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We show that nonlinear gain saturation can enhance the stability of evanescently coupled 
semiconductor laser arrays. 

Arrays of semiconductor lasers are widely used as 
compact sources of intense radiation, with potential for 
generating watts of power in diffraction limited beams.’ 
Coherent arrays rely on the principle of phase locking, and 
in previous articles, we have analyzed the stability of the 
phase-locked state by solving coupled rate equations for 
the laser array.2’3 A key result of this analysis was that the 
phase-locked state is unstable over a wide range of cou- 
pling strength between the lasers. In the unstable regime, 
the coupled lasers are predicted to exhibit sustained self- 
pulsations at gigahertz frequencies. Evidence of such self- 
pulsations has been reported in several experiments.4 One 
factor that may help extend the stable range of operation of 
coupled lasers is the presence of nonlinear gain saturation 
in which the optical gain depends on the photon density. In 
this article, we include the effect of nonlinear gain on the 
dynamics of coupled lasers and find that it can reduce the 
domain of instability for the phase-locked state. 

The coupled mode equations for the carrier density, 
NJ, and the complex electric field, Ej, in each laser of the 
array may be written3 

dlv, dt’P-~-rG(Nj) I Eil 2, j= 1,2,..., 

where rp is the photon lifetime, rs is the carrier lifetime, P 
is the pump rate, K is the coupling strength between adja- 
cent lasers, a is the linewidth enhancement factor, G is the 
gain, and I? is the mode confinement factor. The gain func- 
tion G(N,) may be linearized about its value at the carrier 
density No required to achieve transparency 

G(Nj) =g(Nj-No), (3) 

where g is the differential gain. In our previous analyses, 
the differential gain was taken to be independent of inten- 
sity. At high intensity, however, the gain does saturate in 
the manner 

where p= 1 for a phenomenological two-level model or 
P-f according to a recent nonperturbative treatment.5 The 
nonlinear gain parameter E has a value of order 1 X lo-t7 

cm3 for InGaAsP lasers and the electric field is normalized 
so that 1 E 1’ gives the photon density. 

For two coupled lasers, the rate equations are 

El-KEZsin 0, (54 
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Here, El,, = 1 E1,2 1 and ~=I#J~-$, is the phase difference 
between the fields in the two lasers. We also define the 
unsaturated modal gain as gh=I’gc. In these equations, we 
have used the form ( 1 + EE’) -’ to represent gain satura- 
tion. From the linear stability analysis that follows, 
we find that the results for gain saturation of the form 
(l+~E~)-l’~ can be obtained simply by letting e+e/2 
in the expressions for the stability boundaries. This is clear 
from the linearized form of the two models for gain satu- 
ration. 

Equations (5) have two symmetric steady-state solu- 
tions with El=E,sE, N1=N2sN, and 8=0 (in-phase), 
or e=p (out-of-phase). The steady-state carrier density is 

N= 
Nth + Ep&; 

1 +e/8;jT, ’ (6) 

where the threshold carrier density is given by Nth=No 
+ l/ghrY For the steady-state field intensity, we have 

(7) 

with the threshold pump rate defined as Pth=Nth/rp 
To proceed with the stability analysis, we linearize 

Eqs. (5) about the steady-state solution, Taking El,, 
=E+e,,,(t), N,,2=N+n,,2(t), and e=e,+S(t), we ob- 
tain the following linear differential equations for the per- 
turbation S, e=e2-el, and n=n2-n,: 
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The stability of the steady state is governed by the above 
matrix of coefficients. Application of the Routh-Hurwitz 
criterion permits us to determine the regions of parameter 
space in which the steady-state solution is stable. We find 
that the out of phase solution is stable if 

K> 
a&SE” 

27,[1+ k+&JE21 ’ (9) 

while the in-phase solution is stable if 

1+ Gg;Tp + dE2 
QU+EE~) ) > 2Kagh. (10) 

To make contact with our previous analyses,3 we in- 
troduce the dimensionless quantities ?I = KrP, T = 7JrP, y  
=e/gbrS and p=f(ghr,+ E) E2. Here, p represents the nor- 
malized excess pump current beyond the threshold value. 
The parameter y is generally a small quantity ( - 10m3), 
hence, we can obtain the following approximate expres- 
sions for the stability boundaries from Eqs. (9) and ( 10) : 

arp 

+1+2p 
- (in-phase), (11) 

P’ 
2qT(a--2vTy) - 1 

2(1+Ty) 
(out-of-phase). (12) 

Figure 1 (a) shows the stability domain in the plane of 
the variables 7 and p for different values of the nonlinear 
gain parameter y. From these results, it is clear that non- 
linear gain can significantly increase the amount of phase 
space under which the stable operation of evanescently 
coupled arrays may occur. One striking feature of these 
results is the fact that the in-phase mode of operation is 
substantially unaffected by the presence of the nonlinear 
gain, whereas, the out-of-phase mode is clearly very 
strongly affected. This is indicative of the fact that the 
stability of the in-phase mode is dependent chiefly upon the 
extent to which the photons coupled in from the adjacent 
emitter represent a significant fraction of the photons gen- 
erated within the device, i.e., the extent to which the array 
acts as one large laser. The stability of this mode is thus 
more dependent upon what goes on between the lasers than 
what goes on within them. 

In order to gain some insight into the effect of the 
nonlinear gain on real devices, it is useful to examine the 
way in which an array of InGaAsP double heterostructure 
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FIG. 1. Stability domain of the in-phase and out-of-phase solutions for 
(a) several values of nonlinear gain parameter y=~/&, and (b) in the 
absence of nonlinear gain. Here, p is the excess pump current and 7) is the 
coupling strength. 

lasers might be affected. If we take typical values of g=2 
X lo-” cm3 s’-*, E= 1 X 10-l’ cm3, 3-,=2X lo-’ s, and 
I=O.2, we find y=1.25~ 10m2. From Fig. l(a), we see 
that this value of the nonlinear gain parameter significantly 
extends the stable domain of the out-of-phase mode. For 
longer wavelength strained multiple quantum well lasers, 
the damping effect is expected to be even stronger. For 
AlGaAs lasers, where the nonlinear gain parameter is 
about five times smaller,6 we expect a much smaller effect 
on the stable domain of operation. For AlGaAs lasers, 
y- 10m3 and we can see, by comparing Fig. 1 (a) to the 
stability boundaries in the absence of nonlinear gain, plot- 
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ted in Fig. l(b), that the AlGaAs array should be only 
weakly affected by nonlinear gain. 

In summary, a stability analysis of twin-element eva- 
nescently coupled laser arrays has been extended to include 
the effects of nonlinear gain. The presence of the nonlinear 
gain has been shown to have a significant damping effect on 
the instability of evanescently coupled arrays. 
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