THE UNIVERSITY OF MICHIGAN COLLEGE OF ENGINEERING Department of Mechanical Engineering STUDY OF DUST EXHAUST AIR PLUMES Mill Building, Carol Project Iron Ore Company of Canada (Labrador City, Newfoundland) Bechtel and Company, Engineers Montreal, P.Q., Canada Final Report - Part II R. Clay Porter Professor of Mechanical Engineering Glen L. Alt Professor of Civil Engineering Eugene A. Glysson Associate Professor of Civil Engineering Robert B. Harris Associate Professor of Civil Engineering ORA Pro-ject 06112 under contract with: ROBERT H. SHERLOCK, CONSULTING ENGINEER ANN ARBOR, MICHIGAN administered through: OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR June 1964

ABSTRACT This report pertains to the Carol project of the Iron Ore Company of Canada, located at Labrodor City Newfoundland, Canada. The engineers for this project are Bechtel and Company; Montreal, P.Q., Canada. The report deals with a study to determine the stack height and stack gas velocity, from the iron ore concentrating mill, necessary to maintain the height of the stack gas plume, and the ground concentration of stack effluent dust within satisfactory limits. For simplicity of presentation, and for convenient use by the client, this report is submitted in two parts. Part I describes the problem, the wind tunnel testing program and procedures, and the test results. Part II presents the results assembled in such form that the designing engineers may readily choose a number of combinations of stack height and stack gas exit velocity which will give satisfactory plume behavior according to the adopted criteria. These combinations may then be examined from the standpoint of operating practicability and economic limitations. An example of the use of the curves is also given. Two appendixes are included which give more detailed information as supporting discussion of some points. 53

PART II TABLE OF CONTENTS Page LIST OF TABLES 57 LIST OF FIGURES 59 INTRODUCTION 65 DUST CONCENTRATION NEAR GROUND 67 Gas Discharge Rate and Wind Velocity 67 Dust Discharge from the Stack 67 Computation of Dust Concentration 69 Thresholds Limits of Dust Concentration 69 CONTROLLING CRITERIA 71 Dust Concentration Near the Gound 71 Plume Height Above the Ground 71 DISCUSSION OF RESULTS 73 APPENDIX A. ATMOSPHERIC DIFFUSION, GAS 75 Sutton's Theory 75 Application of the Theory 78 Regimes of Flow 78 Wind-Tunnel Tests Plus Diffusion Computations 79 Diffusion Parameters 79 Breakup of Temperature Inversions 80 Atmospheric Stagnations 81 APPENDIX B. ATMOSPHERIC DIFFUSION, FINE DUST 83 Sutton's Equation 83 Computation of Dust Concentration, X, Near Ground at Downwind Distance, X 84 55

LIST OF TABLES Table Page VII. Physical Properties of Dust 68 VIII. Values of Turbulence Parameters as Modified from Brookhaven Experiments by E. W. Hewson 80 IX. Turbulence Type as a Function of Wind Speed 80 X. IBM Tabulation of Concentration 86

LIST OF FIGURES Figure Page Al. Basic plume of stack gases. 76 A2. Sutton's equation with assumptions. 77 16. Three alternative schemes of stack location. 92 N.W. Wind at 10.25 mph (hourly average) Stack Location 1 (without plant extensions) 19. Plume height, 3,000 ft downwind 9? 20. Dust concentration at 3,O00 ft?9 21. Dust concentration at 7,500 ft 95 22. Dust concentration at 12,000 ft 96 23. Dust concentration at 17,000 ft 97 24. Dust concentration at 19,000 ft 98 25. Dust concentration at 20,000 ft 99 Stack Location 3 (without plant extensions) 26. Plume height, 3,000 ft downwind 100 27. Dust concentration at 3,000 ft 101 28. Dust concentration at 7,500 ft 102 29. Dust concentration at 12,000 ft 1o 50. Dust concentration at 17,000 ft i02, 31. Dust concentration at 19,000 ft 10' 32. Dust concentration at 20,000 ft i10 Stack Location 1 (with plant extensions) 33. Plume height, 3,000 ft downwind i07 34. Dust concentration at 3,000 ft io6 35. Dust concentration at 7,500 ft 109 36. Dust concentration at 12,000 ft 10 37. Dust concentration at 17,000 ft 1ii 38. Dust concentration at 19,000 ft 112 39. Dust concentration at 20,000 ft 59

LIST OF FIGURES (Continued) Figure Page N.W. Wind at 10.25 mph (hourly average) (concluded) Stack Location 2 (with plant extensions) 40. Plume height, 3,000 ft downwind 114 41. Dust concentration at 3,000 ft 115 42. Dust concentration at 7,500 ft 116 43. Dust concentration at 12,000 ft 117 44. Dust concentration at 17,000 ft 118 45. Dust concentration at 19,000 ft 119 46. Dust concentration at 20,000 ft 120 Stack Location 3 (with plant extensions) 47. Plume height, 3,000 ft downwind 121 48. Dust concentration at 3,000 ft 122 49. Dust concentration at 7,500 ft 123 50. Dust concentration at 12,000 ft 124 51. Dust concentration at 17,000 ft 125 52. Dust concentration at 19,000 ft 126 53. Dust concentration at 20,000 ft 127 N.W. Wind at 15-mph (hourly average) Stack Location 1 (without plant extensions) 54. Plume height, 3,000 ft downwind 128 55. Dust concentration at 3,000 ft 129 56. Dust concentration at 7,500 ft 130 57. Dust concentration at 12,000 ft 131 58. Dust concentration at 17,000 ft 132 59. Dust concentration at 19,000 ft 133 60. Dust concentration at 20,000 ft 134 Stack Location 3 (without plant extensions) 61. Plume height, 3,000 ft downwind 135 62. Dust concentration at 3,000 ft 136 63. Dust concentration at 7,500 ft 137 64. Dust concentration at 12,000 ft 1538 65. Dust concentration at 17,000 ft 139 66. Dust concentration at 19,000 ft 140 67. Dust concentration at 20,000 ft 141 60

LIST OF FIGURES (Continued) Figure Page N.W. Wind at 15 mph (hourly average) (concluded) Stack Location 1 (with plant extensions) 68. Plume height, 3,000 ft downwind 142 69. Dust concentration at 3,000 ft 143 70. Dust concentration at 7,500 ft 144 71. Dust concentration at 12,000 ft 145 72. Dust concentration at 17,000 ft 146 73. Dust concentration at 19,000 ft 147 74. Dust concentration at 20,000 ft 148 Stack Location 2 (with plant extensions) 75. Plume height, 3,000 ft downwind 149 76. Dust concentration at 3,000 ft 150 77. Dust concentration at 7,500 ft 151 78. Dust concentration at 12,000 ft 152 79. Dust concentration at 17,000 ft 153 80. Dust concentration at 19,000 ft 154 81. Dust concentration at 20,000 ft 155 Stack Location 3 (with plant extensions) 82. Plume height, 3,000 ft downwind 156 83. Dust concentration at 3,000 ft 157 84. Dust concentration at 7,500 ft 158 85. Dust concentration at 12,000 ft 159 86. Dust concentration at 17,000 ft 160 87. Dust concentration at 19,000 ft 161 88. Dust concentration at 20,000 ft 162 W. Wind at 10.25 mph (hourly average) Stack Location 1 (without plant extensions) 89. Plume height, 2,200 ft downwind 163 90. Dust concentration at 2,200 ft 164 Stack Location 3 (without plant extensions) 91. Plume height, 2,200 ft downwind 165 92. Dust concentration at 2,200 ft 166 61

LIST OF FIGURES (Continued) Figure Page W. Wind at 15 mph (hourly average) Stack Location 1 (without plant extensions) )3. Plume height, 2,200 ft downwind 167 94. Dust concentration at 2,200 ft 168 Stack Location 3 (without plant extensions) 95. Plume height, 2,200 ft downwind 169 96. Dust concentration at 2,200 ft 170 W. Wind at 10.25 mph (hourly average) Stack Location 1 (with plant extensions) 97. Plume height, 2,200 ft downwind 171 98. Dust concentration at 2,200 ft 172 Stack Location 2 (with plant extensions) 99. Plume height, 2,200 ft downwind 173 100. Dust concentration at 2,200 ft 174 Stack Location 3 (with plant extensions) 101. Plume height, 2,200 ft downwind 175 102. Dust concentration at 2,200 ft 176 W. Wind at 15 mph (hourly average) Stack Location 1 (with plant extensions) 103. Plume height, 2,200 ft downwind 177 104. Dust concentration at 2,200 ft 178 Stack Location 2 (with plant extensions) 103. Plume height, 2,200 ft downwind 179 106. Dust concentration at 2,200 ft 180 Stack Location 3 (with plant extensions) 107. Plume height, 2,200 ft downwind 181 108. Dust concentration at 2,200 ft 182 62

LIST OF FIGURES (Continued) Figure Page S.W. Wind at 8.5 mph (hourly average) Stack Location 1 (without plant extensions) 109. Plume height, 1,000 ft downwind 183 110. Dust concentration at 1,000 ft 184 Stack Location 3 (without plant extensions) 111. Plume height, 1,000 ft downwind 185 112. Dust concentration at 1,000 ft 186 S.W. Wind at 15 mph (hourly average) Stack Location 1 (without plant extensions) 113. Plume height, 1,000 ft downwind 187 114. Dust concentration' at 1,000 ft 188 Stack Location 3 (without plant extensions) 115. Plume height, 1,000 ft downwind 189 116. Dust concentration at 1,000 ft 190 S.W. Wind at 8.5 mph (hourly average) Stack Location 1 (with plant extensions) 117. Plume neight, 1,000 ft downwind 191 118. Dust concentration at 1,000 ft 192 Stack Location 2 (with plant extensions) 119. Plume height, 1,000 ft downwind 193 120. Dust concentration at 1,000 ft 194 Stack Location 3 (with plant extensions) 121. Plume height, 1,000 ft downwind 195 122. Dust concentration at 1,000 ft 196

LIST OF FIGURES (Concluded) Figure Page S.W. Wind at 15 mph (hourly average) Stack Location 1 (with plant extensions) 123. Plume height, 1,000 ft downwind 197 124. Dust concentration at 1,000 ft 198 Stack Location 2 (with plant extensions) Plume height, 1,000 ft downwind 199'<. Dust concentration at 1,000 ft 200 Stack Location 3 (with plant extensions) 127. Plume height, 1,000 ft downwind 201 128. Dust concentration at 1,000 ft 202 64

INTRODUCTION This part of the Final Report is a continuation of Part I and all pages, tables, and figures are numbered consecutively through the two parts. Part II contains the diagrams which summarize the test data and the computed results, in such form that the designing engineers may readily choose a number of combinations of stack height and stack gas exit velocity which will give satisfactory plume behavior according to the adopted criteria. These combinations may then be examined from the standpoint of operating practicability and economic limitations.

DUST CONCENTRATION NEAR GROUND The dust concentration near the ground in any one of the eight designated areas (as located on the map in Fig. 4) will depend upon (1) the quantity of gas leaving the Stack per unit of time; (2) the velocity bf the gas as it leaves the stack; (3) thb wind velocity; (4) the dust concentration and particle size gradation as the ges leaves the stack; (5) the height of the plume over the critical area; (6) the distance of the critical area from the stack; and (7) the rate of atmospheric diffusion. GAS DISCHARGE RATE AND WIND VELOCITY It is expected that a single stack will be used to discharge the gas from the present mill and that it will be placed according to Scheme 1 as shown in Fig. 16. If and when the capacity of the mill is doubled by future extension, it is expected that an additional stack will be placed according to Scheme 2. It is improbable that the position shown by Scheme 3 will be used, but it is shown in Fig. 16 as a possibility and graphs are shown for its behavior if used. The present capacity of the mill is such that about 800,000 cu ft of gas is discharged per minute at a temperature of about 120~F. The diameter of the emerging gas jet will be determined by the choice of exit velocity of the gas. Curves are shown for exit velocities of 60, 85, 100, and 120 fps, between which interpolations may be made. The graphs which follow contain curves which give the height to the bottom of the plume at a distance of 3000 ft from the stack. Other curves show the number of particles per cubic foot near the ground at distances from the stack which correspond to the critical areas shown in Fig. 4. In both sets of curves it is assumed that the plume remains at a constant height beyond 3,000 ft downwind from the stack. This means that the flotational rise of the plume is ignored as discussed in Part I under the heading of "Gas Temperature" on page 25. DUST DISCHARGE FROM THE STACK Table VII was prepared by Mr. I. Mozer, Senior Process Engineer, Iron Ore Company of Canada. In his covering letter (February 3, 1964) to Mr. A. Sobering, Assistant Manager, Iron Ore Company of Canada, he cautions that the calculations are based on the following assumptions: 67

TABLE VII PHYSICAL PROPERTIES OF DUST CALCULATION: (1) Surface area in one gram per single fraction A = 6/dG Where: d = size of particle G = specific gravity = 3.16 (2) According to Taggert the No. of particles N = So/s Specific Surface Surface of Each Particle Size Structure Average Area cm2/Gram Area of No. of Size of Stack Exhaust, Size of Stack Exhaust, Size, MM as Cubes Product, Cu2 Particles + 435 1.5.043 442 663 5.97 x 106 @ -43 + 20> 0.8.032 593 474 7.71 x 106 -20 + 10 2.6.015 1,266 3,293 243.92 x 106 -10==+ 1p 94.8.005 3,798 36,000 240,000.00 x 106 - 0 0.3 57,980 11,394 759,600.00 x 6 Total 100.0 375,824 999,857.60 x 106 Total No. of particles per 100 grams = 999,857.6 x 106 1 gram = 9,998.576 x 106 particles At 0.24 grains/cu ft Dust Loading or 0.0155 grams/cu ft there are: 154.978 x 106 particles.

1. Particles are cubes 2. The average size of a particle is equal to the arithmetic mean of dimensions defining the particle 3. The specific gravity is constant within each size fraction. It is seen from Table VII that 95.1% (by weight) of the particles are less than 10 microns. It is assumed that these will behave essentially as a gas while the plume is being diffused in its travel downwind. Some of the larger particles may tend to fall out rather quigkly but it will be on the side of safety to assume that all of the 155 x 10 particles per cu ft will be diffused the same as gaseous parcels within the gaseous plume, and that this behavior. will persist even to the most distant of the critical areas shown in Fig. 4. COMPUTATION OF DUST CONCENTRATION Since it has been assumed that the dust particles are so small that they will behave essentially as gaseous parcels, it will be valid to adopt one of the commonly used theories of atmospheric diffusion. For this purpose the theory and equation of O., G. Sutton were used. They are discussed in detail in Appendix A. The method of adapting them to this study and to the use of IBM computation is detailed in Appendix B. THRESHOLDS LIMITS OF DUST CONCENTRATION The emissions from the aerofall stacks contain dusts of several different chemical compounds, but the one which is of principal interest in this study is silicon dioxide (SiO2). Also present in considerable amounts is hematite (Fe203). The hematite is nontoxic but the silicon dioxide may cause a disease of the lungs known as silicosis if the fine dust is inhaled in sufficient quantities over a sufficiently long period of time. One reference (D. E. Cummings, "The Etiology of Silicosis") suggests that atmospheric concentrations of silica dusts should be considered in terms of two thresholds, namely, the primary threshold, a level at which a health man can be employed for his lifetime without harm, about 5,000,000 particles per cu ft (light field count); and the secondary threshold, a level at which a healthy man will inevitably develop silicosis, about 100,000,000 particles per cu ft. TIle American Medical Association Archives of Industrial Health, Vol. XI, June, 1955, pages 521-524, "Threshold Limit Values for 1955," shows the following limits for different concentrations of silica in millions of particles per cubic feet (MPPCF): 69

High (above 50% free SiO2) 5MPCF Medium (5-50% free SiO2) 20MPPCF Low (below 5% free SiO2) 50MPPCF These values are given as the maximum average atmospheric concentration to which workers may be exposed for an 8-hour working day without injury to health. Another reference (Air Pollution, Vol. II, A. C. Sterns, page 485) suggests that where people are exposed to the dust continuously for 24 hours per day every day, the foregoing limits should be divided by 30. However, this condition could exist only in an area which is surrounded by sources of emission of Si02 so that the concentration would be continuously renewed regardless of wind direction..t the Carol Project this condition would not prevail. The plume is carried by the wind which changes direction with the passage of cyclones and anticyclones alc.t twice each week on the average. These are major changes of direction. In a'tion there are minor changes of direction for other reasons. An inspection r Tables I and II shows that 10% would be a liberal estimate of the number of intermittent hours per year (876) when the wind would be blowing from such a direction as to cause the gas plume to pass over one of the critical areas (17 intermittent hours per week, 2.5 hours per day). Therefore, if allowance is made for the nontoxic fraction of the total 154LPPCF of dust emitted from the stack, it is permissible to place the allowable threshold limit somewhere between 5 and 20MPPCF. It will be seen in the "Discussion of Results" that any combination of stack height and gas exit velocity which satisfies the criterion of minimum plume height, will maintain the dust concentration far below the allowable threshold limits in every critical area. 7o

CONTROLLING CRITERIA There are two criteria which should be used in choosing the height of the stack and the exit velocity of the stack gas, namely,the dust concentration in the atmosphere near the ground, and the height of the bottom of the plume above the ground. DUST CONCENTRATION NEAR THE GROUND As pointed out in the foregoing discussion of "Threshold Limits of Dust Concentration," the dust concentration near the ground in the critical areas should be kept below 5MPPCF, unless a chemical analysis of the dust shows that it contains less than 50% of free silicon dioxide. PLUME HEIGHT ABOVE THE GROUND As shown in Figs. 11, 12, and 13 (Part I), a plume which has escaped the aerodynamic downwash in the lee of the stack and buildings will follow the streamlines in the atmosphere. For some distance downwind the upper streamlines may tend to slope downward because of the disturbance in the flow conditions as the air passes the obstructions, after which the streamlines will tend to level off or they may level off without sloping downward. This occurs in the tunnel where there is no flotational effects due to hot gas. The levelling off occurs at a distance of about 3000 ft downwind and it is assumed that the height to the bottom of the plume is the same over the critical areas as it is at 3000 ft from the stack. This procedure ignores the rise of the plume due to flotation of the hot gas in the fibld. However, due to the low exit temperature of the gas the rise is small in all except slow winds and it is on the safe side to ignore it when computing the ground concentration of dust. However, the plume in the fheld is subject to fluctuations in height due to the presence of gusts, and to looping caused by thermal cells in the atmosphere. Therefore, it is desirable to establish minimum plume heights when using the wind tunnel results in order to minimize the nuisance of these transient occurrences of short duration. Based on observations on previous projects in the field, it has been decided to adopt a minimnum height to the bottom of the plume of 200 ft when using the hourly average value of 10.25 mph and of 150 ft when using the higher hourly value of 15 mph. 71

DISCUSSION OF RESULTS The results of this study have been presented in graphic form (Figs. 19 through 128, inclusive) so that they may be readily interpreted without further calculation. Two major considerations should be kept in mind when reviewing them for stack design purposes: (a) The minimum allowable height of the bottom of the plume above ground level (1792 ft), and (b) the maximum allowable dust concentration at critical areas. The graphical results have been arranged in subordinating steps in the following order, with plume height followed by concentration of dust at ground level (1792 ft). (1) Wind direction Wind velocity Stack location Plant configuration Distance from stack to point where concentration is in question (2) Wind direction Wind velocity Stack location Plant configuration Distance from stack to point where concentration is in question Etc. A review of the plume height graphs, which are at the beginning of each group, reveals that the lowest plume heights occur when the wind is from the N.W. and the stack is at location 1 without plant extensions. To satisfy the criterion that the bottom of the plume should not drop below 150 ft with a 15 mph wind, it is apparent from this graph that a 450 ft stack with a stack gas velocity of 90 fps would serve the purpose. A review of the dust concentration curves indicates that the highest concentration at any critical area resulting from a 450 ft stack and a 90 fps stack gas velocity is about 96,000 particles per cu ft. This occurs when the wind is from the west at 15 mph and the stack is at location 1 with plant extensions in place. The critical area affected is 2200 ft downwind from the stack. Other combinations of stack height and stack gas velocity may be similarly investigated. 73

APPENDIX A. ATMOSPHERIC DIFFUSION, GAS Figure Al is a perspective view of a single stack with the basic plume emerging from the stack, rising, and flowing downwind. The basic plume is the visible portion of the plume. In this discussion of the theory the plume is assumed to be a mixture of air which has entered the plume as the result of diffusion in the ambient atmosphere, together with the original stack gas with the entrained pollutant. The concentration (Chi) of the pollutant at a point downwind (x,y,z) is the unknown which is to be determined. SUTTON' S THEORY It is necessary to superimpose upon the basic plume the effect of diffusion caused by eddies in the atmosphere. For this purpose, the equation of O. G. Sutton [Micrometeorology, McGraw-Hill, 1953, p. 293, Eq. 8.35) was used. Figure A2 shows graphically the assumptions on which the equation is based. A point source is assumed from which the gaseous pollutant continuously emerges at a constant rate, flows horizontally downwind, and diffuses to boundaries which are arbitrarily fixed at a concentration equal to one tenth the concentration at the height of the point source. It is further assumed that, beyond the distance at which the bottom of the diffused plume reaches the ground, the gas is reflected back into the atmosphere by the impervious ground and the additional concentrations thus created are determined by the method of images. The foregoing assumptions may be stated mathematically in functional form as follows: X - ~ [Q,h,Vw,x,y,z,n,Cy,Cz] where X = the mass concentration of pollutant per unit volume of stack gas; Q = the rate at which the pollutant is leaving the point source expressed as mass per unit time; h = the height from the ground to the point source; Vw = the average wind velocity; x,y,z = the coordinates along the wind, horizontally across the wind, and vertically upward, respectively, of the point for which the concentration is being determined, the origin being at ground level at the base of the stack; 75

Z 7 DIFFUSEDD PLUME 3> BASIC PLUME Fig. Al. Basic plune or stack gases... -. X GROUND CONCENTRATION OF SO? AT DISTANCE X Fig. Al. Basic plume of stack gases.

z o BOUNDARY OF zz, Z DIFFUSED PLUME U, 0D _;o C) } ~~~~~~~_ — ADDED CONCENTRATION DUE TO _ GIX I x0xy I |Q-(X e- I [ (z-n) +e+ ] X {C x(zn) [ 1 | ~ | (2) W(EQUATIONS BY O.G. SUTTON) L IC Fig. A2. Suttons equation with — assumptions. h _. —) —'( —AO REFLECTION BY IMPERVIOUS GROUND Xxyz exp- Su-n' e exp- a(ssnm.(i) Fig. A2. Sutton's equation with assumptions.

n = a diffusion parameter determined from the vertical wind profile; and CyCz diffusion coefficients for the y and z directions, respectively. Sutton's explicit form of the equation is shown in Fig. A2. Figures Al and A2 show that the ground concentration under the center line of the plume will increase downwind to a maximum and then decrease slowly. Likewise, the ground concentrations will decrease laterally in the areas on both sides of the center line of the plume. AIFLICATION OF THE THEORY The assumptions upon which the diffusion equation is based are only a rough approximation to nature. Thus, the gas does not appear at a point source but is discharged with considerable upward velocity from a stack of such size that it and the plant buildings constitute an obstruction around and over which the air must flow. There as also the additional rise of the plume due to flotation of the hot gas in that regime of flow in which the plume has not been entrained in the turbulence behind the stack or over the buildings. REGIMES OF FLOW The plume may experience any one of three regimes of flow. (1) The first regime is that in which the gas has been entrapped in the turbulence of the stacks and buildings and has been brought to the ground. Here the flotational effect of high temperature is lost since the downwash has been completed. (2) The second regime is that in which the plume has succeeded in escaping the adverse eddies at the top of the stack and is proceeding in an orderly way downwind. The plume is free to respond to the flotational forces and to rise to a greater height than would be the case under the influence of the wind and stack-gas velocity alone. The temperature of the plume decreases rapidly due to diffusion in the ambient atmosphere, but the flotational effect of high temperature is not entirely lost because the over-all heat content of the mixture of gas and air in the plume is not reduced. The theoretical rate of rise can be computed but, as with idealized diffusion, the basic assumptions are only a rough approximation to nature. In this regime of flow three influences act on the plume, namely (a) aerodynamic forces, which determine the conformation of the streamlines as the wind is deflected over and around the stacks and buildings; (b) stack-gas velocity, which adds height to the plune; and (c) flotational forces, which add height to the plume.

(3) The third regime of flow is that in which downwash is impending, that is, when the bottom of a plume is below the top of the stack and all or part of the plume is becoming entrapped, either in the tip vortices at the top of the stack, or in the eddies of the vortex sheath which separates the turbulent zone behind the building from the streamlines above, or in the downswerving streamlines near the vortex sheath. Previous experiments have shown that, in the regime of flow when downwash is impending, the behavior of the plume, within the limits of experimental error, depends only on the momentum-ratio and is independent of the gas temperature. This is because the flotational forces are so small compared to the adverse aerodynamic forces which are present in the tip vortices, in the vortex sheath, and in the down-swerving streamlines, that they produce no measurable effect. In the theoretical case the ratio of stack height to building height, and the exit velocity of the stack gases, will both be large enough so that the chance of entrapment of the plume will be remote, and regimes (1) and (3) may be ignored. WIND-TUNNEL TESTS PLUS DIFFUSION COMPUTATIONS The effects of the aerodynamic forces upon the plume, as shown by windtunnel tests, are reported in the Final Report (Part I). For purposes of applying Sutton's Equation, the position of the basic plume is obtained from the wind-tunnel tests and the height of the hypothetical point source is obtained by extending the level portion of the plume back to the position over the stack, as shown in Fig. Al. In reading the photographs for wind-tunnel data, the height of the center line of the plume as well as the height of the bottom of the visible plume above ground level (1792 ft) was noted. DIFFUSION PARAMETERS The observations at the Brookhaven National Laboratory of the U.S. Atomic Energy Commission contain the best diffusion parameters yet available, although they do not include the effect of turbulence generated by large stacks and buildings in the downwind wake within which the diffusion must take place. The results are also transferable only to other areas in which the terrain is not too dissimilar. On a previous project Dr. E. Wendell Hewson, Professor of Meteorology at The University of Michigan, made a study of observations at various places and chose coefficients which seemed to him to be most suitable for this kind of use. It was decided that, since the results must be combined with data from the wind tuunnel, the three turbulence parameters, n, Cy, and Cz, should be expressed as functions of wind speed. Four types of turbulernc-e were specified, based on the Brookhaven definitions, as indicated in Table XIII, with slightly modified values of the parameters which were obtained from concentration measurements at the Brookhaven experimental station. See also "The Relationship Between Peak and Mean Concentrations," by I. A. Singer, Paper No. 60-46, Air Pollution Control Association, May, 1960, Table I. 79

TABLE VIII VALUES OF TURBULENCE PARAMETERS AS MODIFIED FROM BROOKHAVEN EXPERIMENTS BY E. W.'-IEWSON (Trans. ASME, October, 1955, P. 1167)..Type of Parameter Turbulence n Cy(meters )n/2 Cz(meters)n/2 BI 0.28 0.40 0.39 c o.48 0.54 0.34 B2 0.17 0.31 0.36 E 0.38 0.47 0.365 Type E was devised for the special purpose of that investigation and was obtained by taking averages of the values of Types B1 and C. TABLE IX TURBULENCE TYPE AS A FUNCTION OF WIND SPEED Range of Wind Type of Velocity, mph Turbulence 0- 7 B2 8-18 BY > 18 C The parameters are fairly reliable even for conditions prevailing in day light when the turbulence conditions are variable with changing wind velocities, but the same parameters for the hours of darkness are less affected by changing turbulence with changing velocity. For winds 0-7 mph, all turbulence is assumed to be Type R,, except for 1/2 hour each day for the five-month period from May to Septer'b-r, inclusive. During these 1/2-hour periods, intense concentrations may occur at thie surface. These are evaluated by a separate technique, to be discussed later. under the heading "Breakup of Temperature Inversions." BREAKUP OF TEMPERATURE INVERSIONS On clear nights with light winds the plume from a stack flows downwind with sufficient horizontal diffusion to produce a lateral spreading with an angle of approximately 5~. Thle vertical diffusion is extremely small, so that the plurme 80

may flow 20 or 30 miles with little increase in vertical thickness. The concentrations are very high in this slowly expanding horizontal ribbon of gas. After sunrise, solar heating of the ground warms a layer of air which is initially close to the ground but rapidly grows upward. Marked turbulence associated with high temperature lapse rates develops in this heated layer. When the top of the turbulent layer grows to the height of the ribbon of gas, the gas is rapidly diffused downward and reaches the ground in high concentrations under the plume. These high concentrations, which last only about 1/2 hour, occur about 8 or 9 a.m. during the warmer portion of the year, and are known as "fumigations." It is sometimes assumed that one fumigation of 1/2-hour duration, occurs each day during the period May to September, inclusive, and that the combined hours of fumigations should be divided equally between the 16 segmental areas around the plant. This would give 8 hours per year for each area. Actually they will usually not occur except with wind velocities lower than about 7 mph and the. hours will not be divided equally between the various directional areas, but in proportion to the frequency of occurrence of wind velocities below 7 mph in each area. This type of inversion is usually limited in thickness to several hundred feet, depending on the terrain and the weather conditions in the general area. There is no systematic record of the thickness of inversion above 200 ft in the Labrador City area. Observations of three inversions in a valley in Vermont are given in the paper "Valley Wind Phenomena and Air Pollution Problems," by Ben Davidson, Paper No. 60-45, Air Pollution Control Association, 1960, Fig. 35. The typically rapid increase of velocity with height extended to approximately 350, 450, and 950 ft, respectively. It is stated that the "profile" of the 950-ft case "represents the most extreme profile that we have observed." It appears at the time of this writing that the stack height which is finally adopted to meet other requirements, will place the plume at a height where it is beyond the reach of all except very extreme and infrequent ground inversions. It is therefore recommended that no attempt be made to predict the frequency, duration, or intensity of ground concentrations arising from the breakup of atmospheric temperature inversions. ATMOSPHERIC STAGNATIONS There are occasions when the pressure gradient is too small to generate enough wind to disperse pollutants adequately in the atmosphere. Such stagnant conditions may become serious when they last for several days so that the accumulated pollutants reach a high concentration. Fortunately these stagnations are relatively infrequent in any given area. Their adverse effects depend upon their duration, the presence of pollutants in the area, and their coincidence with the growing season of susceptible plant life.

Stagnations in industrial areas have sometimes induced such high concentrations of pollution that people have died or suffered injury, but this has occurred in an extremely small percentage of all cases of stagnation. The warm anticyclones in which stagnations occur are deep and extend thousands of feet into the upper atmosphere. However, the stagnations are not a dead calm during their entire period, and even their very light winds have an increase of velocity with height. Higher stacks may therefore discharge the gases into a less stagnant wind regime so that there is a better chance for horizontal dispersion to take place, with a consequent lowering of the concentrations which' reach the ground through vertical diffusion. There is insufficient infommation about the meteorological structure of stagnations to permit a quantitative estimate of the benefits to be derived from stacks of different heights, especially where the situation is complicated by a lack of records in the area. It is therefore recommended that no attempt be made to predict the intensity of ground concentration that would accompany a stagnation of a given duration. 82

APPENDIX B. ATMOSPHERIC DIFFUSION, FINE DUST It is seen from Table VII that 95.1$ (by weight) of the dust particles are less than 10 microns in size. It is assumed that these will behave essentially as a gas while the plume- is being diffused in its travel downwind. Some of the larger particles (+20) may tend to fall out rather soon but it will be on the side of safety to assume that all of the 155 x 106 particles per cu ft will be diffused the same as gaseous parcels within the gaseous plume, and that this behavior will persist even to the most distant of the critical areas shown in Fig. 4. Sutton s Equation, discussed in Appendix A and shown explicitly in Fig. A2, shows X (Chi), the mass concentration of the gaseous pollutant (S02 for example), on the left hand side of the equation; and Q, the rate at which the gaseous pollutant is leaving the point source, expressed as mass per unit time. The number of units of mass may be replaced by the number of particles in each case, with appropriate changes in the dimensional system, in order to obtain the number of particles per cubic foot near the ground at any desired distance downwind from the stack. In order to expedite the use of the equation it was set up for an IBM computer and the results tabulated in Table X. SU'TION'S EQUATION (x=O, y=O) Concentration 2 Q h2 of pollutant =(2-n) C2.X(2-n) (Chi) X L[ Cy CZ Vw X z X(2-n (Chi) X = Grams of pollutant per cubic meter at a point at ground level and a distance X meters downwind from stack. Q = Grams of pollutant released at source per second. Vw = Velocity of wind, meters per second CyCz,n = Diffusion parameters. X = Distance (meters) downwind from stack at which concentration = (Chi) X. h = Height of center line of plume above ground level (meters). e = Base of natural logarithms. Note that e is raised to a bracketed power.

Diffusion Parameters Wind Velocity (hourly average) (mph) n Cy Cz Large instability B2 0 - 7.17.31.36 Unstable B1 8 - 18.28.40.39 Adiabatic C > 18.48. 54.34 Using these parameters, Sutton's Equation was solved by an IBM machine and values of X tabulated in Table X. Dust concentration values for the Labrador City mill were then calculated using this table as follows. COMPUTATION OF DUST CONCENTRATION, X, NEAR GROUND AT DOWNWIND DISTANCE, X References: (1) For dust loading see memorandum to A. Sobering from I. Mozer (February 3, 1964). (2) For ranges of dust sizes see table attached to memorandum (Table VII of this report). (3) For Theory of Diffusion see Sutton's Equation (Appendix A of this report). Summer dust loading = 0.24 grains per cu ft = 0.0155 gams per cu ft 1 gram 9999 x 10 particles 9999 x 06 x 0.0155 = 155 x 06 MPPCF Stack gas discharge -= 800,000 cfm (letter dated August 21, 1965, A.R.M.) = 13,300 cfs = 206.5 grams per sec Using this stack discharge rate, the dust concentration under the various conditions which were examined, were calculated by the procedure explained in Part I, page 29 and graphed in Figs( 19 through 128, inclusive. 84

TABLE X (IBM Tabulation) Tabulated values of (Chi) X expressed in grams per cubic meter at ground level (z = 0), directly under plume center line (y = 0) at X feet from stack. For convenience, Q is assumed to be 1000 grams per second emitted from stack. Range of stack height (h), 100 feet to 700 feet. Range of wind velocity, 5 miles per hour to 60 miles per hour. Range of distance downwind (X), 500 feet to 20,000 feet. Note that in the preparation of this table meters per second were converted to miles per hour and meters were converted to feet, but the concentration was left in terms of grams per cubic meter. See pages 29-30 (Part I) for example illustrating the use of this table in calculating the concentrations graphed in Figs. 19 through 128, inclusive. 85

TABLE X VIAW OF' CHII FOR VAWU OF B (Height to Center Line of Pltin) WIND K VELOCITY RANGE (H- IN FEET) (MPH) (FEE T) 100 150 200 250 300 350 400 450 500 60070 5 500. 12 f93 30.0504519.0141761.0021715.0003170.0000357.0000024.0000001.0000000.0000000 0000 5 1000.0591865.0458628.0320918.0202779.0115703.00S96tb.00217138.0011654.0004422.0CC0469 0003 5 2000.0192763.0179420.0162277.0142620.0121799.0101015.0iR1505.006 3h65.004db27. fl25'466.)26 5 3000.0094587.0091411..0087143.0081946.0076014.0064555.0062 781.005589?.0049093.003b>348 0258 5 4000.0056501.0055372.0053830.0051910.0049656.0047119.0044 351.0041411.0038354.1002115.063 5 5000.0037762.0037259.0036566.0035694.0034656.0033468.0032 149.O303115.0029189.0025940.026 5 6000.0027132.0026872.0026513.0026059.0025514.0024884.0024117.0023400.0022562.0C2C133.086 5 7000.0020502.0020353.0020148.0019881.0019573.0019207.0018194.0018337.0017839.001673? 0152 5 8000.0016077.0015986.0015860.0015698.0015504.0015277.0015019.0014732.0014411.0013115.022 5 9000 CC012971.0012912.0012830.0012724.0012597.0012448.0012278.001.20H).00118q1.0011412.008 5 10000.0010703.0010663.0010607.0010535.0010448.0010346.0010230.001,0099.0009956.000T631.096 5 11000.0008995.0008966.0008926.0008876.0008814.0008742.0008659.0008566.0008464.0008231.076 5 12000.0007673.0007653.0007624.0007587.0007542.0007489.0001429.0007361.0007286.0007114.061 5 13000.0006630.0006614.0006593.0006565.0006532.0006492.000644 7.0006396.0006339.0006213 0066 5 14000.0005790.0005779.0005162.0005741.0005715 -.0005685.0005651.0005612.0005568.0005469.055 15 15000.0005105.0005095.0005083.0005066.0005046.0005023.0004996.0004965.0004932.0004854.046 5 16000.0004537.0004529.0004519.0004506.0004491.0004472.0004451.0004427.0004400.0004338.046 5 17000.0004061.0004055.0004047.0004037.0004024.0004009.000 3992.0003972.0003951.0003902.034 OD ~5 18000.0003b58.0003653.0003647.0003638.0003628.0003616.0003602.0003586.0003569.0003529.038 cr\ ~ 5 19000.0003314.0003310.0003304.00032'*7.0003289.0003279.0003268.0003255.0003240.000le07.036 5 20000.0003017.0003014.0003009.000)004.0002997.0002988.0002979.0002968.0002:)56.0002929.029 10 500.0547933.0143030.0021818.0001945.0000101.0000003.0000000.0000000.0000000.00090000.000 10 1000.035L518.0233823.0132131.0063430.0025868.0008962.0002638.0000660.0000140.0000004.000 10 2000.0131914.0118326.0099503.0019633.0060653.0043965.00 30 330.0019913.0012442.0004187.015 10 3000.0070011.0065884.0060439.0054094.0047231.0040245.003345 3.00Z71,30.0021467.0011482.067 10 4000.0043551.0041,946.0039791.0031195.0034244.0031058.0021748.0024421.0021172.0015212.009 10 5000.C029955.00291.99.0028111.0026903.0025430.0023193.0022034.0020198.0018326.0014631.011 10 6000.0022013.0021605.0021047.0020350.0019530.0018603.0017588.0016504.00153~72.0013039.003 10 1000.0016945.0016704.0016371.0015954.001.5458.0014892.0014265.0013586.0012845.0011339.096 10 8000.0013500.0013346.0013135.0012868.0012549.0012183.0011t773.0011325.0010645.0009810.081 10 9000.0011042.0010940.0010798.0010619.0010404.0010155.0009875.0009561. 0009235.000d509 0072 10 1 0000.C009224.0009152.0009053.0008927.0008776.0008601.000840 3.0008184.0007945.0007420.064 1 0 11000.0007836.0007785.0007113.0001622.0007512.0001385.0007240.0007080.0006904.0006515.068 10 12000.0006752.0006714.0006661.0006593.0006511.0006416.0006307.0006lb7.0006055.0005760.052 10 13000.0005887.0005858.,0005318.0005766.0005704.0005631.0005548.0005455.0005354.0005125.046 10 14000.9005185.0005162.0005131..0005091.0005042.0004986.0004921.0004849.0004169.0C04590.048 10 15000.0004607.000458).0004564.0004532.0004494.0004449.0004 398.0004340.0004277.0004134.037 10 16000.0004124.0004%110.0004090.0004064.0004034.0003997.000 3956.0003910.0003859.0003743.031 10 11000.0003717.0003705.0003689.0003668.0003643.0003614.0003580.0003542.0003501.0003406.039 10 18000.0003369.0003360.0003347.0003330.0003309.0003285.0003257.0003226.0003191.000M313.002 10 19000.0103071.0003063.0003052.0003038.0003021.0003000.0002971.0002951.0002923.00C2857.028 10 20000 C0002812.0002805.0002796.0002784.0002710.0002753.0002 733.0002712.0002687.0002632.026

WIND x ~~~~~~~~~~~~~TABIE X (Continued) VELOCITY RANGE (H IN FEET) (MH) (FEET) 100 150 200 250 300 350 400 450 500 60070 15 500.0365289.0095351.0014545.0001297.0000068.0000002.0900000.0000000.0000000.0000000.000 15 1000.0234345.0155882.0088087.0042287.0017245.0005975.00011758.0000440.000009 i.0rn03.000003 15 2000.0049276.0078884.0066335.0053089.0040435.0019310.0020220.0013275.0009295.0002792.007 15 3000.0046714.0043923.0040293.0036063.0031491.0026830.0022302.0018097.0014311.0008321.048 15 4000.0029034.0027964.0026531.0024196.0022829.0020705.0018498.,0016280.0014115.0010141.066 15 5000.0019970.0019466.001.8781.0017935.0016953.0015862.0014690.0013465.0012218.0009754.077 15 6000.0014675.0014403.0014031.0013567.0013020.0012402.0011725.0011003.0010248.0008693.075 15 1000.0011297.0011136.0010914.0010636.001,0306.0009928.0009510.0009057.0008577.00075599 0061 15 8000.0009000.0008898.0008757.0004579.0008366.0008122.0007849.0007550.0007230.0006540.050 15 9000.0007362.0007293.0007199.0007079'.0006936.0006770.000658 3.0006378.0006156.0005672.054 15 10000.0006149.0006101.0006035.0005952.0005851.0005734.0005602.0005456.0005297.0004947.046 15 11000.0005224.0005190.0005142.0005081.0005008.0004923.000482 7.0004720.0004603.0004343.045 15 12000.0004501.0004476.0004440.0004395.0004341.0004277.0004205.0004124.0004036.0003840.032 15 13000.0003925.0003905.0003878.0003844.0003802.0003754.0003698.0003637.0003569.0003417.034 15 14000.0003457.0003442.0003421.0003394.0003362.0003324.0003281.0003232.00031 79.0003060.022 15 15000.0003071.0003059.0003043.0003022.0002996 -.0002966.0002932.0002893.0002851.0002756.024 15 16000.0002749.0002740.0002727.0002710.0002Th89.0002665.0002637.0002607.0002572.0002495.020 15 17000.0002478.0002470.0002459.0002445.0002429.0002409.0002387.0002362.0002334.0002271.029 15 18000.0002246.0002240.0002231.0002220.0002206.0q002190.0002171.0002151.0002128.0002075.021 i5 19000.0002047.0002042.0002035.0002025.0002014.0002000.0001985.0001968.0001948.0001905.015 15 20000.0001875.0001870.0001864.0001856.0901847.0001835.0001822.0001808.0001792.0001755.011 20 500.0039110.0000313.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.000 20 lQ00.0168818.0031350.0002967.0000143.0000004.0000000.0000000.0000000.0000000.0000000.000 120 2000.0141603.0078716.0034598.0012024.0003304.0000718.0000123.0000017.0000002.0000000.000 20 3000.0094901.0069117.0044343.0025060.0012476.0005471.0002114.0000719.0000216.0000013.000 20 4000.0067047.0054634.0041018.0028374.0018085.0010620.0005746.0002865.0001316.0000217.002 20 5000.0050065.0043271.0035279.0027133.0019686.0013473.0008699.0005298.0003044.0000843.008 20 6000.0039034.0034949.0029938.0024536.0019239.0014433.0010359.0007114.0004674.0001767.006 20 7000.0031456.0028822.0025501.0021787.0017973.01014318.00L1014.0008181.0005868.0002718.019 20 8000.0026010.0024218.0021.915.0019272.0016471.0013681.0011043.0008663.0006605.0003524.017 20 9000.0021951.0020679.0019021.0017084.0014982.0012828.0010 125.0008755.0006978.0004127.021 20 10000.0018835.0017901.001,6671.0015213.0013603.0011918.0010232.0008607.0007095.0004535.027 20 11000.0016385.0015680.0014743.0013620.0012364.0011027.0009664.0008321.0007040.0004780.032 20 12000.0014418.0013873.0013144.0012263.0011266.0010191.0009078.0007963.0006878.0004900.038 20 1)1000.0012811.0012381.0011804.0011100.0010297.0009423.0008506.0007574.0006653.0004927.035 20 14000.0011480.0011135.0010670.0010100.0009444.0008725.0007962.0007 178.0006392.0004888.035 20 15000.0010162.0010081.0009701.0009233.0008692.0008093.0007453.0006789.0006116.0004803.031 20 16000.0009413.0009182.0003867.0008479.0008027.0007524.0006982.0006416.0005837.0004688.031 20 17000.0008600.0008406.0008144.0007817.0007437.0007010.0006549.0006062.0005561. 0004554.039 20 18000.0007896.0007733.0007511.0007235.0006911.0006547.0006151.0005731.0005295.0004409.035 20 19(00.000,7282.0007144.0006955.0006719.0006442.0006128.0005786.0005421.0005040.0004258.038 20 20000.0006744.0006625.0006463.000O6250.0006020.0005749.0005451.0005132.0004#798.000410 0031

u ZNO Tx~r~ x (Cont —) x VELQC ITY RANGE { H IN FEET ) IMPHI....I]:EEZ}......__JLQ0...... 15({....1C)0 250 300 350 400 450 500 600 700 25 500.0031288.0000250.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000 2s!oc{o.f31~s1o~.nn25oRo..ooo2~?~t.,00_00LL5..0000003.0000000.0000000.0000000.0000000.0000000.0000000 25 2000.0113282.0062973.0027679.0009619.0002643.0000574.0000099.0000013.0000001,.0000000 ~ OO00OO0 25 3000.......001592].....0055293......,00~5_~tl~t_.0020048.0009981.0004377.0001691.0000575.0000172.00000!1.0000000 25 4000.0053637.0043701'.0032815.0022699.0014468.0008496.000459?.0002292.0001053.0000174,,0000021 25 5000 00040057 __,t00~4~)L?....0020~23.0021707.0015749.0010779' 0006959.0004238.0002435.0000675.0000148 25 6000.0031227.0027959.0023950.0019629.0015391.0011546.0008287.0005691.0003739.000141 3.0000448 25 7000,0025165.0023058.0020401.0017429.0014379.0011454.000881 1.0006545.0004694.0002174.0000876 25 8000.0020808.0019374.0017532.0015418.0013177.0010944.0008835.0006931.0005284.0002819.0001342 25 9000.0017561.0016543.0015217.0013(;,67.0011985.0010262.0008580.0007004.0005583.0003302.0001775 25 10000.0015068.0014321.0013337.0012170.0010882.0009534.0008185.0006886.0005676.0003628.O002138 25 11000,001)10~ __-001~544_.001!79~____.0010896.0009891.0008822.0007731,0006657.000563~ _.000382W.Q_00.2420 25 12000.0011534.0011098.0010515.0009810.0000013.0008153.0007263.0006371.0005503.0003920.0002625 25 13000,0010249.0009905.0009443.0008880,0008238.0007538.0006805,,0006059..0005.tZ~....,0003941.,0002764 25 14000.0009184.0008908.0008536.0008080.0007556.0006980.0006369.0005742.0005114.0003910.0002848 25 15000,0008790.0008065.0007761.0007387,0006954.0006475,00059(t3 0005431,0004~9~,0003843.0002888 25 16000.0007530.0007345.0007094.0006783.0006421.0006019.0005586.0005133.0004669.0003751.0002895 25 1]'000,,0006880.0006725.0006~515 _. 00 0~,_54.0005949.0005608 _,0005239.0004850.0004449 _~0003643__,0_002877 25 18000.0006317.0006187.0006009.0005788.0005529.0005238.0004921.0004585.0004236.0003527,,000284{. 25 19000.0005826.0005715.0005564.0005375....0005159.000490}.00046~9,0004337.,000_4_03_2.0003406..0002790 25 20000.0005395.0005300.0005170.0005008.00048 16.0004599.0004361.0004106,.0003838.000328~.0002731 30 500.002601'3.0000208.0000000.0000000.0000000.0000000.0000000.0000000.0000000.0000000.00000OO C]o 30 1000.01i2586.0020900.0001978.0000095.0000002.0000000.0000000.0000000. 0000000.0000000.0000000 Oo 30 2000.0094402.0052~7R.0023066.0008016.0002203.0000479,0000082.0000011._00_00001. 0_000000_. OOOOOQO 30 3000.0063267.0046078.0029562.0016707.0008317 ~ 000364 7.0001409.0000480.0000144 o 0000009.0000000~ 30 4000.0044698.0036422.0027345.001~916.0012056.0007080.0003831.0001910.0000877..0000145 ~ 000001? 30 5000.0033377.0028847.0023519.0018089.0013124.0008982.0005799.0003532.0002029 ~ 0000562.0000123 30 6000.0076023.0023299.0019959.0016357.0012826.0009622.0006906.0004743.0003116.0001.178.0000373 30 7000.0020971.0019215.0017001.0014524.0011982.0009545.0007343.0005454.0003912.0001812.0000730 30 EIOO0.0017340.0016145.0014610.0012848.0010981.0009120.0007362.0005775.0004403 ~ 0__0_07349.0001118 30 9000.0014634.0013786.0012681.0011389.0009988.0008552.0001150.0005837. 0004652.0002751.000141'9 30 10000.0012557.0011934.0011114.0010142 ~ 0009068.0007945. 0006821.0005138.0004730.0003021,0001711 30 11000.0010923.0010453.0009829.0009080,0008243.0007352.0006443.0005547.0004693.0003187.0002017 30 12000.0009612.0009248 ~ 0008762,0008175.0007510.0006794.0006052.0005309. 0004586. 0003266,0002181 30 13000.000851, 1.0008254.0007869.0007400.0006865.0006282.0005671.0005049.0004435.0003284.0002303 30 14000.0007653.0007423.0007113.0006733.0006296.0005816.0005308.0004?85.0004262.....0003_259=.0002373 30 15000.0006908.0006721.0006467.0006156.00051'95.0005395.0004969.0004526.0004077. 0003202. 0002407 30 16000.0006275.0006121.0005911.0005652.0005351.0005016.0004655.0004277.0003891.0003126 _.0002413 30 17000.0005733.0005604.0005429.0005212.0004958.0004674.0004366.0004042.0003?08.0003036.0002398 30 18000.0005264.0005155.0005007.0004823.0004607.0004365.0004101.0003820.0003530.0002939.0002367 30 19000.0004855.0004763.0004637. 00044 79.0004294.0004086.0003857.0003614.00~3360.0002838. 0-002 325 30 20000. 000~,496.0004417.0004309.0004173.0004014.0003833.0003634.0003422.0003199.0002736.0002276

WIND X VELOCITY RANGE,H IN FEET &MPH) &FEET) %00 150 200 2.50 300 )50 400 450 500 600 700 35 500.0022)48. COOOt 79 ~ 0000000.COOOOO0. 0000000.00C, 0000.0000000.0000CO0. OOOOOO0. OOOOOCO. OOqOOO0 35 toog.0096502.00t79t4.0001b~6.LOOO08Z.000C002.0000000.0000000.000~000.0000000. 0000000. OCOOOO0 35 ZOO0.OOHOg16.004498J.001971l.00068~'J. 000!.C~,R.0000410.0000070.000001O.0000001. OC~00000. 0000000 35 3000.0064229.0039495.0025339.0C14320.0007129.0003[2b.0001208.00004[!.0000173.OOOOOOR. 0000000 35 4000.003~)12.00)1219.002~439.OOlb214.0010)J4.00OHO69.OGC ~283.0001637.000C752.9C00124.00000[5 35 ~,bOO0.0028609.C024720.0020160.0015505.0011249. 000?6'~9.0004~7!.000302/.0001 7~9. 00004~Z. 0000106 35 6000.0022305.001~97%.00[7107.001402!.00[0'J94.0008247.0005920.0004065.0002671.OCCICiO.0000320 35 7COO.0011975.0010470.0014572.0012449.0010271.0008182.0006294.0004075.000,~,~53. CO0,, 15).~.0000625 35 8000.00148b).00t J~839.0012623.00ttOt5.0009412.00078t?.00063t0.0004950.000.~7 74.00020t4. 0000958 35 9000.0012544.0OilSt?.0010R69.000976Z.0008561.0007350.00C6129.0005003.0005988.0002358.0001268 J5 JOOO0.001076J.fJ010229.0009526.000869J.0007773.0006810,0005847.6004918.0004054.0002591.0001527 -35 [[000.0009363.0008960.0008425.000778].0007065.00Ohio I.0005522.0004755.0004023.0002731.0001729 35 12000.0008239.0007927.000?hi!.0001'00 f.0006438.0005824.0005 [88.0004550.000]gig. OOC, Zt~OO.000J875 35 13000.000732!.0007075.0006745.0066545.0065884.0005J85 -.000486t.0L;04528.000~eO2.00028t5.000197~ 35 14000. 0006560.0006363.0006097.000577[.0005597.0004985.0004550.C004[G2.0003653.000279~, 00020-3~ 35 [5000.000592[.000576[.0005544.0005276. 0004'J67.0004625.0004250.0003879.0003495.0002745.0002063 35 16000.0005379.000624 / ~ 0005067. 00C1+845.0004587.0004~99.0003990.0001666.000~335. 000267~. 0002068 35 17000. OO0~,qP[4.0004804. 000465,~.0004~,67.0004249.000400b.0003742. 00~,3464.OCO.3t?~1.0002602.0002055 35 t8000.0004512.00044 18.0004292.UOU41-34.000~949.000374'[.0003515.0003275.0003026.300251~.0002029.35 [9000.0004JbJ.0004082.0001974.0003839 ~ 00030,8[.0003502.0003306.0003698.0002880.000~'43:~.000%993;35 20000,000~864,0003786, 0003693,0003577,0003440,0003285,0003[t5,00029 }3,0002 742., 0002~46,000[951 OD 40 500.00t9555.0000156. 0000000. OOGOOO0.0000000.0000000. 0000000. 0000000.0000000. OOCCCOO. 0000000 ~:)!,O tOO0.0084439.00t5675.0001484.00CCC72.0000002.0000000.0000000.0000000.0000000.000000U. 0000000 40 2000.001080t.0039358.0017299.UOG60t2.0001652.0000359.0000062 ~ 0000008.COOOOOt.0000000. 0000000 40 JOO0.0047450.0034558.0022171.0012530.00062 38 ~ 0002 7315.COOlOST. 0000360. 0000108. 000000?. 0000000 ~0 4000.0033523.0027Jl?.0020509.00t4tS7.0009042.00055[0.0002873.0001432.00(J0658.0000[09.0000013 40 5000,0025033,0021635,Otti 7640, U0['3567,0009843,0006 737, 00043~9, 0002649,000[572, 000042Z, 0000093 40 6000.00tqSt?.00t1475.00t4969.00[2268.0009620.00012t?.0005 tRO.0003557.0002337.000088 ).0000280 40 7000.0015728.00144%l.0012750.0010893.0008987.0007t59.0005507.0004090.00029J4.000t J59. 0000547 40 8000.00t3005.0012109.0010957. 0009636. C001B235.0006840.0005522.0004332.C003302.000t 162. 0000839 40 9000.001097b.0010~40.00095!t.0006542.000749!.0006414.000,5362.00r~4378.0003489.0002064.000ll09 40 10000.00094!,~ o000895t.0008336.0007606.0006801.0005959.COOS[t6.0004503.0003587.0002767.0001336 40 JlOO0.000~lq2.0007840.0007371.C00,68 tO.0006182.0005514.0004832.000416l.0003520.000259U.0001512 40 12000.0U07209.0006936.00065 t2.~)006J JJ.0005633.0005096.0fU04539.0003982.0003419. 0002450.000[64[ 40!3000.0006406.000619!.0005902. 0005:~50.0005149.00047[J.0004253.n003787.0003126.0002463.0001721 40 I4000.0005740.0005567.00053~b.0005050.0004722.0004362.000)98!.0003589.0003[9(,.0002444.000[780 40 tbOO0.000~!St.000504 l.0004035t o00046t?.0004346.0004047.0003727.0003394.0003058.0002~02.0001805 40 16000.0004707.000459[.C004434.0004239.00040t3.0003~62.0003401L.,Q~032.0~.000~gtR.0002344.000[8[0 40 17000.C004300.0004203.0004072.000.3909.0003718.0003505.00032?4.000303[.000278t.0002277.0001798 40 18000,000~394B,C003867,0003756,C0056t?,0003456,00032?4,0003075,0002~b5,0002647.0002204,000J??5 40 19000.0003641.0003572.00034?7.C, 003360.000322t.0003064.0002895.00027[0.0002520.0002129. 0001744i 40 20000.00333?2.00033t3.0003,731.000.3t-30.00030[0 o00028~5.C002726.0002566.0002399.0082052.000[707

TABT. g X (Cont..in'u~d)'d INO X VELOCITY RAtiGE (H IN FEET (MPH) ( FEET ) 100 150 200 750 300 350 4.00 450 500,'",,G 0 700 45 500.00[73f'2.000013q 0000000.00uCOO0 0000000.0000000.00000GO. OOnOOO0. C}000000. 0000000. 0000000 65 1000.0075051,C013933 000[319, (JOCO06~ 0000002.0000000.000000G.0000000. 0000000.000000~. 0000000 65 2000.0062935.00~~985 0010377. 0005.~44 0001468.0000319.0000055.00C0007.OOOOCOJ. 0000000. gOOOOO0 45 3000.OO~2i /8.0C10711~ 0019708.00ll138 0005545.0002432.0C00939.00C032C ~0000096. OOOOOC6. 6000000 ~5 4000.0029799.002',282 001823C.001261I 0008038.0004720.0002554.0001~71.0000585. 0000016.0000Oil 45 5000.0022251.0019231 0015080.9012059 0008?49.0005988.0003866.0002355.0001353.0000375.0000082 45 6000.0017)49.0015533 0013306.CO/OgO5 0008551.0006415. 090~604.0003162.0002077.0000185. 0000249 45 7000.0013~bl.0012810 001133~. 000908J 0007988.0006~64.0C046~5.00C3636.0002608.0001208. 0000486 ~,5 80C0.0011560.0010764 OOOqr40.0008565 0007320.0006080 ~0004908.0003850.0002935.0001560 ~0000?45 45 9000.0009136.00001~[ 000845~,.0007593 0006658.0005101.0004167.0003891.000~102.000183t,.0000986 45 10000.0008371.0007956 0007400.00~6761 0006046.0005297.0004547.0003825.0003153.0002016.0001188 45 11000.0007282.0006969 0006552. 000605~, 00C5995.000490 l.0001,295.00~3698.0003l;39.0002124.0001344 45 12000.0006408.0006166 000582,2.0005450 0005007.0004530.0004035.0003539.000305 7.0002178.000/458 ~5 13000.0005694.00051303 0005246.00049J3 000457!.060~188.0003780.0003366.0002957.0002190.0001535 65 14000.0005102.000494'~ 0004742.0004489 OOOq 198.0003878.0003539.0003190.0002841.0002172.0001582 45 15000.0004605.0004~8[ 0002,312.000910~, 0003863.0003597.0003313.0003017.0002118.0002[35.0001605 45 16000.0004184.0004081 0003941.0003768 0003567.000334~.0003103.0002851.0002594. 000.2084.0001608 65 17000.0003822.000{ 736 0003619 ~ 0003974 000)305. OO0:J116.00029 11.0002694.0002472. 0002024,,0001598 45 18000.0003509.0003437 0003338.0003216 0003072.0002910.0002734.0002547.0002355.0001959.0001578 65 19000.00032J7.0003175 0003091.0002986 0002863.0002124.0002572.0002409.0002240.0001892.0001550 45 20000.0002997.0002945 0002872.0002162 0002676.0002555.0002423.0002281.00021 32.0001824.0001517 50 500.00t56~4.0000125 0000000.0000000 0000000.0000000 ~ 0000000.0000000.0000000 ~ OOOOOO0.0000000 50 1000.0067551.0012540 000i187. 00'00057 000C001.0000000.0000000.0000000. 0000000. 0000000 ~ 0000000 50 2000.0056641.003,1481 0013839.C001,810 0001322.0000287. 000001,9.0000007.0000001.0000000. 0000000 50 3000.00)7960.002764{' 0017737.0010024 0004990.0002188.0000845.0000288.0000086.0000005 ~ 0000000 50 t, 000.0026819.0021853 00161,07.0011350 000?234.0004248.0002298.0001146.0000526. 0000087.000001O 50 5000.0020026.001?309 0014112.00i0853 00078?4.0005389.0003479.00021 i9.0001217 ~ 000033 I.0000074 50 6000.0015614.0013980 0011975.0009814 0007696.0005773. 0004144.0002846.0001869.000070 1.0000224 50 7000.0012583.0011529 00i0200.000~?i5 0007189.0005727 ~ 0004406.00032 72.0002347.000 LOW?. 0000438 50 8000.0010404.0009687 0008706.0007709 0006588.0005412.0004417.0003465.0002642.0001410.00006?1 50 9000.0008780.C008272 0007609.0006834 0005993.0005131.0004290. 0003502.0002791.0001651.0000887 50 tOOO0.0007534.0007161 0006668.0006085 0005441.000~767.000~,093.0003~,43.0002838.0001814.0001069 50 11000,,0006554.0006272 0005897.0005448 000494~.0004411.0003866.0003328.0002816.0001912.000121O 50 12000.0005767.0005549 0005257.0004905 0004506.0004071.0003631.0003185.0002751. 0001960.0001313 50 13000.0005124.0004953 0004721.0004440 00041[q.000~76'~.0003402.0003030.000266l.0001971.0001382 50 14000.0004592.0004454 000',768. 000~,040 0003778.0003490.0003185.0002811.0002557.0001955.000142~ 50 15000.0004 I,~,5.00C~403 J 0003880.00CJbgJ, 0003471.0003Z37.00,0298 1.0002716.0002446.0001021.000144~ 50 16000.0003765.0003673 000~547.0003391 0003211.0003010.0002793.0002566.0002335.0001875. 0001448 50 17000.000 ~440.0003363 000)257.000~127 0002975.0002804.0002620.0002425.0002225.00015122.0001439 50 18000.0003158.000309~ 000300t,.0002~94 0002/64.0002619.00021,60.0002292.0002116.0001764.0001420 50 19000.0002913.0002858 0002782.~;002688 0002577.0002451.0002314.0002[68.0002016.OCOtr03.0001395 50 20000.0002698 ~ 0002~,50 0002585.0002504 0002~08.0002300.0002181.000205].0001919.000[642.0001365

w 1 NO "~A.~ Z ( ~oncl~,,~d, ea) Z VELOC!TY RAr,~G~ IH IN FEET (MPH) (FEFf! 1,5)0 150 ZOO g50.300 350 400 ",SO 500 600 700 55 ~on o~14222 ~ocoolt,..o0ouo0o ~0oocooo oooooco.ooooooo ~0000000 ~ooooooo ~ooooooo ~cr, ooooo ~0000000 55 toou o05141,).0ott400.0oolo?) ~0o0o072 0000oo I.0o00000 ~000000'0 ~0000o0o.oo00o00 ~oo30oJo ~ 0000000 ~5 zOO0 00314'JJ ~0028624 ~0012581 ~00043/2 OOOIZO[.0000261 ~C000045 ~ OOOOOOe~ ~0000001.00c0000 ~0000000 55 ~000 00~4509.0025153 ~C010125 ~90091[3 0004537.0001990 ~0000769 ~0000262 ~0000078.0000005 ~0000000 65 4000 0024381 ~0019861.0014916 ~0010318 0006576 ~0003862 ~0002089.0001042.00004 7~ ~b000079.0000009 55 5000 0018206 ~0015i'35 ~0012829.0009867 0007159.0004899 ~0003[63.0001926.00OttO7 ~000[)307.0000067 55 bOO0 0014t~4.0012~0~ ~0010891 ~0008922 0006996.0005248 ~000376? ~0002587.0001700.0000642 ~0000203 75 7C00 0011439 ~0010481 ~0009213 ~n001922 0006536.0005207 ~0004005 ~0002975.0002154.O~Ou~ ~0000398 55 8000 0009458 ~000880? ~000/'~69.0007008 0005989.0004975 ~00040t6 ~0003150 ~0002402.00312'~t.0000610 55 ~000 0007982 ~0007520 ~000691?.04)06212 0005'~48.0004666 ~0003 ~00 ~0003184 ~000253E~ ~0001501.0000807 55 tnOCO 0006849 ~0006510 ~0000062 ~00055 f[ 0004946 ~0004334.0003721.00031 30.0002580 ~0001649 ~0000972 55 I 1090 0005958 ~0005?02 ~0005361.0004953 0004496.0001010.000351~, ~0003026 ~0002560.0001738.000[ tO0 55 12000 309524.3 ~0005045 ~0004?80.0004459 0004091 ~0005706 ~0003301.0002896 ~000250[ ~0601 182.0001193 75 13000 0004659. C004502.000,,2 92.0004036 0003745 ~0003427 ~0003093.0002754 ~0002419 ~000[ 792 ~000[256 55 t',000 0004174.0004049 ~000t880 ~0003675 0003434.00031 13 ~0002895.0002610.0002324 ~0001171.0001294 55 [t~000 0003768 ~0003666.0003528 ~)00~358 0003161 ~0002943 ~0002710 ~0002469 ~0002224 ~0001147.0001313 55 16000 000342).030~339 ~0003224 ~0003083 00029[9.0002736.0002539.0002333 ~0002122 ~0001 105 ~000[3[6 55 [ 7000 0003127.0003057.0002~o1 ~000284j 0002 t04 ~0002549 ~0002381 ~0002205 ~0002022 ~0001~56.C001308 55 1~000 0002871 ~0002812 ~0002731 ~00026][ 000251~ ~000238! ~0002237.0002084 ~0001v25.0001603.000t29[ 55 19000 0002648 ~0002598.0002529 ~0002443 0002342 ~0002229.0002104 ~0001971 ~000[833 ~0001548.0001268 55 20000 0002452.000240'a.0002350.0002276 00021R9.000209 [.0001982 ~0001866.pOOl 145.00014:) f ~00012~1 60 5oo oo[3o~7 ~oooolo4.ooooooo.oo(,0ooo oo0oooo.ooo3oo0,ooooooo ~ooooooo ~coooooo ~ocooooo.ooooo00 60 10,30 00562931 0010450 0000989 0000048 0000001 0000000 0000000 0000000 0000000 0000000 0000000 60 2000 0041201.0026239.0011533. 0004008 OO0[IO[.0000239.0000041.0000006.0000001.0000000. 0000000 60 3000 0031634.0023039.0014781.0008353 0004[59.000L824.0000705.0000240.00000/2.0000004. 0000000 60 4000 0022349.0018211.0013673 ~0000458 0006028.0003540.0601915 ~ 0000965.0000439.0000072.0000009 60 5000 0016688,0014424.00[ 1760.0009044 0006562.0004491.0002900.0001766.0001015.000028 [ ~ 0000062 60 6000 0013011.0011650. 0009979.0008119 0006413 ~0004811 ~0003453.000237[ ~0001558. 000058~. 000018,1 bO 7000 0010485.0009601.3008500.0001262 000599[.0004773 ~0003671.0002727 ~000[956 ~0000906.0000365 60 8000 0008670.000807:1.0007305.0006424 0005490 ~0004560.0003681 ~0002888 ~0002202.0001175.0000559 60 9000 0001311.000689 ~ ~ 0006340.0005695 0004q94.00042 76. 0003575.0002918.0002326.COOl ~?b.0000739 60 [0000 000627~3.0005967.U005557.0005071 0004534.0003973.0003411.0002869.0002365.0001~12.000089[ 60 11000 00054 ~~2.0005227.000491~, ~ 0004540 0004121.0003676.0003221.0002774.0002347.0001593.0001008 bO 12000 0004R06.000402~,.0004381.0004088 0003755.0003391.0003026.0002654.C002293.00q163:~.0001094 60 I 3000 0004270.000412?. OOC 3c~35.0003700 0003432.0003141. 00028 35.0002525.0002218.0001642.0001152 60 14000 0003821.0003112.0003557.0003361 000J[48.0002908. 000265,,.00023 ~J.0002131.(;001629.0001186 60 15000 00034-54.0003360.000~234 ~00030/8 0002897.0002698. 000248,,.0002263 ~0002039.0001601.0001203 60 10000 00)3[38.000J061.0002956.0002826 0002676.0002508.0002327.0002139.0001946.000156J.0001206 bO 17000 0002867.0002802.0002715 ~ P, 002606 0002479.0002337.0002183.000202[.0001854.0001518.0001199 60 [8000 0002632.000257~ ~ 0002504 ~0002412 0002304 ~0002[82 ~0002050.0001910 ~0001765.00014/0.0001184 60 [9000 0002427.0002381.0002313.0002240 0002147.0002043 ~0001929.0001807 ~0001680.000141~.000[[63 60 20000 0032248.0002208.000,2154 ~000208? 0002007.0001916.0601817 ~0001711.0001599.0001368.000[[38

Nominal North Ore Storage o/ 2''Lf < Concentration Future ud Extensions I Service Bldg. Three Alternative Schemes of Stack Location (See Testing Program) Scale: " = 200' Fig. 16. Three alternative schemes of stack location.

_100l 0 -..; -.r - 1/ 155. OO 300 400 500 sTACK RBICST (fto) WIND IROX ORT4EG Al 10.28 N.I.. (At*.*. Pt*. WITHOUT EXTEfNSI. STACK GAS VlOCIOTI, 60, 85, 100, 120 oP..3. PWU HarZ1 AJOVTI GUND am., 9TACK WCAIOX 1. 3,000 FM DOWNWIND FROM 8ACZK. Fig. 19.

140 130 L I... 120 110 100 90 860 tE C I I I I I0 S1 X H~~~~160'. w. 0400 tX 900 8T1U ZIX~~91faB 1~ 3,000 ~ W~tffeXIID 3I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~I~,....... Fig. 20. 94 100 200 300 400 b~~~~~~~'oo BTACK ESIGHT (Fte,,x WND RKNRHWoTA 02 4,P*oI(vo IN ITOTETSO

140 130ll__ 120 - ~ I I. 900. 90 D 70.. 60 Pi ~~~~~~~~~~~~~~100 4 0C 120 10 100 oo200 00 400 )0 SACK lI OH? ( tt,) WIND PROX NORTH-ZEST AiT 10.25 M.P.B. (Ae,.}) PLANT WITHOUT EXTEMB0S8. 8TACK GAS VELOCITIES, 60 85b 100, 120 F.P.8. M8T ONCENCTRATION AT ROUND LZEVL, STACX LOCATION 1. 7,50 MT0 E DOWNWID FROM STACK. Fig. 21. 95

lbC 140 130 120 110 100 o,'C — 230 _O___IO.r. 100 t "-'D ~. Fig. 22. ~.........96.

110 -. - -. -.- - - 140.. 130 120 100 sC 0 60 so -X - -.. Fig. 2.. 97 100 0 S00 4I00 I -It BTA= trzf (ntl WITID rRCR M10TH.-qlB~ AT 10.l~5 II.P.E. (Ave.}. PLS WITHOUT gXT3I9BI0F. STACK OA3 M&ITIIA,0 60, 85. l0., 120 F.P.3. DUST CONO'TRiTION AT LEM$ 8TAMX LoTION o l7s00?oo Daz NWIrD FROM STACK. 97

140 130 120110 90 0,.4 0 0 -at\: Il- I I'-'so - - - - - - 100 to0. 400 100 SSCK REIGN? (fJt.) TM3f MCII XCMTfl47 A02 10.25 ILPB. (JAve).?Uo VH T OU? ZtXT?3ION 82A GAS8 V- 1X LiI3, 60, 5, 00, i 22..B. 12,? 00H0eI2ADUS A, i,,tJiD LlIL g2A0K L00iT0o~ 1, 19,000 IUI? DO17IJD VflCIIf~, 82 Fig. 24. 98

140_ 130 120..l..... 110 -......... 90 C 80......... 10 - 1 1l 8?ACK Q TUS LOCITID, 60, b85, 100, 120 FB*P* Usy COMCSTc0r.XuxO AT G D LZVVMU 5?ACX UWCATIOX 1. 2,000 re7 DBUflJD 110m?agoe, Fig. 25. 99

100 8S 500 - __ 1.~- ~. -. /. /. 400'..../10- _ _ 10 200 300 400 500 MtAK H3IT (Ft.) WIN lD I 7 Of U? AT 10.25 XK.?.. (Al*.). PUNT VIT0. STACK GM YZIJIIY, 60. 85, 100, 120?.PO'.?rP.23 HIGOT ArO UID LEVEL, TAC A 3000 fZ iI ZO 3. S TACKi Fig. 26.

130'\ 120. l..... 60 0. 6C I:,, ___ ___ ___ ___ 100 100 200 300 400 roo 3TACK HEIIGHT (It.) WIND!If3 ORIK -WSF? AT 10.25 X.P.B. (Ate.). PUTT WITHOUT EXT03I90S. STACK A V!LOCITI5, 60, 85, 100, o120 F.P.. aMT CO021CETRATION AT GIQUD LZmL, STACZ LCATION 3 3,000 FP&T DOIND FMY STACg. Fig. 27. 101

140 130 120 110 _l.... 100- - 80, w 70 60 _0_ __;1 08 40 10_' A 100 2oo 300 400'" O STAC HIrGOHT (Pt.} WP]ID COI NORT-W4FT AT 10.256 XP.R. (Av*.). PIAUT IITOUT EXTSI0O1S. STACK UAS VE]XCITIEB, 60, 85, 100, 120.P.. 9 B COICUTRATION AT GROUND LVTLt, STACK LOCATION 3* 7,500 FEET DO ND FROY 8TAC. Fig. 28. 102

150 f _ - _... 140 130 120 CI I II I I 110...... 100- P 70 6 855 l 10103...........................00 100 200 300 400 500 STCAX RHIG0T (rt.) WllqD FROM ITOlTHf-':MT AT 10.25 I( P. H. (Ave.). PLANT? WITHOUT EXTEWISIOS. STACY. OAS VELOCITIES, 60, 85, 100, 120 F.P.S. DUST CONCEiTTATION AT OHOUMTD LEVEL, STACP XLOCATION 3. 12,000 FEET IXDO'WIND a'Ol STACKs Fig. 29. 103

130 120 110 100 9t 80 EE_ 70 0. 60' 019 N i s, 60,......85, 1, t0.P.. COCT X STICR: AS20BCI~rOI 3. 17,0X0 ~ n ~oI~ PBL 8'~120 Fig. 30. 10104 0 - -,L~, 100 200. 00 400 500 STACX H I CMT (Ft.) WIMTD FROM N11OTE-,WM? AT 10.25 N.P.E. (Ave.). PLANT WITHOUT EXTMI0N8. STACK GAS VVIWITII, 60, 85, 100, 120 F.P.So DUST COJCUiTRATION AT 01ROUND LZY3Lt STACK LOCATION 35 17,000 FEE? DOWIND FROM STACKe 104

15O 140 _ 130 _ -. 60 120 100.... -....... -.. - - 400.... -o-.,, ] r-.: I T T l, III, I I I Ii I 100 200 300 400. 00 In FOX ]FORHM.WZAT, 1025.P,.. (Ae..). PlA NWITOUT EXi.3.018.. STAC GAS VELYOFITI?, &0 83, 100, 120 I.P.So DU8? OGCMTRAION U GROAT LL, 8?AO CPTION... 19l00 ES, DOM ID fOEI ITACK. Fig. 31. 105

120 110.... 10. -.-., - -'C0, 100.i _ I... 1 I0 WIND mC3 N(e?H43 A? 100.23f LP.I. (Av*.). PLANT VITIOU Ads Ma8iOr STACK GS Y&LI I,-Lr 3g 609 859 100, 120 1.P.B. D8U 00=Or1TRATICO 1 A2 uuO LZYIX4 STACK lOCATION 3. 20,G a00n0 Dl''.PIND;8 3TACK*. Fig. 52. 106

_m tOO 85. 00 i!00 100 _... MTLO 3 VI3#XDIr, 60, 85, 100, 1E20 MPJ. PW/,3 RIIGET ABOVE LQED 7ZTpL, STACY LCATIO0 1. 3.000 aST sVLMND FRO STYC. Fig. 335 107

140 120 110 100 r l l I | X Z 0\ l - - 8 ~~go~~~~~' 80.- -\ 10 100 tto X30 400 __ 3S 60........... 3TCA0C R3TRT(M ((ONt WIND FRCV NORTH-WEST AT 10.25 N*PoHo (Av), PLANT WITH EXTESSfXNS, SAOX: OAS TIMCITIN50 60, 86, 100, 120 F-P.9. DMUT C08CZMRATION Alf (UMI) LOSJ BTACK LOCATIT31,000 I 0m71 DOMT IND FROM STUC. Fig. 34. 108

150 - -- - 130 120 ___ 110 X.. 1i0 460 At - 60. 2 0 120 10 t.. __ - 100 200 300 400 800,~UA= RMf(MT (rt.) WIND FlROM O.RTH-43?f A 10.25 I.P.H. (&Ao.). PLAN? WITIH XTES'IM08. STACK GIS VELOCITIES, 60, 85, 100, 120 1.P.8. DUST 00BNCTRATIO AT GROUND IVHEL, STACK LOCATION 1. 7,500 FPlT DOWfIIND TROMt S3TACK. Fig. 35109

140 130 100 - -. -.-.-'to 0,.- __._.._..-. 0 o - s85 zOl tX4100 -' 60 1101 100 200 300 400 500O SACK RtBx, {ft. ) WIND FRON WORTH-' EST AT 10,25 M.P.R. (Av,.). PLA1T WITH EXTE3I0T8M. BTACK'GAS rzEL mT?1ES, 60, 85, oo100,10.P.8S, DUST COIOgITRATION AT GROUND L!TZL, STACK LOCATION 1 12,000 FET? DOI'ID FROM STACK. Fig. 56. 110

140 120..... 110 100 90 ~! 0 70 P~ 40... _. __. 120 100 200 300 400 500 STACK RSZ? ({rt.) WIND 1FR0M IORTH-/E,3T A? 10.25 M.P.R. (Se.)., PLNT WITS 3TISIOlN8, STAC GMS VXLCCITIZE, 60, 86, 100, 120 F.P.8. fUST O0NOTETILTION AT GROUIrD LMVYL, STACK LCATIO3 1. 17,000 MEET DOtW3IND FROM 8TAl.O Fig. 37. lll

- - - - - -..... 140 120 110 100 - - - - - -.. r Om or 70 0. 4.. 100 10.... _____.... 120 100 200 300 400 500 8?ACX HuG? (ft.) WIUD FRCN ]0RTOWl-'MT AT 10.256 P.IB. (Ave.). PA1NT WITH ZXTEK3108. STACK OUA VY' ITIES, 60, 88, 100, 120 f.P.8. DU8T CONCEITRATION AT GROUND LETEL, ST8CX WLCATIQ I. 19,000 f D0WIND nFOY 8?AC2. Fig. 38. 112

15C. - - 140... 120 90 80 r P 60 __ _ _____ ]1 50....... _ _ _ _ _ _IAU~~~ M I (85'10 1........ _____. 20_ 100 200 300 400 500 STACX HBIOHT (rt.) WfID FROM NETH-VES? AT 10.25 L.P.8. (A'.). PLANT WIT EXTE8ION8 12A0T, GMS VERCITIES, 60, 85, 100, 120 F- 8. MST COCioCTRLTINAT A? MU LRYEL, STACM LOCAT 20,00 F.....WIND- Fl. S.T ACK. Fig,. 9. 113

400! i300.b0 is5 o 300 400 c0?ATX ESICMT (ft.) WIJD i.C71 r-~r T 1AT 0.25 M..P.E. (ATe.). PILLT WITH EtZ=310,f. SAOK 0GAB.CI.3L, 60, 85, 100, ira F.Po.s PWE H3 EIC? AmOGF l CMOTh IZOL, STACK LOOa?0I0 2. 3,000 7O3E DO.7IAND tOM 8TAX Fig. 40. 114

I.. - -- - - - -........ 1'o 150 __.... 120... l l....... 110 10 Zoo100 -. -- -- 90.. _, i. 70...1 to 100 t0o 300 400 500.TAM RIGI{ (Ft) IflD f1t31M ATRT!-FiZ3! * 10.23 U.?.!. (AT..)* PLOT IUM ZKTi5Xf=l. STACM US8 VELQ0IT1M, 10. S5e 100, 120 1Po *.l.. W32 0C CZ-'TU1IC AT R(MOMD LYEXL,.Ac. LOCATION A 3,000.2 DC...I..D FM i STn. Fig. 41. 115

130 120 110 1oI I I I -, -- - I 100.... -.80 2., Fig.42.60 100 200 ~00 400 800 11iD FIKIM M1T~-WrT A? 10.25 Xe.P.H. (Ave.). PWA?. WITH IM?,.~nIC.-3. 0TACK GAS Y~LOCITIE3t 60, 85e 100, 120?.P.S. W? 0'C'C711ATI0 LT ~2TM~ 14V, BTACT LOCATION 2. 7?~00 MIT D 7127D ~01~ BTACK. Fig. 42.

140...130 120... -. - 110 _ - - 100 -I I I IT...... 90 a0, -4. -!ACr GAS YEL IT3, 6F0i i i i i ii. 85, 1, I'.?.- i-,01i.C IXON A?: U R0 IL ~- 40'.....Fig. 43. 0I-~~~~~117 100 tw b~ 400 goo VIND F~MU IMCBTE-VWET AT 10925 lI*olo (AvLe.}, PIOTl~ Tim.'T=IONS, STACZ 0US VEZXlTIL'3, 609 a5, 100, 120 S.o,,0. =iT C;~,A,-"C 10~ AT RM0UIDl ~L,1 STarX LIOWCla,7 Z. 1S,00 = DO~-L'=IXD IMCK STACX, 117

130 - T_ 120.... 110 - 1 -T. 70 C60 o rL o40 r -'_ - - -. -... I:4 zcnrr - - - 00 ISO 10 - I ___100 200 300 400 Bo0 sJCx HBaOhfz ( t.! lImD FRN XKICTII-w 4 AT 1 0.25 N.IH. ({Ave. ). PLA O. WITH?TSlOt0S. 8TCAX UOs VRMII*TI3, 60, 83, 100. 120 1*.18. pI? 00 TU'1TI0C AT A 0J LZTU 8TACX LOO1AI011 t 17l000 Dfl C7.IID F2t= 8TACK. Fig. 44. 118

10. - - - -: —- - - 130 120...... 100... - - -. -. -. -. 90,..... > 70 100 too s00 400 500 BTACK RZIM Otto) WIND FRO.O.( aRmTN?. AT 10.Z5 Xi"P.H. (AWe.). PLANT WIT9H =E2eIO3. TACX GAS 3XLTINI, 60, 85, 100s 10.P.S. WS8o MO-ST 0 7A At (0UDo LM7 STA.CX XCATIN0 a. 19,0OO I DWJiND Frl STACit. Fig. 45. 119

lO -........-. 130 I..I 100 L - I -. 90.. to 10, 0 0 ~l 400 8n Rzx S (t,) WIND ]wf(XI IO'2T"~- V~'~,i~ 10)5 ).P.1B. (Ave.). PIAT? IZ~J EX)~'~I(:~'"~. 82t'Od~ YEIOC't'~.3 60, CS. 100, 0120 F.P.8. 1~3'1B O(~ClO~IOUl,E~ ~'I~ LL'V 4 8TK LfOCAIO3 2. 2~},000 F~%T DO~.~ r,~fJ S3TC. Fig. 46. 120

120 100 60 400 60,,., 100 155 200 300o 400 00 WIND 1aT0 1D0E'VIS AT 102f d to 0.25 (A.) PLAITT WI )IBS U ZX0 A Aus Va ID001TI, 60, 85, 100, H120 i..8. tJIIS CEIfH ADOVY MOWD LPEZ, STACK LOCATIOJ 8 30ooo W? DOSEVRID OX Bn ac 8. Fig. 47~ 121

140 120 u 60 C - - - - - -' \ 1H 0 50 0,1 — - STCK REIGHT (Ft.) WIND ISOM N e? 0.25A X.1.L (Av.). PLT WITS T= ICS. STAK GS VZ0fOI0TIZ2, 60, 85, 100, 120?.?.S. X8T CNONCITRATIOI AT GROMM LEVE 2TACK W0MIC0:4. 5,000 F DQXflTD FRC STAM. ~) 40t...I~~ ~Fg. 48..!~~~ -r ~122 122

150 - -.. -' -t -- tao..C................ 100 la70 ~~~~~~~~60 L l I-l T->60 "oi. 100 20oo 300 400 0oo $TCX RHZI Vt {Zt.} WIND FRC=,?,I.-W. At 10.25 I.I.H. (Are.). P]LAT W I I THI'TSOl30.?AS GA0 V.L0OITXIM, 60, 85,,100 120 lr.o.. t8 2 D CONOZ.1.0X1o AT 0UNX LEvL, 5sAG ID=C'TiC3 3. 7?,00 IE= DOa',IIXD nMC BTAQK. Fig. 49. 123

140'3T --- -- -. - 130 120 100 90 80- - - - - - -.. i 6C Co - C".....................100 g00 300 40oo 500 V!ID RlO BRTH-Wr3? AU 10*f25? PR. (At..) PLTaS WII mrTI0]3a. BTAoE GaS YLOCITI23, 60, 85, 100o, 10 F.P.s. Df? COOZ RATaIO A?.otoD LMTL, STACi LdOCAIOXN 3 12.000 Df IND 1E= STACX. Fig. 50. 124

140 L.... 120 110 100. 90 70 4I 0 _ _ _ _ _ _ _ _ I _ _ I__ 50 __ _ _ __ -60 10 I....,. - I..I.,.... - 120 0- - 100 200 300 400 500 8TACX RxIGHT ( t.) WIND 1R7M NCIRTHWEST ATr 10,2S LP, (Ar,). ), * PLANT WITS ZAITS IONS. STICK OAS TVLOCITIES, 60, 85, 100, 120 F.P.S. (' UST COCilITRATIOr AT OGROUND LZ7EL, STACK LOCATION 3. 17,000 FIT DOTW7NWIND FROi STACK. Fig. 51. 125

150 - -.. -...... 140 130 120 110.. 100 - - 90 eo V 70 C60 30._ 20 40..................r...........00 10 100 20oo 00 400 b00 STACK XsIGHT (ft.) WIND ta [CXITHW4-T A? 1t0.26 XP... (Ave.). PLUN VITH EXMTIMSI. STIAC G3 Ts O F01?TI, 60, 85, 100, 1 1. FP*8 Wo8f CC50C ATION AT? OUWD,IUIY sTACX WcIO. 1O9,000 FL DW ND FROC SeF.. Fig. 52. 126

140.. 130 120, zv _...__L 110... 100 90 ISO 70: aL 60 160 _ ___-_0 85 10 I I I I I I I I I I 100 200 300 400 500?BTAX BIGHOT (ft.) WIND lClN NORTII-4ST A!T 10.P2.5 LP*H (Av*e). PLANT WITH ET'ONfxoS. 8TA- GAS TEOITIES, 60, 65, 100, 120,P.8., DUST OCCICITRATION AT QROUND LEVEL, 8TACK LOOATION 3. 20,000 ff DCF~rMIND FROI STACK. Fig. 53127

500 100 - -- - L- --- --; 00 STACK GS YEI.00IEIM, 60, 85, 100, 120 1.P.S. PW13 HU1GMT Z)73B C=Wn;D LZVL STAC LOOATIO t1. 3,000 YEW3 D0WY7IUD IIo STACK. Fig. 54. 128

120 I __ _,- _C_ I' 4 - -' —--- -1 10C X -- 0 100 ~~~~~~ ~~~70 ~~r.; _ _... I _..... )100 200 300 400 100 STACK F9O1HT (Pt.) STACK BGS VELOCITID, 60, 85, 100, 120 F.P.Se DUST CONCMTRATIfO AT MUND LSV&L, STACK LOCATION 1. 3p00N RT DBE? I ED FRON 8TAC.* 129 T 100~~~~~~~~~~. 20 300..00.50 STACK W~TG!~T (Ft. WIXD~~~~~~~~ FI i7~~WTA 5L..PATW~OT~~S03 STACK GAS V~~~~1OCITI~~~S, 80, 85, 100, 120 1.P.3. XS? C01C~~~~~~~~~~?TRATI03 AT O~~~~~0UID LHV~~~L, ~TAC LOATO 1. 3,0]RDC~1WN fC 2 Fi. 5'....~12

210 _ ____ i - -" 4 - - - 14CI 14 C, -- -- -—.. ---- -- _ —, —-_~i. ~.....'........ -+ i~~~~~~~~~~~~~~~~~~~~~~~~~ol~~~~~~~~~~~~~~~~~~~~~~~~ 120 _ I 110 100 90 __ _ __ _ __ _ _ _ __ _ _ _ _ I I ~ o ~70 f~o.~30 Ct20 ----- t~ —--— ~~~i' —--- -- 1160 +!I 10 20-~ ~ I_.........;..._.._.. 10 100 200 300 400 500 STACK H3IGHT (Ft.)'W IND VP C0NRTH-WMST AT 15 XLP.E. PL411T WIThOUT EXTE93I0Z7 STACK GA VEIOQITIES, 60, 85, 100, 120 F.P.-5 XUST CONCEflNhATION AT GROUND LEVEL, STACKX LOCATION I. 7,500?FST DO~W2IWND P2MO STACK. Fig. 56. 150

1i 0 I — 1- I -i T, L 130.........! _- -__t 120 1 - -- 10 I so I 100 __] r__,'' 60 -40 30 - 3301 t X, t.,- Z i t i 60 IL i I8I I I O lo - 1 1 1' _I _ 1 0 1 100 200 300 400 b00 STAC H SI GHT (FYt.) tWID ICM'T. A? 15 lt.P.. PIAT WITEOUT..XTEISI0o.. STACK GAS VZ 3IT Z,c G60, 8b, 100, 120 F.P.8. Ws OOCZC —tMIor AT O10ID LTO, STACK LOCA'k10 1. 12,0000?E! DC:F - X 7ItS Q 8.SYACI Fig. 57. 131

140- t-t —.- - t — I -- 130 Ff —-- -- -----' 110 _ —4 —-t -------— 1 —- — t --- --' — — 1 100 c 70- -t —-- -- 1_______ ^ 50 -- t 1 —— 1 —----- ri c l --- ---— l — I I 60 20C.. —.-. — -—. —-. —--— t ---.60 10. —. —-. —. — - i- l120 100 200. 00 400; 50 SAACX HSIGHT (PYt. WMVRD nmI OK0M-W5T AT 16 X.P.B PLAJ WITHOUT ZTfa3I089. 8TTACK GS ELOCIT!lI,9 60, 8s, 300, 1O ideS. -SJT? OCCTRTIXO AT GROUND LtUIP, 8TAO LOCATION 1t. 7,000 FZ3T DEWIND =3 0.3I TACZ F~g. 58. 132

!- f 1 zr Ft --'t i30 ----- - 12i > +_0_ i I ___>_'_ _ _ _ -110 — - ----- -- -- _ - 8ooX C 1- - - - -------!- - ----'.4 -) Ijo J 20... _. __ 60 t45C> I t STACK,S ViJ)CITI, 60, 85, 100, 120?.P.5. DU3T oorCTRATI07 ATRUNi LEVgLt STACK LOCAT1I0NI I. 19,000 FZT lDOTWNIKD FXRC STACK. Fig. 59.'35

140 130 - - ttt1 110............-;............ t201 C 1 i, ] - _____' o' t 1H - f 1 100 g,70n -- 1 t 70 C, 20 — i - I. t - i — t —. —.- --- r -- 100 200 40 00 b00 STACK HSISvYP (Ft.) WIN-D 1101 NMTH-WE? 6? 15 l.P.H. PLANT WITHOiUT XT=SIC?.3* 8TACK 0GAS CfITfZ3, 60, 85, 00 10.P.$s 8? COJCEMSTI0N AT aIOUD LZVM STACZ CATION 3. 20,000...T D..I. Z.nRCU 8LC.. Fig. (0. 154

500 __0 ~ -..... - - 1 1<0 400 > * 4......X.... o 155 200 300 4C0 S00 STACY H IGH0T (It.)'55 135/

184 140 130 120 110 80.._... __..... 70V 40'I80........ P' \ X 60 100 0 L -0 8TACK RXIOH (It.) WIJD nC M I.WE-T? AT 15 N.P.S. PLSA WTEHUTo EXT0RSIO3. STAC US flL0MITIo, 60, 8b, 100,. 120 oP9S3. rS C0CMTR&ION AT GIoUD0 LE0IL, STAC LO44fl 5. 3,000 W D...Z. fC. 8TCX. Fig. 62.

I - 2 __. _ _ II10 o.... - - -. i z o 0 - - - t -. i.. — --. -.... 2r --- - - 1 — - - — 4 —-- IC-,~~~ 100 200 [0 &OO ST. ), _. _.. F........ WI)D FOCIM TORTH-WE3T AT 1b Y.P.H. PLAST WITHOUT XT=SI0OS. STACK GAS VILOCTI333, 60, 85, 1009 420 i.Ps. DST CONC=TRATI0 AT GROUD LZTLs STAC LOCATIOJ 3. 7,1Q0 FLST'OiIT D FROY STACK. Fig. 63. 137

140. 130 120 110.... __ 100 90.... - - -. 80 - - -' 70 4 60 10 Z I 40 - -. 60 100 oo0 50 400 800 $?ACX aREM (Ft.! WMID I, C aI ATB4-V-" 15 LU P.H. PLOT WXIT0OU UEXIM1JTO. MTLCZ, B frLO OITI3', 60, 86, 100, 120 1.P*.. Tf 00=L nT'ION AT ROUl L,VI ACXt lXooOx s. ( lXt,000 I= wlWnIND C 8TACK. Fig. 64. 138

140; ------- - -t!- --—! |_ ------- - - 120 2- Itol i i I,' C U 90 1 ~ 7C 2 4~~{. t 20 _ _ I _ _ _ _ _ 60 100 200 300 400 600 WIlD JtOX OR1TU-7ES AT 15 ALPoH. PLAN? WITHOUT EXT0SI0J$. 8TACg OdUS V=100ITIM, 80, 85j, 100. 120 L*Po5. ITSI CONCMTRA?13I AT W0UJD LVZL, 3TACKS IbDIOJ so 17,000 F39T DO~iZ'IND ]MMB It AfFig. 65.

..T -m T - — 1 -- -1- - -- - - [ —- ------- --.- - - -- 120. -.-'- - t - - --- - I. ic,.o e —--- J —t,...20o 0.... -....... -"- -.-..-t -,s.. - 30....... -.......100 1420_ —- -------- -----' - -- - - ---- --- 60 10 _..8._._........ 100 200 300 400 boo S,.X Uit X i' Ft WIND lRCK N ME T AT YLP.H. PLAJT WITHOUT XTv Sto03. C US Y CITI1S, 60- 85, 100. 120.P.8. D8UT C...C=.TRATI0 A.T 0.. LEVE,. STAq WXATIC. 9,000 IfT WIND FROM ST. 140

1430 120 110 __ 100 -. - - - -.- - -. - 0 0O.. 0 ~50 IND OM NTH-WT U 15.P... PlA.. WITHOUT LT8IN. 40141 0 0 STACK LOCATIO 39 20,000 110 lcj::l3Fla. 6H. Q~~~~~~~~~~4

boo- r I0 400 300 151 0oo 300 400 500 STACK BZICMT (Ft*) WIND PFROM NORI-TEa< AT 5 LNti. PLAN? V!IM ZTI$8I0N3 8TAC 0AS VML00ITIA, 60, 85, 100, t1O.P.o8. PWIX B11*1T Ar Q30 LZTEL, STAX LOOATION 1. 3,000 FEn? D072v7L!D 5FlCR STACK. Fig. 68. 142

17 6 h' 176 140... I 100 - C___ 0_ 6 60C i ____ H~~~~~~~~~~~~~~50 C I I I' ~8 1100 200 500 000 S1 STAC HEIHT ( Yt.) WIrXD 7M NORTH-W T 1- -- - P.- PIAT _iTS _XT.MSIO _. 8AK US VBCIOTIEI, 60, Ob1 100, t20 F0P.S. D0UT C00TI OAT GROUND LE5 STACK LO)CATION 1. 3,000 FET i'fl"IND FROM STACX. Fig. 69. 143

140 120 --— ~ -t +t Xt t I1 90SI' I _ _ _ _ _ _ 0ec -- ----' -_- - — t — 4 —I ~ 60 C I I I I! 40 1 -1 — I<1 030 _It 210 i t t _ 10 t_! —1 — V-. —- t —-1100 200. 00 400 500 STACK H'11G (Ft.) WIND fROM ERTE4,PZ T Lt. ( u s PLUN WITS EXTENOlJ. s3nA usI T CfI 80, 8 65 100, Lo 1,20?P.3. DUST CSCOgTRATION AT G1ROUND LKL, 8TAMK IOATI0N 1 7,00 FI DOWNWIND AMC STACK. Fig. 70. 144

JAO 1~~~~~~~~~~~~~~~~~~~ I i3i: —, - l:f - --- l -I —-:- 0I1 l0_ —t —--- ------— ~ — 1~ -— ~- -- - ~ - t — f —c —-— 1 t —--- i- -- 100 90. ~ —-+ —-— "' 6 si 100~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C' IiC so S _ I 1-' I I' I so t t -—' --: 20 -- -- _ —-- _ _ _ _. _..0 I~~~~~~~~~~~~~~~~,, 0 ir t, ~-e ---- | — --- 1 — | _. _|: 1 0~~~~~~~~~~1 1 -00,o — -- -t::~~ -'....... —' - 100 20C 300 400 500' *~ ~ ~ I ic STACK H-PIGHT (T: BWID PRON IMRSH-WEST Alf 1 5I.P.El PLANT VIE GtTH SIOR6S STAM GAS ViZU)CI2IESs 60#0 i 8I5, 00s 120 oPoP8 IJS!P OO05P7TRIAIO1 AlT GROURD LtZVZ~ 8TACK LO)CATION Is *t000 IUT DOWYgIND FROM 3Ac, Fig. 71. 145

1 4 -t- --- -0 --- ----- -- - |; __4 * - j - lZo' --— 4 —— ~I-, I, -I II 120 110,~ ~ t i,40 W, W + | | | T 1- - tIe, I 11 1'' I | I I I II _ _. I _ _ _ _ _ _ _ _ _ _ _ _ ___ I _ _ _ 10 ~, 10 ~~~~~~0~~~~~~~~~~~~~~~~~ 100 200 300 400 500 STACK }!ZtGHT (Ft,) WZD FROM 3)RTL.73? A? 15 X.P.B. PLAN? WITH TMSI03S. 3TACXA3 A VICIfIBI, 60, 85, 100, 120.P.3S. D8T CONCOVTRATIN0 AT GROWD L93VLq STACK OCATION 1. 17,0v00 73T D0WIRD FROM STA(3. Fig. 72. 146

140t — t —— t.t —— I - —_t~ o C 1 s -- t t X 130 4. -.. 120 9, S o 4,,: 70 C 4. C) 66 "0 6C -t _ 10e'I'. 1.0 1,., r — - -- - 1 —--— ^ t-1201 0 1 CI200 300 400 o00 STACY. HKIGHT (Ft.) WIND 1EYC rORTE-S? AT 15 X.P.H. PLANT WITHOUT?XTSIOR0 8?ACK C" 5 VLIITEI 60, 865, 100, 120 F.P.8. S BM C0CiMTRATION AT GROUI0 LgIL, 9TICK LO. ATION 1. 19,000 FEBT D0C7IIND tFRO STAC Fig. 73 147

i0 --- -- - -t —---—. -. —-- -- 1 se _ _ _ - t tl o -1 t1 1 _ 1 1 q 4r C — t -------—........... —; —----- ^ 2('- -t ------ - -- - 10 0 100 200 00 400 500 148 BTACZ LOCATIO I*. 20.000?S3? DOWNWIND Piri STA'I. i~ ~~~~Fg 74.

00 400 I I I I.f 300 60 100 *.X= C.03 tzr' 1?iIX3m, 60, 83, 1t, r1001 1.?4 no0s P~f I cI LZOY* 0 GOUID,LL, 8TA7 LG5A2XIC0 2 3000 IE il7 D wI;W]D F 8.TACr Fig. 75149

1t C -... —.' —----- 110''0'_ ----- - X X 60 2i 10 10 9110. 1 Cio~. _ _ ~ _ _..... 100 200 300 400 500 STACX HIO HT (Ft. WIND FRCyU..RT.-WZT A. 15 M.P.H. PLANT WITH..XTEOS.. SEC GA8 YLOOITIZ, 60, 85, 100, 0120 F8P.PS. U? CONOETRdAION A~T ROUD LZYL, STACK LCATION 2 30o0 WI DOI23X D IAdC STACZ. Fig. 76. 150

140 - -: - ------- —.1 120 _.. --. IrOI.I 1 i I I I 100 t0AA __i ( 8!C~~~~~~j~~~ IDC Z~ ~~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~I I 70 t I a 4'- ___'!...... ~' ~ ---- I -.-1 I F I7 ~~~~~20 ~~ 15 10 100 200 300 400 600 STACK HEIOHT (Ft.) WMJD JCEC MTHTh413 At 25 YI.!.e P1W WITH ImmrmsIO1 Fig. 77. 52 O INs v50 D....... _R STACK.

10,....I. 120 — I - ----- -- I - 920 0 __+ -- ___.______ _ _. _ 1.. ____ 9Q-' - __ _- __- 90 S 80 60t- - o 6.. 7 X'___ 1 i3 30 C' j t F + - t 60 1l --- 4 —-- - — +- ---- -- - 60 i0..... _ 100 100 200 X00 400 600 STACX SI3GHT (FPt.) WIND F XROM0 =TH-WEST AT L5 LPX.F. PUINT WITH KXT-7F3I0;3. 2STACX OS EtOIIMI*, 60, 85, 100, 120 1.P.9. Xt8? COXCE?.ATfICY AT? QGROUD LEVE,0 STACM U)CATION. 12t,000 PW D0"1*IND FRCV STACK. Fig. 78. 152

i0 --- ____ _- -- I --- i __ 1 -_ —___-_ -------- - -— 1 ----- --- 123 - --- --- -- 100 s0'o A R t ( —t TC LOC 2 —-1 —--— 7, —0.?......l —...... -....... 15151~~~~~85. ~ I'~ i -, _ L.........100 10l -cl; -' -t -` -,, -...'- i - -- -] - ---- of-'-~ f- ~.-. — i 112 100 200 300 400. 00 STACY.I R YIHT.I I ti t WIND PRCH MlT.B GST AT ^ II.P.O. PLANT WITH EXTEISIONS, STACK WS TELOCITIEDp 600 865 1000 120 FP.B8 DUST COjCETp.AFXOB AFT DROOr LgVj;ML ST=CK IDCATION Z et000 1 iT M7W>IND FROMI 5lACge Fig 79

,0 i 100 - ------ 93..-.-4 —.-... —. —--..........- - 120 ----------—' t too Cf II 70 -—..-.......t-.........t 0, -I. —--- ~~-1 - I -- I --- -- --- --- _,_0 __. _........ -t —----- --------'ii 3o0 -- -- - — t.............. t....................................................120 0o L —- - 1 —- i --— L —- -- S -1 100 200 300 400 500 STACo.....CtT (Ft.). WIXND IICU NORTfl413mT 15 X.P.*. PAXT WI TH' XTESI038 STACK AS VLOITIES, 60, 85, 100, 120 1.P.8. 3ST0 COCUTRAT-I0 AT rROtUD LM L, 3SAC LOCATION 2. 19v000 MT wDO~WIVXD PER0U 8TAC. Fig. 80. 154

120 i_ _ - ___ i- i C-o, S t t- -- - C 100 C-) 1 1+' J 1 ___ _'! 11 1.^,~~~~~~4 ~~~~~~ ~~0 ~- 1 0,- - -;. 01 20 I10 0 {__, _ _' — I 0 100 i I [..... 90 — - - t 100 200 300 400 100'STACY X.01 HT (Ft.).I.D FRC WORTH-..VT iT 15 l P.H. PLANT WITS ZXTi=SIOX. STACK GAS VE7CIIB, 60, 60, 100, 120 BP.PS. I DS7 0OCkNTCRM TI0 AT (C I tZL, STACK LCATION X0 20)Q 0 ~..T DOM iINID 1!RCU STOAO. Fig. 81.'55

~~~~400 - _____ _____~~00 60 300 I I>X wo 0 - WelD; 5A Es30 400 500O STACK R3IG2T (Pt* ) WIND IRM W= —Vt-L"T AT? l B. e WXITU!V'3IO73. MMs= US TN I 60, 85, 100, 5, 00, 120 FH.P.8. 3 3I MC AnO7S 0.0 1D TVL, STAK SOI0 *. 3,000 1o Z? D=X I- D Fam E. STA.C. Fig. 82. 156

140 -- —. t -4-1 1d0( 1 85 60.1..... ____ _ _. _..... i..... J. ___ ___, I ___l: 1 60 _ I' _ i.i.. \ \L l F 1Q 7- - t- K_- - 100 400 0 8? WATQ S., ]WD l 8k. 157 100 300 S)0 400 800 STA'CK HEIGHT (t. } WXIND IMMR NCL-TREIT tl,.a.L~o~ PZFM WITS ZXT~MSlOli STAIll 0..3(tE ITIBS, 60, 85, 100m, 110 Y.P.o, M if C(IC~IRATIOTO A un Ll t, x57

- — 1'. -... - —. =-............ 12, - t - _- Z -- - 111 -711- -.- -- 90 - -. _70 04 100 20000 200 3.C.00 STACX HS!GH ( Ft.) WXID FTR0d NORS-W~? AT I N.P.E. PlAN? W TH l23!SIONS. STACK GAS YRLOCITIKS, 60, 85, 100, 120?.?.S. 1U3? COTClTRATION A? GOUND LEL, STACY WCAIXON. 7,O5O FIT DCJWIND FROM SUCK. Fig. 84. 158 WIND FROM 10~~~~~~~IREWSATU P*.PM WIHEOSN. ST= GAS VM=IIESO 600 95, 100s 120 FP-3- W32 =-CUMUTION AT ROUND LITI' STACF LOCATION-36 11500 MT DOMIND FROM STACK*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

1 4 C~ ~- -~ c8O ~ -- ~e -- c 1 —~ —- -fl......... i. ___ _ _'~ 60 L I I:....I 130i —---'t i I t 120 __ L 1.. _ _ _ -_ _ -6 0 l~OO I — t — -— }- - - STAC.... 1 1 20 I I,R 90 65 3 90 -i 60t N i 1 i i t I 1 _ v 1 o I i 1, XI16 10 t 1-_ I ~ 1 oL. 100 200 300 40- 600 STACK HSI.HT (Ft..) WIND FROM NORXTH-M At 16 Ytto.s. PIAI? WITH EXT=150rSo $TAM W vA X VEoIlIm, 60,. 8e 0I..00,...;ST _1 A GROU.N LW j__ _ 8TACKC LODCAT0X1 3. 12,000 F= DOW2INRjD FRO sTC 5ig. 85.

15C T - T 140 - ---- - -i? - -- -;:o 2 120 —--- -. —--!. —. - 1100 - - -.,__ __ __, _ 90 CA_ ]'___ 4 t',' 60 _ _ 4 1 - - ---— t+ —--- --- -- — 4-0........ i;o t0. ——. —----' --..20 STACK HP.-;T I G [Yt STACK LATIO. 3..7,000 M.T D..wN'....... Fig. 16.

.3a~ -— I —- -1X —--!- - - I I 10:, 106, f. _.. - --. - - 1- - - - -'I.... -.'. — 90 ---- -- -,. x Yt ~~ ~~' ii?~. - 4....'i, - -- 230 t —----- - - -- -l-.. —-. 120 10 ___ I............... 100 200 4 00 b 161

14Ct — _ __ 11 ___ 130 --— t- f - -- 100 990' I I t *9. r__- - --- -— 4 — ----— 4 -- —..-. - 85C -t I;80. 1 -_, 10 350 2 t —4 ~~ t~~ ~~~ I l 160 100 200 X00 400 500 STACK HSIGHT Ft.) WIND fiRCE NORETS-4i AT 15 fiCLP.E. PLaT WITS ITUT0IN8. BSACK GS YLO0IIM#, 60, 85, 100, 120.P.8. MST 00TCUFTRATI0N AT tGRUND L't3, STAOC ZCATI( 3o 2000 I W'JMIND flMO S SUK.o Fig. 83. 162

tot 00 400 100 0 151 200 300 400 So STACX ISIG13T (t,*) WILD GRO' A!t 10.25 NO.P.K (A'..). PLA? WIn'OUT 1XTESI3I0. SLCM V0A5Y OCfITIZ3, 60 86D 100, 120 PHP.ot PL E!P.L S EA T ADOVS G-XIRO LaZmL, STAnt LOCATION 1o 2,200 FZc' nI L0ZfID 0ON BTACX, Fig. 89. 163

tor 140....-. 120 ~0 —~~~ 20L.1 1, 1 7.T I'T.. STACX IW VML r'ZIXI 60 I Ik 100I0 DU-Di 00,70MITMIO9 r AT GROIND LSK I, 10.... OK- _.............-.....- -...._. BAOZ GAS VL0O1t~, 60, Bb, 100, 1D'PeS* D? O0C,0N,?.ROUD L,_-.

Sb0.0o -0 / -.. tM'D0 w00 400 500 seACm HSIjIGT (mft) WM 17. "nT A? 10.925 tP.Hz. (Ato). auA A rt' fCI7:'T?1fESIM. STAIcA 33.7.0=ZIT3 ~0X. 8, 6 00 100v 1.D 1,13. PLHo OGZTLZ37I t UJ. tO N aL, 6TAZ 1A10 S. X,200 1EZ? DBum.;' D Y S7AW* Fig. 91. 165

140 - -.... - 130 120 to L 10 - t --'100 100 to0 300 400o 00 OACI I HRI H (ft.) 5V WJ rK 1.0,8l LCUX.Z (A".) * PWAT N WIIO1) IX 1TDSI0ZMe BSACE GLS 0I01?S1,: 60, 8I8 100, 1 0t VP.8. WDU 0QMMof0IM Al Q=1nA LI l I SaTcs WoAtO 5. ItMO,UI DOIWND il=?A= 1.' Fig. 92, 166

400 o00 I "V:500 0 o 4 I I 0 155 t00 300 4600 STACK HSIGHT ( t.) VIND FPC1?T A? lB M5P.t,. PLAgT lTEOU? RXT3ZSIOIB. ST8AC MAS 7VTCITIE3, 60, 85, 100, 120 F.P.S. PflUM HEIGFT AI OE BROUND LZtVL, STACK LOCATIOr 1. 2,200 ~FS DBIND FRC STAC. Fig. 93.

............_._ 199 140 1 --- 1 20 100 90 I _ I. I I I. I_ i \l 560 S <1-<: 2o 4o 1- 1'I'.. I I... Cr t4I! X 0 I 8 T 1.1 20 t:i____ 100 100 200 300 400 500 STACK HSI OT (Ft.) WINZD FROCM VT AT 15 LP.H. PLduF wITHOUT EXTI33SIOJS. STACK GAS TRIOTIF, 60, 05, 100, ItO t.P.8. DUST COCE0iTRATION AT!ORUID LLML, 8TAD] WaOCATION, 2,tO FX DXIND IulM $STACK Fig. 94. 1i68

-%' i L -~~00 -~~~ 0 200 1 00 10 i G,,. A0 - -. —..t.. / - - I I 155 200 300 400 500 ST=0 1AIOJ 3. 2s,200 FSM T DW? D IXD mRa ShaO. Fig. 95.: 9169'' r t~16

1 85 1 t60 130..140.....- — [..:.. -- 120\ l 100 \ \ - -,so I! -\ \ \ m 70'~;i t t H'04.. t 3. L' \....X... 11 100 200 000 400 STACK HEIGHT (Yt,) 1WIND FRCOM WEB ALT 15 lPI, PLAIT wITNOUT'ITSI0ss, 8?C?K VGA0YWC1I~3, 60O, 85, 100, 120 7..3. o S? CO0CEMITION 1? CAOUT D LEVEL, STAI LWOOAflO 3. 2,200 r)? DOWNIJWIND 7FR( STICK. Fig. 96. 170

DC".0 300 15 oo So 300 400 boo StAXCK HBlf (Ft.) Wm s-cat ToILQ Ad: SP J.top. (At*.). PUawT W1!R EXTV-SLoI0 GAS. Qn I)0T1 GO 8o5, too, 120 F.P.O8.?W.: RmC=V-I AVz QWUJD ZD LD 8..T...ICSW t. 2,200 - z D.....InD FLN _AOL. Fig- 97, 171

140 - - - 120 11 - 80 tiWo i00 wA g OO 00 O aO 4,0 [00 VXFI Ifl,i~ 2LZ.'. (Ave.). PIhI'res L:Z153Bl~arS. Fig. 98. 172

Ito 1 oo 8f5 400 400 0 1:7 too 300 400 500 WM rlt I7''V"I t 10 X W 100 _..... Fg -. 99.'73 173

13ISO.0 ~ 7060 00o to.. 400I boo Fig. 100l. 174

400.00 SO 40- _ 800~ -on 0 S00 boo W=D rZIC i "'7 r47 4- 04t25 N*Po $tcwloo Ho O's PI"04* 1t wrl IM= r)73 OW77 CAS r.M PZX;T3 1 ~s 0s 65O 1 0s 3 T*P?9~ rGusb Zr3cA tu Gl L Fig. 101. t7q 175~

ie1c - -............. 120 - i 60 4'C I, 130.... - 10~~~~~~~~~~~~00 100. 200 300 4..00. SAZ REG? GET ft.) VIlD I WWT AV 12 LUZPB (At.). PLANT VIU........... B~CX oS "rL07VITIZ3t $Q, *3. 100. 120 1.P.84 Wi! =0CMOITUATJ A? WOUND LTUV. ~s 2rlP3ow 3. a.b00o nZq Wrnar-D nlCM 82LC Fig. 102. 176

400 ~~~~~~~~~~~~~~00 ~00 300 I -4 Ir o. - -- --- - _ _ _ _ __, I - 1bb 200 300 400 500 STACK IOBfl? (Ft.) VIrTD M- t= 7T AT A15 NL P.R. PIN WIT LH M=T=ZS 108. 9STA1K O AS V,'CIXTIM, 60, 85, 100, 120 F.P.8. PWLJ. H10CHT? OV- COtOD L(O L, STACX LO~CATIOT 1. 2, 200 F.-,7 DC.I"1D FIRO STACZ. Fig. 103. 177

1 a, 1 - 140 130 LIL I 1 120 L III_ 110. 100o - a so'O 70_ -4 z50 O] l I I I I, ~ _ - t o 1000 120 100 200 300 400 600 STAIC HSIGIa? (ft,) WImD IR( N WIT AT 1i U.PO. PLAST WVIM ==I0Sl. STACX UGS VLfIIrt, 60o 85a 100, 120 P......ST!0..RAUC.. AT C..OWD L T, 8MT XXTOA! to X1, O 2t0 1=t D0WIKD FRM. HAC.X Fig. 104. 178

L-560 ~~0 /as'Boo II/ / 100 Z3. 80 0 _.-...00 8"AOX EfIMI3 (Ft.) VIJD W VZM AT ZO Uod.H PLOJT IC IZHMl V8IOJS BT.,C;= = M-t Ceo9 S,0 Coot 120?.P.5. PLV2M FZAI'M?- A-rOY3 GROUND LEVE~L, D~iOdC~ ~3CA'r(5Cj a. 2,200 Ff~Zt rJMzT ZVrD ZIZD nON 8? Fig. 105. 179

100 _o t —t —.... 80 7 d -- --—..- - — 1 -.. I- - >60C' t -— 1 —- __ ----— _ —---- 10100 100 2t0 4 00 400 500 STACK H SIGT (Ft.) WIND ICtL WEST?AT 15.P.N. PLAIT? WITH XTUSIONS. BTo GS V'LOOITIM, 60, 805 100, 120.P.8. MBIT C?1CMMATIO A7? GROTTD LatL, STAC IX WACAI0.5 29.,ZOO FMT DTIXD VI=C STA!.. Fig. 106.

t t / 522~~~00 rT —— a V / ~100 400 i0-4 ~ ~ ~ ~ ~ ~ ~ ~ ~ 6 i I I 15 200 300 C ------ - ~,, ~Fig. 107.

iso' I I l- I. - \l..5.....0 0. i'_ ____ 140 r__ ____T t _. 130:f0 i5 --' —--- Fj..... _ O 400.. 60 70, 100 200 300 400 500 STACK H3SIGHT (t.) 1 I'D FRCV IST AT l15 l.P.H. PUXT WI?! 9T53SI0o. S?AC OAs V3LIIo3t 60, 85, 100,,120.P.s. mf78 OOaCm0Tl'?I0 AT G. M ZD3U L TACX LOCATIOi 3. 2.200 IF=T IDCWIUD IFROM STACK. Fig. 108. 182

120 100 85,TI. 1 F I.,! 4 4000 — ~ —— t — t i/f { ) 300. ~100 _ _ _ _ _ _ _ _ _ - 153 OO 300 ro400 L STACXK HSIGT (?t.) WIN'D FROU 8b%-WRST AT 8.5 R-.P.B PLA3T WETi,'T UTEXTI=30N8. BTACZ Q3W fl 6OC?1f3, 60, 85, 100, 120 1.7.8. PIZAL3 HRIG7T AZO7S (MOUND L3?&L STABOX LWCA.?II to 1000 Bi? D0'WI3D FR0M STACZ. Fig. 109. 183

; f~C U, Ki ---- - -- 6 _ I2 t —t —t \ t! ~ _ _ _ _ _ _ _-01000_ _ _ _ 00 40t< -- [, —-— t —----- -I i I z X 100 2 300 4 00o STACY tIlHGT (Ft.) WINUD FROM 30UTHN-WE? AT 8.5 sPe.E PLAWT WITUOT RXTMI0iS. STAC GA3 VLx3TIE3, 60, 85, 100, 120 F.P.8. JUST CONCENTRATIOM AT ROJUND LEVE, 8T= LCATION 1. 1,000 MI&T n09tirWuD FRC STACK. Fig. 110. 184

120 100 85 1COI I 1 /71jT60 400 I, /S —-I -- ~ He1 —ww -- / -I- - - --- ______ j ______ I _ i _ 65 200 300 400 bo STACK HJIGHT (?t.) WlYD FRQI 1CU..Zr T dBT AT f 8 *5.R. BT XWIE, ItY MTISIEN5.WS, STACrX d'K GAS VVOITIZS, 60 65 lo, 12o P.P. pUMPE "-nTCMT EVE GROUD L L, 9rS__....A..IO............. FE.000.... F.ROM S S...... Fig. 111.

.... -.-.... —....-.. —... - —' -. -. *'! - _* _ ____ 1 -20 ----— "-. - I....... 1CI —-- _ i-, I L 120) ~.,\................n;v f\ ~-' --- t ^ —t. — -.!-. —. -.. 1 b;. t _ —-— |- - -— 1 —-- — t —I1 -I I _!. I X ~ — tti- -F —i -12Irl'' — i 10 L; —--- l —--- - ---- s1 o~~~~~~~~~~~~~~~~~ _ 0~~~~~~~~~~~~~~~~i' i ~ fCS 23n 300 4 6 o0 10'N...T........-BT.. 8... -..... PT..I...U. =..TSIOBS. STPCX GB~ YELXCfPiIM, 60, 85, r00, 12C F.P.9. A]S2 CONQC210NIC IT ~TOUNDi ZIIV~EL SThCK X CBTIOB 3. X, 000 P6LU N*WJClED Pf.0M STACX. Fig. 1 12. 186

E-00 400 ~1 300 200.A.CK LIM - (.ft,) WfiND Act SDU'=-T A? 15 XvP.LE PX4a ViKOX10 1O T M I03TN 8Z (A 8CA.IZ30 O, 60, 600, oo 120.P.8q. pM7=3 CIT IJOVS GUOUD LVLu 3X..TIT.Z a...2,000 ian Z'ciz D..I f.C.*. Fig. 113. 187

140 --'- - -I- - --- -- C — 130 - - t- - -- 1- -- 120 ----- -t —851 100 90 - _ _ _, 70C r - O __ 1.~o.-1 — 100 10 100 200 300 400 500 STACY H3''?T (Yt. WIND FROM SJOT7ff-ZIT AT 15 XP.9E PLAN? WITHf0UT tXIONIS. STACK GAS L ITI, 60 85, 1 00, 120.P.9. IXU8S CO.CE...A.ION AT T..Ot.D L.V.L, STACK LOCATION 1. 1,000 lT DXOWIND FROM STACX. Fig. 114. 188

~ ~' 1ooolA —n0 -O I - I,/1, I I D,200 X_.... 100 i1004XX 1 _ _.... _ ___ ~Q t -4 I IX $0 — _. _ Zds 0 30O0 400 500 WAD 8 *T 80'r3 0-IT d0 8ff 100.X HP.. — i~ 2 T ESIORS TJS. WCLTC0 3, 1,000' ra zx': Fig. 115. 839

140 f....... _ ~ 4 I t lr tt tt —-to 1,- t 120 0'1 _ 30 O ~~~~~~~~~~~~80~~~' C,70 t --- I -.1-4 449 F T l l I' 85' 100 200.00 400 Soo STACK HSIGHT (Ft.] WIND MtO SOUTH-WEBT AT 15 LIWPH PIAT WTT07? IXTISIO8I?AOX GBS 6E0,CITIE X, 60, 85, 100. 1Z0 1.1.8 WBT COCA TION AT GROUND LZYBZ, 3?LCK lXOTO 3. 1,000 1W DO IND FIC STAK. Fig 116. 190

0! 45 ~00 400 500 rBD 0100 LXO I60 I9' Fig.. 7.

1-0 r- | |' t8 i —- -...... 1 Lo I — jt — t - -!-oo I i. I - - -1,3~~~~ ~~~I 90 t __80 -- -. —. —------—.L —- - - STACK'It1Gl (1't.~ ST, GA VRWCIT —-ISS, -- -, 1 1 W.1. — s ~ —T C — - \- C hT — -— AT!-0U L' _ C 3 I, t \~~ ~F. - 8'o --...................... —----- \?o; lC1O 20C 300 400 6 C0 ST, 6, b5, L0T, l 20 b S.~ T C0NC:I0N AT B D = V8 L, Fig. 118. 192 10~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

100 U.......,1 1 400,., DC.l~ At 8.5 I.. PW' aIt11 LT"I018. 8TAtCZ 0i.T7vfl3~t C9u 85IEIC $, 85w 3O.1.8O It, P, An IGfl AlGTN tG, 3QND G"o $TA2' tO~ICI4 1000 n? DEFgIrlED l/01 T aCX. Fig. 119. 193

140 L 130 1 ~v 4 *t1 1*1 1 0 I ---''-'-t —-—' - 1 90 I o 70 - 8 C I I _ I_ I ____' A 1 30 120....1. I.. I.. ~ I WIND JS0X 8WIS-7.rq? AT 8.5 XlP., PLANT WITH BXTWI80NSO ITMA Vg CfTI, 6, &5, 100 I P.... DUS.T C_,MUI0N AT MOUND -, 9oC IC t000 nM XD t - S 4 — Fig. 120. 194 100~~~~~~~~~~...'~ ~ ~ 0 20'0 4~ 0 o. i: t~~~~~~~~~11

o...........IPCO.io 60/ 500 200 100 155 200. o0 400 500 STACK KSIXHT (Pt,) VWTD FROM E001 AT 8.15 VP.Re PLONT 2 E SXT Ioo0o. STACX GA3 V?.-00TL33, 60, 85O 100, 120 F.P,8, PIX' E.,"IGTCT AZOVS GiROUD LtS, 8TAM1,0 LCOATI0 3. 1,0I0 F-M Ct.~IND FROM STACK. Fig. 121. 195

150 -- - - 130 120. 110 o L 0 [~ 40 -!,... - -. 101 6 100 200 300 400 b00 ST:X RZISIG? (It.) WIND BRO( OUT'B-WM? AT 8,15 J.P.L PL? MITH [T=imIO'S BST4 OGA V3LCALITIE3s 60, 85, 100, 120 foJ.8. DUST Ct0Y014R'",ATIO AT (0M D LRYNLS 8TAZ LOIOATION 3, 1,000 7= M Du2IND TOM 8TAOK Fig. 122. 196

400 00 0.00 I C4 200 300 400 500 ITACX K2iRIG (nf.) WIIT 7 FRO M0'5'3-W? Ag a 5lP I. (AlT.). PLAIT WITS KXITSIQ!N3. 813 gA YIOELCtIIS3, 60, 85, 100oo, 120 PZ.?I3 PU1 EHrICMsI-T AMOVS CGROUID LTL, 8'kA LOCATIOX 1t 1,000 FEE? DOLwr#IXD MMb 3?ACt; Fig. 123. 197

374 60 150 140 -. Ito 100 o 80 U 5 r0 40 100 0 91?00 R0I0 0 (0te) l770 JO= s -um.' AT1 115 Xl.P.. (Ave.). PLANT IITIS ZXTMMIM3IO STAOX UAS YrLOITIisI 60, 856 100, 120 I.P.5. XSII CONCTeRUATf A2T (;QU t ND lVL, 8TACM LOOAMI 1 1,000 1"ti DOIWND FROM STACX,, Fig. 124. 198

t I I. ~ I i I g 200 j - - - j -/ —---- -' — 0 d I!I' I i t -- - --- t X I I -3400 t —- 2 3 400 0 t~3ACX HIGT ( t.) 82'SC LCSI0a 2.,000,0 PET DOIWID FRM5?C. 199 0!~ 200 300 400 00 STACX H v2IGRT { Po ] WXIND FRtOM SOUTM-WIT AT I5 X*B.o. PLAiT WITH a-...s?~10~$, STACK GU.S 7WlOCITXE3S 60, 85, 100, 120 F.P.S. PLM=~ iXI'-HT A.OFE OROVIID LETLl, STACK LOCATION 2. 1,000 FEET DOWNWIND FROM TACK. Fig. 125. 199

40 $t — -4 —-- t 120 s~z170 i' 7 I t lC-, o60 0 — t_- ----- - 100 200 300 4C0 600 STAC H.3I0H? ( Yt.) UIND FROY 800?R-WZT AL 15 LP.R. PLANT WITH =TlI308. 3TA.C 0S VELOCITI1>, 60, 85,?.P.B. 1U5T COJC=TRAIO kT A 0Vf D LZToL; DTEJOK WCSTION 2. 1,000 F~? D&tWIJD FROM 3T K. Fig. 126. 200!~ ~ ~ ~~~~~~6 ~, o........ 20..........[ —-'" STACKHSI'',HT(Ft. VIND~~~~~~~~~ rRt3U-M T1 o.oPATWT XESOS SU= US V=lI1 0,erp.MTCU MI;A RUDLT~ STACK LOCATION- 6 0 lo w owrDnu u

100C tq~ 1100 155 2,X 3CO 4CO 500 STACK H.IG.T ( t.) IV7D FROAM 55U0 -'EST AT iS f.6P.H. PLhAT I'TIE T rI.!0RS. STAC CGZA3 VZLOCITIiS 60, 85, 100l 120 F.P.8. PLU.E HiEIGhT AZfv3 GROUND LEVEL, STACK LOCATION 3. 1X,000 7FET nD0`-rIJD FROM STACK. Fig. 127. 201

120..1 I 110 t i _ _____^,70 Ct60 o 40 6_ _ _ 30 __ 85 20 — t10 t _ 100 200 300 400.00?UCXK BIGHT (Pt.) WXJD 31X0 SO MTH? Al" 2 St P.o PIP. WI ME 3$S0*. STAG U1S TXLOOITIS, 60, 85, 100, 10 PF.P.8. PXAT WITE?J12 IO1AT N,OUX 82TA1 WOIJ 3o. s F1,00= 1 nD FOM 8TA Fig. 128. 202