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The macroscopic stability of a model ELMO Bumpy Torus (EBT) plasma taking into account
variations of the field curvature along the magnetic field is numerically investigated in the long-
thin limit. When the compression term has a pole in the ring region the background ballooning
mode becomes stable for any value of the hot electron beta because of strong line bending which
results from the interaction of the hot electron component with the plasma. Axially longer rings
give better stability, and the upper bound on the core beta can be improved by increasing the
mirror ratio although at the expense of reducing stability of the background ballooning mode.

I. INTRODUCTION

Because of its unique properties as a plasma confine-
ment device, the ELMO Bumpy Torus (EBT)' has been re-
ceiving increasing attention in recent years. Its potential as a
fusion reactor, however, depends critically on the beta value
(ratio of plasma to magnetic pressure) it can support and this
in turn depends on the stability properties of the configura-
tion. A number of investigators’>'! have, in the past few
years, attacked the problem of macroscopic stability of EBT
and have generated values for the maximum beta of the core
plasma that are still subject to further refinement. These dif-
ferent beta values are in effect a reflection of the models used,
e.g., whether the hot electron component is treated as a rigid
ring that only contributes to the stabilizing magnetic well, or
whether its interaction with the background plasma is ade-
quately accounted for. For the interchange modes, when the
ring is taken to be interacting, studies?™® have yielded core
betas S, of about 10%. Such beta values have been shown*®
to be substantially reduced when new instabilities arising
from coupling between the high-frequency compressional
Alfvén wave and the free energy of the hot electrons are
taken into account. In most of these studies variations along
the field and coupling with the shear Alfvén wave have been
ignored, and when they were incorporated,” ! rigid ring re-
presentation of the hot electron component was considered.
In this paper we numerically investigate the problem of bal-
looning stability in EBT using a quasikinetic approach in
which we include the interaction of the hot electrons with
the background plasma in the long-thin limit, taking into
account the variations along the field lines. We obtain the
stability boundary and the critical 8, and 8,, (of the hot elec-
tron) values which reduce to those based on the interchange
analysis when variations along the field are ignored. Com-
parisons are also shown for the cases when the hot electron
ring is taken to be interacting and when it is assumed to be
rigid and noninteracting.

Il. BASIC EQUATIONS AND ANALYSIS

The basic geometry employed in this analysis is that of
an equivalent bumpy cylinder.” Using the force balance
equation together with the quasineutrality condition we can
obtain, in the long-thin limit, the ballooning equation for
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short transverse wavelengths and lowest-frequency modes.
It has the form
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where g is the perturbed electrostatic potential, m is the azi-
muthal mode number v, is the Alfvén speed, and

b=B/B, =1+ pyP, —P,)/B%

The first term in Eq. (1) arises from the shear Alfvén waves
which represents the communication between different re-
gions along the field line, the second term arises from the ion
polarization drift, and the third and last term from the field
line curvature drift of all the species. It is interesting to note
that when V@ = 0, i.e.,, when we neglect the ballooning
effect embodied in the first term, the above equation reduces
to that obtained by VanDam and Lee? for the study of the
interchange modes.

In applying this analysis to EBT plasma we invoke the
familiar approximation of limiting the analysis to the outer
region of the hot electron ring and assume that the perpendi-
cular wavelength is much smaller than the parallel wave-
length or any other equilibrum scale length, i.e., the long-
thin approximation. Moreover, we take the background
plasma and the hot electrons to have the same radial density
profile, and further assume that the bulk plasma is isotropic
and responds basically to the EXB motion. The hot elec-
trons, on the other hand, due to their large perpendicular
energy (T, » T},) respond poorly to the E X B drifts and ex-
hibit primarily an adiabatic behavior. In that case we can
write the perturbed pressure for the core species as®

Dy; T B
P'~_—gn, 2 (14 = + =< BB!,
¢ qny, ( T_)‘P I il (2)

i

and for the hot electrons
P, ~(1/8m)B) (@4 /@, )BB e 3)

These two equations together with the quasistatic pressure
balance, namely

447P1+BB"|=0, (4)
yield

DBB | — 4mgny, (0, /o)1 + T,/T,p =0, (5
or
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with 8. denoting the core beta, B, the hot electron beta, w,,
the diamagnetic drift, and w,,, the frequency associated with
the hot electron magnetic gradient drift. From the force ba-
lance equation it can be shown that the magnetic gradient
can be expressed as

l Bt T Bh
— =———, t=1+=L B =B, +8
R,, er R T 2 Bx Bh ﬁ

(8)

In view of the above relations Eq. (1) can be put in the form

BbV (L b, )
7g ¢
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where the radius of curvature R, has been introduced

through its usual form, namely
ilb XbVb V= m/rR,.

In the absence of the hot electron term, i.e., 8, =0, Eq. (9)
reduces to the standard ballooning equation.

With the hot electrons, however, Eq. (9) with the aid of
Eq. (7), can be further written, in cylindrical geometry, as

i( 7B, éz)
dz \rB? dz
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where we have let
d
B dz

In order to solve Eq. (10) we will assume that the back-
ground plasma is uniform along z (so that P, is also indepen-
dent of z) and situated inside a bumpy cylinder with a mirror
ratio M, and a distance L between the mirrors. The hot elec-
trons are taken to occupy symmetrically a length / at the
center of the mirror so that we choose to write

8, = {B..o [1—-@/17], |z|<i/2,
" o, 2| >1/2.
The vacuum magnetic field is expressed as

(11)

B=2B,2+ B,},
with
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B, ~B,[1 — blysr)cos(sz)],
(12)
B, ~ — B/bI\(sr)sin(sz),
where
S=2n/L, b=(M—-1)/(M+ 1),

and I, and I, are the familiar modified Bessel functions. The
above relations allow us to approximately write for the radi-
us of curvature the expression (see the Appendix)

Rlc ~ a;g [4 + a cosisz)], {13)
where

1 a 1 r\?

L3 e 0 ()

R, 1= ° 2 T\

and q is the radial location of the ring at midplane. Consis-
tent with these relations we can write for the variation of the
radial distance with z at the ring the following relation:

'2=a2< 1—b[1+ (ra/L)*/2] )
(1 —bcos(sz)][1+ (mr/LY/21/)

With the aid of the above expressions Eq. (10) can be solved
numerically to produce the lowest eigenvalues utilizing the
following boundary conditions:

dp(0) _ dp(£L/2) _ (15)
dz dz

These conditions represent the fact that the most unstable
mode in the system possesses even symmetry with respect to
the midplane and is periodic with period L.

Due to the presence of the hot electrons, however, there
are values of 8, for which D in Eq. (9) may vanish at points
+ z,. When this occurs, it can be readily seen from Egq. (5)
that the perturbed potential must vanish at these points or

p(+z,)=0 (16)
A similar condition can also be seen from the perturbed per-
pendicular Ampere’s law used by Tsang and Catto’ in deriv-
ing the ballooning-interchange equation; thus the mode is
dominantly magnetic near these points.

As a result, each sector becomes decoupled into two
regions in which the ballooning equation must be solved sub-
ject to the appropriate boundary conditions in each region.
This can be stated as follows:

(14)

%9_) =0, ¢(lz,|)=0, for 0<z<|z,|;
(17)
¢(z,])=0, ﬂ—(dlz'—/z—) =0, for |z,|<z<L /2.

The requirement that @ vanishes at these points repre-
sents a strong stabilizing effect due to the tension created by
field line bending. This is a new effect that would not exist if
the hot electrons were not interacting with the background
plasma.

For purposes of comparison we have also derived the
following ballooning (Euler’s) equation from the MHD ener-

gy principle:
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(18)
and solved it subject to the boundary condition
dp(0) _ dp(L/2) _ (19)

dz dz

The above equation has been obtained by taking the hot
electron ring to be rigid and noninteracting. It may also be
noted that Eq. (18) can be readily obtained from Eq. (10) in
the limit of B. €2r,/R., thus indicating that at low S, the
hot electron rings can be considered as rigid. However, at
higher B, the results can become quite different, as we shall
presently see.

lil. DISCUSSION AND RESULTS

The stability boundary for ballooning modes in EBT
can be displayed as shown in Figs. 1-3. In the three cases it is
shown that at low 8_, the hot electron beta 8, must exceed a
certain critical value for the system to achieve stability, and
this threshold value agrees very well with the MHD rigid
ring result represented by the dashed lines. It should be not-
ed that the B values referred to in this discussion as well as in
the graphs refer to the maximum beta at the midplane.
Moreover, it can be seen from Figs. 1 and 2 that the thresh-
old value in question becomes much smaller when the hot
electron ring is made longer since in this case the magnetic
well dug by these electrons extends further along the mag-
netic field towards the throats of the mirror. Such improve-
ments in stability arising from longer rings have been noted
qualitatively by Nelson and Hedrick.® It may also be ob-
served that as B, increases the threshold value for B, de-
creases further with the improvement resulting from the en-
hancement in the compression term, 1/D.

However, as . increases even further D may vanish at
some points inside the ring and the boundary conditions giv-
en by Eq. (17) then apply. In this case, the background bal-
looning mode becomes generally stable for any given value of
B, (as indicated by the horizontal line in Figs. 1-3) due to the
strong line-bending stabilization which would not occur if
the hot electrons were not allowed to be perturbed.

The upper bound on B, represents the effect of the inter-
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FIG. 1. Stability boundary for ballooning modes in EBT with r,/Ry =0.07
and Ry/L =0.5.
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FIG. 2. Effect of increasing ring length on the stability of ballooning mode.

acting interchange ballooning mode.?? It is interesting to
note that this mode will be unstable when D is positive every-
where along the field line, i.e., when

B.R2r,/Ryp,

where R, is the radius of curvature at the midplane. This
suggests that the radius of curvature at the midplane rather
than the average curvature should be used in “local” stabil-
ity analysis.

A comparison of Figs. 1 and 3 reveals that the upper
bound on S5, can be dramatically increased by increasing the
mirror ratio; however this happens at the expense of destabi-
lizing the background ballooning mode. Increasing the mir-
ror ratio results in a decrease in the radius of curvature and a
corresponding enhancement in . . Similar results have been
predicted by Nelson® even though the stability of the bal-
looning modes was not addressed in his analysis.

Finally, Fig. 4 shows examples of typical eigenfunctions
for different values of 8, . It is seen that for low 8. (e.g., curve
a) the strong effect of the magnetic well dug by the hot elec-
trons stabilizes the mode by forcing the peak of the eigen-
function towards the mirror throat where the curvature is
good. As B, increases, the quantity D may vanish inside the
ring and this in turn forces the eigenfunctions to vanish at
that point thereby decoupling the mirror into two regions.
This effect is shown in Fig. 4 where the two eigenfunctions
(e.g., curves bland b2) meet. But the modes in this case are
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FIG. 3. Stability enhancement due to larger mirror ratio.
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FIG. 4. Typical eigenfunctions with r, /R, = 0.07, Ry/L = 0.5,/ /L = 0.3,
M =2, and B, = 0.6 for different core betas. (a) B, = 5.5%, (bl) and (b2)
B. =8.0%, and (c) B, = 8.7%.

generally stable due to the tension created by the magnetic
field line bending. However, if B, crosses a certain threshold
where D is everywhere positive the eigenfunction becomes
highly peaked at the center of the ring (thus justifying the use
of the midplane radius of curvature in local analysis) and the
interacting ballooning mode becomes unstable.
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APPENDIX: RADIUS OF CURVATURE

In this Appendix we provide the mathematical basis for
Eq. (13) in the text. The magnetic field in a simple mirror
geometry can be expressed by

B,=~B,[1 — blfsr)cos(sz)],

(A1)
B,~ — Bgbl(sr)sin(sz),
where
S=2r/L,

L is the distance between the mirrors, and /; and I, are the
familiar modified Bessel functions. For sr S 1.5 these func-
tions can be approximated by

Iisri~1 + (sr/2)%,
(A2)
I,(sr)=sr/2.

In view of these relations Eq. (A1) assumes the form
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B, ~By{1 —b[1+ (sr/2)*]cos(sz)],
(A3)
B, ~ — Byb (sr/2)sin(sz),
where we now observe that
b=(M—1)/(M+ 1),
with M being the mirror ratio. The radius of curvature is
given approximately by
1 1 9B? 1 ( B, 9B, )
- =—=—=\B,— +B,—|,
or or

(A4)

so that if we keep terms of order 42 or less then we readily
find that

B aB s2r sr 2

7= TP+ (5] }

B’ or 4[ +{7) | +2cosis)
(A5)

and

B, dB, b
B2 ar 8

where we have utilized the approximation

) {A6)

cos?(sz)o~sin’(sz)=}.
Combining Eqs. (A4}~(A6) we obtain
2 2
ro= [y (5)] +2em)
or (A7)
L z—l—(A + a cos 2“),
R. R, L
where we have let
1/Ry=mr/L? A=0b*}+ (ar/L)], a=2b.

If we specify the curvature at the ring location, i.e., r = a,
then (A7) yields Eq. (13) in the text.
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