients are computed 
explicitly in the Bargmann formalism. Symmetry properties are deduced therefrom. A geometrical 
Mobius strip representation (originally due to Ord-Smith for the 12j case), which can be generalized 
to all n, suggests a 4n -fold symmetry for the 3nj coefficients (n ~ 4). 

I. INTRODUCTION 

The structure of the angular momentum 9j coef­
ficientl

- 3 has been studied in the Bargmann approach. 4,5 

It is the purpose of this note to extend some of the con­
siderations to higher 3nj coefficients. 

(A) The generating functions for the 12j and 15j co­
efficients are explicitly computed in the Bargmann 
scheme. It is a tribute to the powerful Bargmann lem­
mas on the Laplacian integrals4 that those seemingly 
complicated 6n-fold integrals can in fact be systemati­
cally carried out. Thus in prinCiple the generating func­
tions for the 3nj coefficients are computable for ar­
bitrary n in the Bargmann approach. Alternatively, the 
generating functions can also be found in the algebraic 
recursive scheme of Schwinger. 3 For n = 4 and 5, they 
have been verified; the answers are essentially the same 
apart from a difference in an over-all phase factor. 6 

(B) Symmetry relations of the 3nj coefficients (n = 4, 5) 
are here deduced on the basiS of the explicit knowledge 
of their generating functions. They turn out to confirm 
the 4n-fold symmetry (n = 4, 5). For n = 4, this was 
first discussed by Ord-Smith7 using (i) a geometrical 
Mobius strip picture which incorporates the basic 3j 
triangular relations and (ii) an reduction formula (attri­
buted to J. P. Elliott) of the 12j coefficient as a sum 
over products of four Racah coefficients. 

The Mobius strip picture can be properly generalized 
to all n. (There is a slight technical difference between 
even or odd n cases. ) Thus a basic 4n-fold symmetry is 
expected to hold for arbitrary n. The situation may be 
summarized as in Table I. Lower order coefficients (for 
various reasons such as looser structure) are seen to 
possess larger symmetry. We find it gratifying that for 
n ~ 4, the symmetry for the 3nj coefficients becomes 
more systematic. [Note, however, the remark (b) 
below]. 

(C) Explicit expreSSions for the 12j and 15j coeffi­
cients can be extracted from their generating functions. 
However, in view of the excessively large numbers of 
summations involved [namely, (2","1 - 1- 3n)-fold], we 
shall not write them down here. The reduction formu­
las6,lO of 3nj coefficients in terms of 3(n - 1)j coefficients 
on one hand, and in terms of the Racah coefficients on 
the other, are probably more useful in practice. 

The following remarks are made in view of the exten­
sive work on the theory of angular momentum by A. P. 
Jucys et al. ,10 although the present undertaking is en­
tirely independent of their approach. 

(a) Jucys et al. have adopted a graphical method of 

their own; they were able to do calculations with the aid 
of their graphical method. Our emphaSiS, however, is 
on the explicit calculation of the generating functions. 

(b) There is a proliferation in the definition of the 
3nj coefficients. As the number of j's goes up, there are 
obviously various different recoupling schemes. Thus 
Jucys et al. have defined several kinds of 3nj coeffi­
cients. The ones we discussed here in this paper, the 
canonical ones, correspond to what they call the first 
kind. We shall not be concerned with those other than 
the first kind here. 

(c) We have independently rediscovered a set of re­
cursion formulas for the 3nj coefficients (i~ in terms of 
3(n - 1)j coefficients and (ii) in terms of 6j coefficients. 6 

These are known to Jucys et al. The basiC 4n-fold sym­
metry is also implicit in their work. However, we wish 
to emphasize that the methodology used are quite differ­
ent, especially in regard to the symmetry. Our em­
phasis in this paper is to carry out the explicit calcula­
tion of the generating functions. From what we learn 
from the previously known cases, we adopt the viewpoint 
that all the symmetry of the 3nj coefficients is con­
tained in the generating functions. The symmetry should 
be transparent and unambiguous in the Bargmann ap­
proach. What we have found is that (i) from our study of 
the generating functions comes the basic 4n-fold sym­
metry (n = 4, 5); (ii) the symmetry operations can be 
transcribed to those on a suitably defined Mobius strip; 
and (iii) this geometrical picture and the 4n fold sym­
metry is obviously valid for arbitrary n ~ 4. 

II. THE 12j COEFFICIENT 

A. Defi n ition 
In analogy with the previously discussed n ~ 3 cases, 4,5 

we express the 12j coefficient (which is the recoupling 
coefficient involved in adding five angular momenta to a 
total j, or adding six angular momenta to zero) in terms 
of sums of products of eight 3j coefficients. We adopt 
the following labeling in Eq. (1) for the twelve j's, 
which is a slight modification of that of Ord-Smith7: 

TABLE I. 

3nj recoupling coefficients 

6j Racah 
9j 

12j 

Symmetry relations 

144 [Refs. 8,41 
72 [Refs. 2, 9, 51 
16 [Ref. 71 

(1) 

n=2 
n=3 
n=4 
n"'=4 3nj general 4n [this work and Ref. 101 
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FIG. l. MObius strip representation for the 12j coefficient. 

(2) 

where 

(3a) 

except 

(even-n rule), 
(3b) 

It is clear that there are triangle relations governing 
in each of the eight 3j coefficients. In the present 
notation, each 3j factor calls for a set of consecutive 
triplet indices (P-1q, pq, p+ 1q) or (pq-1, pq, pq 
+ 1), (P, q = 0, 1, ... , n - 1, mod n). It is convenient to 
label a set of vertices p, p' accordingly. This results in 
the Mobius strip representation7 (see Fig. 1). Note that 
the index convention is as follows: (i) jpo connects from 
vertices p to q; (ii) j gets primed if the first index is 
primed; the prime on the second index is suppressed 
[except for those for tpo' see Eq. (10)]; (iii) rules (3a) 
and (3b) are to be obeyed for even n cases [cf. Eq. (22) 
for odd n] 

,B. Generating function of the 12i coefficients 

The generating function is defined as follows: 

G(l2)(t t')= >; N-1 {12j} IT lp·t'k'p· (4) , f:tt 4 ~.Q Po Po' 

where the normalization factor is given by 

N4= [fr (J,,+ 1)!(J~+ 1)!/ (n k".! k;'}] 1/2. (5) ,,-0 \"'. '} 
For a triplet of indices (P-1,P, p+ 1), we define 

J p=jPP_1+j""+j""+1=6j,,., (6a) 

and 

k".=J,,- 2jp., 

k;'.=J;' - 2jp •• 

• 
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(6b) 

(6c) 

(6d) 

In a manner which is perfectly parallel to the known 
cases n "" 3, 4.5 the generating function can be converted 
into the following integral: 

G(121,(t, t')= J dj.J.24u;)eXpCta (Dp+np»), 
where 

Dp=tpx~p'1)p, p=0,1, ... ,3, 

Dp=t~x~;"l1~ 

(7) 

(8a) 

(8b) 

denote 3 x 3 determinants formed by components of the 
indicated 3-vectors. The components of tp are labeled 
by the triplets (t/>p'l' tpp , tpp+1); likewise for tp. For ~" 
and IIp' a distinction has to be made involving the index 
0, namely for 1 * 0, ~, 11, have components labeled by 
(1-1l, ll, II + 1); likewise for ~j and 7)'1' On the other 
hand, for p = 0, the components are 

~o = (~03' ~oo, 1J~1); 110 = (1103' 1100' - ~01)' (9) 

~~ = (~~3' ~~O' -1)01)' 71~ = (1J~3' r;~o' ~01)' 
This complication comes about because two of the 3j co­
efficients in Eq. (1) (namely those involving the 0 and 0' 
vertices) appear in a mixed conjugate fashion. In (8b) 
and (9), we have 

(10) 

while tp.= tp.' are distinct from tqp' 

The 24-fold integration in (7) can be carried out in 
four steps. The calculation is straightforward with the 
aid of the Bargmann lemmas on the Laplacian integrals. 4 

A slight extension leads to the following formula which 
turns out to be quite useful6

: 

J dIl3(~)dj.J.3(1)exp(tx~'1)+t'x~. 7)+c·~+d·r;) 
=(l-t. n'l exp[(txc' d) (l_t.t,)-l]. (11) 

The final answer for the generating function (7) is 

G(l2)(t, 1;') = (1 - a1 - ~ - a3 - a4 - as)'2, 

where 

a1 = {0/32 + {1O[23 + {30{21 + {ol12' 

a2 = tOOtl1(t~2t~2t30 + t~3t~3t21) + t11 t~2t33t~1 t03 

+ t22t;3tOat12t~0 - tp• - t;,., 

a3 = - tOOt12 t32 - t11t23 '103 + t22 t30t10 + t3iolt2l1 

a4 = t~otlOt~/21 t~3t32t;0 + ~l t~l t2i;2t30t~3t01 

+ t~2t;2t30t'03t01t10t~2 + t;3t~3t01tlOtbt21t~3 

- tp.- t'p., 

as = £00(11(2/33 - {oot11t23132 -(114.2(03(30 

with 

+ {22[33 t01t10 -t33(00[12121 + t3atol1i21 

- tOJlOt2i32' 

C. Consistency check 

(12) 

( 13) 

(14) 

Setting one of the appropriate angular momentum to 
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be zero should reduce the 12j coefficient to a 9j coef­
ficient, and this implies that G<l2) should reduce to G( 9), 

which is known. S Our expression (12) satisfies this test. 
[To be precise, there are some sign difference among 
some of the corresponding terms and this is attributed 
to a difference in the choice of phase in going from 3nj 
to 3(n - 1)j coefficients. ] 

D. Symmetry (even n case) 

(a) Define the operation Pit) which carries tp• - t~. 
and the operation p:k) which carries k,. - k~. 

(15) 

It is easily verified that the generating function G<l2) 

(t,t') is invariant under P:". From Eq. (4), it follows 
that the 12j coefficient is invariant under P{k) which 
carries j,. - j~ •• 

(b) Define the operation p~t) = permutation (n~:) 
among the tp • indices. Likewise p~k) among the 
the k p• indices. (16) 

G(l2)(t, f!) is readily seen to be invariant under p~t). 
This implies that the 12j coefficient is invariant under 
p~k). 

(c) Define the operation p~t) that carries 

fp. - fp_1 .-1' 

fp• - t;'_1 .-1 

except 

flO - - to .-1' q* 1, 

fll - too, 

tl. - f~ .-1' 
and P~k) that carries 

except 

(17a) 

(17a) 

(17b) 

Then G(l2)(t, f) is invariant under p~t). The 12j coef­
ficient is left unchanged apart from a phase: 

(18) 

In terms of the Mobius strip picture, the above three 
operations correspond to the following: 

Pi t): up-down symmetry of the Mobius strip: 
two fold symmetry, 

p~): left-right symmetry of the Mobius strip: 
two fold symmetry, 

P~t ): moving the "twist" between 
p and p + 1 vertices: n-fold symmetry 

Thus the combined symmetry is 4n-fold (n ;;. 4). (19) 

The fact that the 6j and 9j coefficients in fact posses 
larger symmetry than the basic 4n-fold symmetry dis­
cussed here might be attributed to the looser structure 
of their corresponding Mobius networks. (We emphasize 
the lines rather than the surface. ) For n ." 3 (i. e., with 
at most three vertical lines), it is possible to inter­
change the roles of horizontal and vertical lines, there-
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by resulting in enlarged symmetry. We claim that this 
is no longer possible for a Mobius network with four 
(or more) vertical lines. 

III. THE l5i COEFFICIENT 

A. Definition 

Parallel to the discussion of the 12j case, we take 

{15j} 

j12 f23 ~j~ ,~, 
'" j40 joo j01 jll 

j22 j33 jM \ J44 (20) 
j~ j23 j~4 

where 

i,.=jqp, m;'.=m.p 

(odd-n rule), p=O, 1, ... ,4. 

The remarks following Eq. (3) for the 12j coefficient 
apply here also with Eq. (22) replacing Eq. (3). The 
Mobius strip picture for the 15j is shown in Fig. 2. 

B. Generating function of the l5i coefficient 

(22) 

As an obvious generalization from .Eq. (4), we have 

(23) 

where 

Ns;a [IT (Jp + 1)1 (Jp + 1)1 I( n k pq! k~.!)~1/2 
,=0 P.q ~ 

(24) 

with the k,k', J, J' defined as in Eq. (6) now for p, q 
=0,1, ... ,4. As before, Eq. (23) is converted into the 
following integral: 

G<lS)(t, f) 

= f dlllS(~)dlllS(l1) exp(ta (Dp+n;»), (25) 

where Dp and nj, are defined as in (8) now for p 

0' 

FIG. 2. Ml:lbius strip representation for the 1~ coefficient. 
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= 0,1, ... ,4, tp having components (tp_IP ' t pp , tp+IP ) 
(mod 5), labeled by a set of triplet indices. Likewise 
for ~" and TI". All this is quite parallel to the 12j case 
except that the even-n complication (9) is absent here. 
Furthermore, ~~q' TI~. satisfy Eq. (10). 

After performing the 30-fold integration in (25), the 
final answer reads: 

(26) 

where bj consists of polynomials of degree 2(i + 1) in t 
and t', namely 

[tpq defined in (14)], 

4 

b2 = 6 [t"iP+II>+2 t"-1 N + (t~"tl>+1 p.I 
p=o 

X t~+2 1>+2tl>+3 P+3t~_1 ptp_I "_2 + t - t' )], 

4 

= 6 {(i"iN".I - tl>P+ltl>+I ,,)tI>+2I>+i"_1 ,,-2 
p=o 

+ [t~P(tI>+II>+Itl>+2i>+It;+2I>+S 

+ tp•2 P.2 tp'II>+2t'I>+I p) tp+s 1>+2 t;_2 P_I 

x tp_1"_2t;_I" + t- t']}, 
4 A A A A A 

b4 = 6 t"P(tP.1 P+l tI>+H+2 - tI>+1I>+2t '+21>+1) 
p-o 

X t/>-2 />-ltp-U -2 - n [I"p + (t, 11+1t1>+1" + t - t' )]. 
1>=0 

C. Consistency check 

(27) 

The statement made under Sec. nc for the 12j case 
is valid also for the 15j case. 

D. Symmetry (odd-n case) 

(a) Define the operation p~f) which carries tp.- f,q; 
correspondingly for p:k': k". - k'p •• It is obvious 
that G(lS'(t, t') is invariant under (28). This 
implies that the 15j coefficient is invariant under 
PIR. 

(28) 

(b) Define the operation p:,." = permutation (~~: w 
on t p• (recall t;.= tpt/). Correspondingly for p!}' 
on kpq• We have G<l5'(t, t 1 invariant under P~ " 
thus the 15j coefficient is invariant under p<..k'. 

(29) 
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(c) Define p~t': 

t,. - t;_1 .-1' t'pq - t"_1 .-1 (mod 5) (30) 

(31) 

Since GOS'(t, t') is invariant under (30), we have the in­
variance of {15j} under (31). The remark following Eq. 
(18) holds here for n= 5. 

IV. CONCLUDING REMARKS 

What we have done is to demonstrate by explicit calcu­
lations that the study of the properties of higher-order 
3nj angular momentum recoupling coefficients can be 
carried out in principle for all n. The algebraic com­
plexities, though increasing rapidly with n, turn out still 
to be controlable. Extraction of the explicit expansion 
forms for the 3nj coefficients are in principle possible 
from the generating functions. 

The 3nj coefficients (n .. 4) are seen to possess a 4n­
fold symmetry. Visualization of some of the structural 
properties of 3nj coefficients are greatly enhanced with 
the aid of a geometric Mobius network representation. 

Note added in proof: For graphical method for angular 
momentum, see also E. El Baz and B. Castel, Graphi­
cal Methods of Spin Algebras (Dekker, New York, 
1972). 
*Based in part on a dissertation submitted by C. S. Huang in 
partial fulfillment of the requirements for the Ph. D. degree 
at the University of Michigan, 1973 (unpublished). 
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