ELECTROSTATIC PROBES IN

However, the subdominant terms vanished and the
numerical integration was started by developing an
asymptotic series for y in powers of 2° and carrying
it to 2.

Equation (51) for the cylindrical probe was
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handled in analogous fashion. These calculations
strongly suggest that all such self-consistent calcu-
lations in plasmas where shielding is important will
lead to similar asymptotic problems, where great
care is required for their numerical solution.
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Some exact, closed-form solutions of the Navier-Stokes equations for incompressible flow and of
the hydromagnetic equations for high-conductivity, incompressible flow are presented. They can
be considered to be generalizations of Taylor’s solutions. The solutions are two dimensional and
cellular containing a single-space Fourier component; the spatial behavior is chosen in such a way
that the nonlinear inertial term and the pressure term cancel one another, leaving a linear system to
be solved. The time behavior of the solutions is quite general. The solutions to the hydromagnetic
equations are such that the velocity and the magnetic fields are parallel and decoupled. The velocity
behaves as it does in the purely mechanical case while the magnetic field simply decays in time;
there is no source term for it in the present treatment.

I. INTRODUCTION

FEW exact, closed-form solutions to the Navier-

Stokes equations for incompressible fluid flow
are known. These solutions can in the main be
classified as of Poiseuille type, involving fluid flow
between parallel planes or down cylinders, and
Couette type, involving circular flow between
concentric cylinders. The known exact solutions
to the full hydromagnetic equations are straight-
forward generalizations of the hydrodynamical solu-
tions. It is the purpose of this paper to present a
class of solutions to the Navier-Stokes and to the
hydromagnetic equations. They are essentially
generalizations of some of Taylor’s exact solutions.'
The solutions are two dimensional and cellular and
yield velocity and magnetic fields described by a
single Fourier space component. The Navier-Stokes
equation is solved when the forcing term consists
of a single Fourier space component plus an arbitrary
vector function of time. The resulting velocity field
consists of a space-constant average flow (corre-
sponding to the space-constant force field) plus the
single Fourier space component flow which has
already been mentioned. With a magnetic field
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present, a solution of the initial value magnetic
problemis obtained when the mechanical forcing
term is simplified. The magnetic field is parallel to
the velocity field and thus has the same cellular
structure. When there is no magnetic field, the
velocity field decays exponentially when the
“cellular” force is turned off; the decay is due to
the viscous loss term. When the magnetic field is
present, the fields decay exponentially in time, at
different rates, due to the effects of viscosity and
Joulian heating,.

The cellular character will be seen to be remi-
niscent of the von Kédrman vortex street, although the
present solutions differ in that they form a vortex
lattice, are rotational in general, and take into
account the effect of viscosity. In addition to
Taylor’s earlier work Taylor and Green' have con-
sidered periodic, or cellular, solutions of the in-
compressible, hydrodynamic equations in three
dimensions. They examined the breakup of initial
large eddies into smaller eddies as time progresses.
In the present treatment, as already mentioned,
there are no such effects.

II. BASIC EQUATIONS OF INCOMPRESSIBLE
MAGNETOHYDRODYNAMICS

The theory of incompressible magnetohydro-
dynamies in a medium of high electrical conductivity
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has been developed by Batchelor® and elaborated

upon by Chandrasekhar.® In Gaussian, cgs units
the equations are
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In these equations we let 9, represent d9/9z,, v be
the ratio of the viscosity to the density, p be the
density, p be the pressure, U, be the velocity com-
ponents, H,; be the magnetic field intensity com-
ponents, p be the magnetic permeability, ¥ be the
components of the external force per unit mass, and
¢ be the electrical econductivity of the medium. The
summation convention for repeated indices is used.

The total pressure per unit density » can be
eliminated by taking the divergence of Eq. (1),
using Eq. (3), and taking the Laplacian, V7, of Eq.
(1). The result is
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where 8,5 is the Kronecker delta. To determine o
one uses the relation obtained by taking the diverg-
ence of Eq. (1).

VQ(«O = aaFa -—_ aaaﬂ(l]aUﬁ - hahﬂ). (9)

Two types of solutions to Egs. (2), (3), (4), and
(8) will be considered. First we present some solutions
to the equations when the magnetic field vanishes
(h = 0). Secondly, solutions to the system will be
presented when the foreing term is further specialized
and the magnetic field at time zero is cellular.

( 2 3. K. Batchelor, Proc. Roy. Soc. (London) A201, 405
1950).
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(1951).
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III. EXACT SOLUTIONS TO THE NAVIER-
STOKES EQUATIONS

If h = 0, the equations in vector notation are

V(% - v )0 = V[V x@-9)U)

at (10y
+ V°F - V(V-F)
and
v-U =0, (3a)
as may be seen by using the identity
V x[Vx(U-V)U] = V[V-(U-V)U] (11)

- V*(U-Vv)U.

The equations will be solved for the given special
force system (& constant),

F, = {i(®) cos ky + d(1)

, (12)
F, = [,() cos kz + b(¢),
with the conditions,
fi=fh=a=0>0=0, i <0, (13)
and
U =0, t=0;

that is, the fluid is at rest for negative times.{ Aside
from the conditions (13), the functions f,, f,, a, and
b are arbitrary (the functions should be twice
differentiable). It is noted from Eqs. (12) that
V-F=0

It will be shown that for such a system of forces,
the velocity field which is the solution of Eqs. (10)
and (3a2) has the components

U, = a(t) + a(t) cos ky + a.i) sin ky,
U, = b(&) + b.(}) cos kx + b,(f) sin kz,

where a,, a,, b., and b, will be determined. It is seen
that Eq. (3a) is automatically satisfied by Egs.
(14). By substituting Eqs. (14) in Eq. (10) and
equating coefficients of sines and cosines, we find

d, + vk’a, — bka, = 0,
b, + vk*b, — akb, = 0,

i

(14)

i

(15)
d, + I/kzac ~+- bkas = fl )
b, + v&’b, + akb, = §, .
It is seen that, for the special choice of driving

forces in Eq. (12), the nonlinear terms cancel out
and the remaining system is linear.

+ Initial value problems can be treated by using an im-
pulsive force (Dirac delta function).
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Now change the dependent variables, letting
a, exp (k1) = a, ,

b, exp (k1) = 8, ,
a, exp (k%) = a, ,

b, exp (k%t) = 8. ,

and change the independent variable with the
relations

(16)

kb di = dr, , (17)

By making these changes and using the appropriate
Green’s function, one finds for the velocity com-
ponents,

ka dt = dr, .

U, =a() + ‘/;l f(t — s) exp (—k*s)

. ’r "o
[cos f,_, kb(¢'") dt ky] ds, g

00 + [ hlt = 9 op (~ %)

-[cosf ka(t’’) dt'’ — kx] ds.

The pressure can be obtained from Eq. (9), re-
membering h = 0,

U,

% = /; fi(t — 5) exp (—k™s)

-[sinf kb dt'’ — ky] ds

{fw—wmme)

-I:sin f ka(t'’) dt/’ — kx] ds’} ,

plus an arbitrary constant, of course. The solutions
are valid for { > 0; for negative times the flow
vanishes. Before considering special cases we solve
the corresponding hydromagnetic equations.

(19)

IV. EXACT SOLUTION OF THE HYDROMAGNETIC
EQUATIONS

There is also a solution of the hydromagnetic
equations similar to the mechanical solutions in
the foregoing. We wish a solution of Eqs. (1)—(4),
or equivalently of Eqs. (2)—(4) and (8) supplemented
by the pressure relation, Eq. (9). Since the sources
of the magnetic field have been eliminated it is
necessary that the magnetic field have a nonzero
initial value. We assume a (square) cellular force
field
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F, = f(t) cos ky
F, = {(1) cos kzx, (20)
with
ft)y =0, t < 0.
The solution can then be written in the form
U, = a,(8) cos ky,
U, = a,(t) cos kz,
hy = ho exp (—AE*t) cos ky, (21)

hy =hy exp (—NE*t) cos kzx,
];? = [a*(}) — R} exp (—2\k*f)] sin kz sin ky

— 1h,% exp (—20Kk%t) (cos” kx + cos® ky),

where h, is determined by the initial value of the
magnetic field and

a() = exp (—vk?l) f Cexp GEON(D) A, (22)

This solution can be verified by substitution in
Egs. (1)-(4).

It is seen that the velocity and magnetic fields
are completely decoupled in this type of solution.
The magnetic field simply decays from its initial
value with a 1/e time of 1/(\k*), caused by Joulian
heating. The velocity field is unaffected by the
magnetic field and follows the applied force as in
the previous purely mechanical problem,

V. SPECIAL CASES

We present two special solutions of the preceding
type for the Navier-Stokes equations when the
magnetic field vanishes. The corresponding magnetic
field can be added on, if the mean flows are assumed
to vanish.

In the first case it is supposed that the force is
purely impulsive,

h=f = Ust - t), (23)

which corresponds to the initial value problem where
the maximum value of an initial periodic component
of the velocity is U. It is further supposed that the

mean flow is constant,
a=>5b=0. (24)

The solution obtained from KEqgs. (18) and (19) is
&t > ty):
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U, =a+ Ucos [kb(t — &) — ky]
cexp [—kw(t — t)],

U, = b+ U cos [ka(t — t,) — kz]
-exp [—k%(t — b)],

(25)

lp’: U sin [kb(t — t,) — ky]

-sin [ka(t — ;) — kx) exp [—2k%(t — t)].

This solution is very similar to the special case
presented by Taylor.' The initial cellular structure
is blown downstream by the mean flow with com-
ponents (a, b), while decaying with the character-
istic time 1/(k*). The pressure, being quadratic
in the velocity, decays at twice the rate.

In the second case, we suppose

h=f=F, t>0, (26)
= 0, t=0,
and
i="b=0.
The solution, using Eqs. (18) and (19) is, for ¢ > 0,
_ r - 2
U, =a+ R {[kb sin ky + k% cos ky]
~ exp (—k™t)[kb sin k(y — b)
+ k% cos k(y — bD]},
U,=b+ F {[ka sin kx + k% cos kx]

B + k)
—~ exp (—k%0) [ka sin k(z — af)
+ k% cos k(x — at)]},
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F? .
?li) = BB+ D@ + ) {[b cos ky — kv sin ky]

— exp (—k%t)[b cos k{y — bt)
— kv sin k(y — bD)]}

{la cos kx — kv sin kx]
— exp (—k%t)[a cos k(x — af)
— kvsin k(x — ab)]}.

It is seen that, in this case, where the cellular force
is turned on and maintained, the field is composed
of two parts; a transient which decays as it is blown
downstream, and the steady-state solution which
does not change with time and remains fixed in
space. It is also seen that the velocity is not in
phase with the forcing field. There is a ‘reactive”
component brought about by the mean flow. That
is, the flow at times feeds energy into the forcing
gystem, although the net effect is the opposite.

VI. CONCLUSIONS

Some new, exact, closed-form solutions to the
Navier-Stokes and the magnetohydrodynamic equa-
tions are presented. The solutions are two di-
mensional and cellular. Their time behavior is quite
general.

It would be of interest to investigate these
solutions experimentally. The investigation of the
stability of these solutions against small disturbances
should also prove interesting,.



