2900-458-R

Memorandum of Project MICHIGAN

AN OPERATOR THEORETIC FORMULATION OF LINEAR DIFFERENTIAL SYSTEMS

W. A. PORTER

April 1964

Navigation and Control Systems Laboratory
Institute of Science and Technology
THE UNIVERSITY OF MICHIGAN
Ann Arbor, Michigan
NOTICES

Sponsorship. The work reported herein was conducted by the Institute of Science and Technology for the U. S. Army Electronics Command under Project MICHIGAN, Contract DA-36-039 SC-78801; the U. S. Air Force under Contract AF-33(657)-11501; and the National Science Foundation under Contract GP-524. Contracts and grants to The University of Michigan for the support of sponsored research by the Institute of Science and Technology are administered through the Office of the Vice-President for Research.

Note. The views expressed herein are those of Project MICHIGAN and have not been approved by the Department of the Army.

Distribution. Initial distribution is indicated at the end of this document. Distribution control of Project MICHIGAN documents has been delegated by the U. S. Army Electronics Command to the office named below. Please address correspondence concerning distribution of reports to:

Commanding Officer
U. S. Army Liaison Group
Project MICHIGAN
The University of Michigan
P. O. Box 618
Ann Arbor, Michigan

DDC Availability. Qualified requesters may obtain copies of this document from:

Defense Documentation Center
Cameron Station
Alexandria, Virginia

Final Disposition. After this document has served its purpose, it may be destroyed. Please do not return it to the Institute of Science and Technology.
PREFACE

Project MICHIGAN is a continuing, long-range research and development program for advancing the Army's combat-surveillance and target-acquisition capabilities. The program is carried out by a full-time Institute of Science and Technology staff of specialists in physics, engineering, mathematics, and related fields, by members of the teaching faculty, by graduate students, and by members of other research groups and laboratories of The University of Michigan.

The emphasis of the Project is upon research in imaging radar, MTI radar, infrared, radio location, image processing, and special investigations. Particular attention is given to all-weather, long-range, high-resolution sensory and location techniques.

Project MICHIGAN was established by the U. S. Army Signal Corps at The University of Michigan in 1953 and has received continuing support from the U. S. Army. The Project constitutes a major portion of the diversified program of research conducted by the Institute of Science and Technology in order to make available to government and industry the resources of The University of Michigan and to broaden the educational opportunities for students in the scientific and engineering disciplines.

Documents issued in this series of Technical Memorandums are published by the Institute of Science and Technology in order to disseminate scientific and engineering information as speedily and as widely as possible. The work reported may be incomplete, but it is considered to be useful, interesting, or suggestive enough to warrant this early publication. Any conclusions are tentative, of course. Also included in this series are reports of work in progress which will later be combined with other materials to form a more comprehensive contribution in the field.

Progress and results described in reports are continually reassessed by Project MICHIGAN. Comments and suggestions from readers are invited.

Robert L. Hess
Director
Project MICHIGAN
ACKNOWLEDGMENTS

The author gratefully acknowledges the exceptional teaching and research environment created jointly by the Department of Electrical Engineering and the Institute of Science and Technology of The University of Michigan. In particular, the help and encouragement of Electrical Engineering Prof. L. F. Kazda and Mr. James O'Day of the Navigation and Control Systems Laboratory, IST, have been indispensable in the prosecution of this research.
AN OPERATOR THEORETIC FORMULATION OF LINEAR DIFFERENTIAL SYSTEMS

ABSTRACT

In this report the linear differential system

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0 \]

is reduced to a canonical operator theoretic form. This representation consists of a parameterized family of bounded linear transformations into a cartesian product of the underlying scalar field. It gives immediate results for the minimum energy control problem.

1 INTRODUCTION

A number of recent articles have utilized the function-space approach to the analysis of control problems. The attractiveness of this approach stems from the manner in which the technical "underbrush" is cleared away, leaving the essential features in clear view. In this report the linear time varying system differential equation

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0 \] (1)

is reduced to a simple operator-theoretical form which in itself yields considerable insight into the structure of the system. In Equation 1 the symbols \(x(t) \) and \(u(t) \) denote the column vectors \(x(t) = \text{col}(x_1(t), \ldots, x_n(t)) \), \(u(t) = \text{col}(u_1(t), \ldots, u_m(t)) \), and \(A(t), B(t) \) denote \(n \times n \) and \(n \times m \) matrices, respectively. It is well known that under fairly general conditions the solution to Equation 1 exists, is unique, and is expressible in the following matrix integral form:

\[x(t, t_0, x^0) = \Phi(t, t_0)x^0 + \phi(t, t_0) \int_{t_0}^{t} \Phi(t_0, s)B(s)u(s)ds \] (2)
To make these statements precise, define T as a fixed interval on the real line; then the following theorem summarizes the properties important to this discussion [1, 2].

Theorem 1: Let $||A(t)||$ denote the norm of $A(t)$ at time t; then if $||A(t)|| \leq m(t)$, where $m(t)$ is an integrable function on T, there exists a unique matrix $\Phi(t, t_0)$, which is absolutely continuous on T and satisfies the differential equation

$$\dot{\Phi}(t) = A(t)\Phi(t) \quad \Phi(t_0) = I \quad t, t_0 \in T$$

almost everywhere on T.

In this theorem, it is assumed that $||A(t)||$ is the norm induced by any suitable norm on $x(t)$. The solution guaranteed by the theorem is, of course, the matrix $\Phi(t, t_0)$ used in Equation 2.

2 THE OPERATOR THEORETIC FORMULATION

A moments reflection on Equation 2 emphasizes the extent to which the operations involved are concrete. It is also true that in many cases the abstraction of physical problems affords a clearer insight into the basic character of the problem. Such is the case with differential systems. To shorten the following treatment, let us agree on the standard notations:

$$C(T) = \{ x(t) \mid x(t) \text{ is a continuous function for } t \in T \}$$

$$L_p(T) = \left\{ x(t) \mid x(t) \text{ is measurable}^1 \text{ on } T \text{ and } \left[\int_T |x(t)|^p dt \right]^{1/p} < \infty \right\} \quad 1 \leq p \leq \infty$$

A direct consequence of Theorem 1 is that if each element of $B(t)$ is bounded and measurable on T, and if each $u_j \in L_1(T)$, $j = 1, \ldots, m$, then Equation 2 represents the unique solution of Equation 1. Theorem 1 states, in addition, that $\Phi(t, t_0)$ is absolutely continuous, which implies that each element $\varphi_{ij}(t)$ of this matrix is in $C(T)$, $i, j = 1, \ldots, n$. Since every continuous function takes on an absolute maximum and minimum on any finite interval, it is easy to show that $\varphi_{ij}(t, t_0) \in L_p(T)$ for any $1 \leq p \leq \infty$ and $i, j = 1, \ldots, n$. Thus the functions $\varphi_{ij}(t, t_0)$ may be considered as elements in any of these function spaces.

1. That is, measurable in the sense of Lebesque. In the case $p = \infty$, the integral is replaced by $\text{ess. sup.} |x(t)|_{t \in T}$.
It is not essential, but convenient, to assume that $B(t)$ is also a matrix of continuous functions so that the matrix $Z(t) = \Phi(t_0, t)B(t)$ is a continuous $n \times m$ matrix. Let $z_{ij}(t)$ denote the elements of $Z(t)$ and let $Z_i(t) = [z_{i1}(t), \ldots, z_{im}(t)]$ denote the i-th row of $Z(t)$. Define the operation $[z_{1\prime}^t, u](s)$ by

$$[z_{1\prime}^t, u](s) = \sum_{j=1}^{m} z_{ij}(s)u_{ij}(s)$$

Then the reader can easily verify that $\Phi(t_0, s)B(s)u(s)$ is an $n \times 1$ vector, the i-th component of which is given by $[z_{1\prime}^t, u](s)$. Thus we have

$$\int_{t_0}^{t} \varphi(t_0, s)B(s)u(s) = \int_{t_0}^{t} \begin{bmatrix} [z_{1\prime}^t, u](s) \\ \vdots \\ [z_{n\prime}^t, u](s) \end{bmatrix} ds$$

In all cases, integrals of the form $\int_{t_0}^{t} z_{ij}(s)u_{ij}(s)ds$ are involved. For fixed t, the form of this expression is that of a linear functional [3]. We have remarked earlier that if $z_{ij}(t)$ is continuous on T, it qualifies as an element of any $L_p(T)$ for $1 \leq p \leq \infty$. Thus if $u_j(t) \in L_p(T)$, $z_{ij}(t) \in L_p(T)$, where $1/p + 1/p' = 1$, and the functional f_{ij}^t defined by

$$f_{ij}^t(u_j) = \int_{t_0}^{t} z_{ij}(s)u_{ij}(s)ds$$

exists and is the general representation\footnote{If X is a linear space, then X^* denotes the space of all bounded linear functionals defined on X. X^* is called the conjugate of X. See Reference 3, page 185, for details.} of an element of the space $L_p^*(T)$.

In many applications, the functions $u_1(t), \ldots, u_m(t)$ represent independent inputs to a physical system. Hence it is desirable to consider them as elements from distinct function spaces. Restricting ourselves to $L_p(T)$ spaces, we have

$$u_j(t) \in L_{p_j}(T) \quad j = 1, \ldots, m$$

Let the space U be defined by the equation\footnote{This notation denotes the cartesian product of function spaces. See Section 4, page 121 of Reference 4.}

$$U \Delta \prod_{j=1}^{m} L_{p_j}(T) \times \ldots \times L_{p_m}(T)$$
Then every input vector $u(t) = (u_1(t), \ldots, u_m(t))$ is an element of U. The functionals f_i^t, $i = 1, \ldots, n$, on U can be defined in the natural way by

$$f_i^t(u) = \sum_{j=1}^m f_{ij}^t(u_j) = \sum_{j=1}^m \int_{t_0}^t z_{ij}(s)u_j(s)\,ds = \int_{t_0}^t [z_i, u](s)\,ds$$

where, indeed $f_i^t \in \mathcal{U}^* \times \ldots \times \mathcal{L}^*_{\mathcal{L}_{p_1}} (T) \times \ldots \times \mathcal{L}^*_{\mathcal{L}_{p_m}} (T)$, $i = 1, \ldots, n$.

In terms of these definitions, we can now reformulate Equation 2. First, using Equation 4, we note that the forced response can be rewritten as

$$\Phi(t, t_0) \int_{t_0}^t \Phi(t_0, s)B(s)u(s)\,ds = \Phi(t, t_0) \begin{bmatrix} f_1^t(u) \\ \vdots \\ f_n^t(u) \end{bmatrix}$$

(5)

Let each functional $f_i^t(u)$ be written in the dyadic notation $f_i^t(u) \triangleq <f_i^t, u>$. Then, denoting the j-th column of $\Phi(t, t_0)$ by $\varphi_j(t, t_0)$, we see that Equation 5 reduces to

$$\Phi(t, t_0) \int_{t_0}^t \varphi_j(t_0, s)B(s)u(s)\,ds = \sum_{i=1}^n \varphi_i(t, t_0) <f_i^t, u>$$

If the operator F^t is defined by

$$F^t \triangleq \sum_{j=1}^n \varphi_j(t, t_0) <f_i^t$$

then we have just proved the following theorem.

Theorem 2: Every differential system obeying

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = 0$$

(6)

for which $\int \|A(t)\|\,dt < \infty$ and $u \in [\mathcal{L}_{L_1}(T)]^m$ can be described as a parameterized family of bounded \(^4\) linear transforms F^t each with finite dimensional range.

\(^4\)The proof that F^t is bounded follows from the fact that each f_i^t is bounded.
In the terminology of Theorem 2, the variable \(\mathbf{t} \) is considered as parameter of the transformation. The columns \(\varphi_1(t), \ldots, \varphi_n(t) \) of the transform matrix span the range space of \(\mathbf{F}^t \) for every value of the parameter \(\mathbf{t} \). The range \(\mathbf{R}_F \) of \(\mathbf{F}^t \) is then contained in \(\mathbf{L}(\varphi_1(t), \ldots, \varphi_n(t)) = \mathbf{R}^n \). \(\mathbf{F}^t \) is then a parameterized mapping of \(\mathbf{U} \) into \(\mathbf{R}^n \), written \(\mathbf{F}^t: \mathbf{U} \rightarrow \mathbf{R}^n \).

Let us consider the initial-condition response of the system. This term is given by \(\phi(t, t_0)x^0 \). If \(\mathbf{R}^n \) denotes the space of real \(n \)-tuples, then clearly \(x^0 \in \mathbf{R}^n \). If \(e_1, \ldots, e_n \) denotes the rows of the identity matrix on \(\mathbf{R}^n \), it is also clear that the \(i \)-th component \(x_i^0 \) of \(x^0 \) is given by \(\langle e_i, x^0 \rangle \) and, hence

\[
\phi(t, t_0)x^0 = \sum_{i=1}^{n} \varphi_i(t, t_0)\langle e_i, x^0 \rangle
\]

Let us define the linear transformation \(\mathbf{J}^t \) by

\[
\mathbf{J}^t = \sum_{i=1}^{n} \varphi_i(t, t_0)\langle e_i \rangle
\]

Then \(\phi(t, t_0)x^0 = \mathbf{J}^t x^0 \) and \(\mathbf{J}^t: \mathbf{R}^n = \mathbf{L}(\varphi_1(t), \ldots, \varphi_n(t)) \). Observe also that the ranges of \(\mathbf{J}^t \) and \(\mathbf{F}^t \) are identical. \(\mathbf{J}^t \), however, is one-to-one and onto and, hence, is nonsingular.

It is possible to incorporate the total system response within the present framework. To do this, let the augmented input space \(\mathbf{V} \) be defined by \(\mathbf{V} = \mathbf{R}^n \times \mathbf{U} \). The elements of \(\mathbf{V} \) are then of the form \(\mathbf{v} = [x_1^0, \ldots, x_n^0, u_1(t), \ldots, u_m(t)] \). Noting that Equation 2 has the form

\[
x_u(t, t_0, x^0) = \mathbf{J}^t x^0 + \mathbf{F}^tu,
\]

let us define the operator \(\mathbf{T}^t = \mathbf{J}^t \otimes \mathbf{F}^t \) by

\[
\mathbf{T}^t \mathbf{v} = \mathbf{J}^t \mathbf{x}^0 + \mathbf{F}^t \mathbf{u}
\]

Since \(\mathbf{J}^t \) and \(\mathbf{F}^t \) have the same range space, namely \(\mathbf{R}^n = \mathbf{L}(\varphi_1(t), \ldots, \varphi_n(t)) \), it is clear that \(\mathbf{T}^t: \mathbf{V} = \mathbf{L}(\varphi_1(t), \ldots, \varphi_n(t)) \) and that \(\mathbf{T}^t \) is linear. From this it follows that \(\mathbf{T}^t \) must have an \(n \)-term dyadic expansion. In fact, let the functionals \(\{g_1, \ldots, g_n\} \) on \(\mathbf{V} \) be defined by

\[
g_i^t(v) = \langle e_i, x^0 \rangle + \langle f_i^t, u \rangle
\]

Then, combining Equations 6, 7, and 8, we have

\[
x_u(t, t_0; x) = \mathbf{T}^t \mathbf{v} = \sum_{i=1}^{n} \varphi_i(t, t_0)\langle e_i, x^0 \rangle + \sum_{i=1}^{n} \varphi_i(t, t_0)\langle f_i^t, u \rangle = \sum_{i=1}^{n} \varphi_i(t, t_0)\langle g_i^t, v \rangle
\]

(9)
The following theorem summarizes these results.

Theorem 3: If $A(t)$ is a square matrix for which $\int_T^T \|A(t)\| \, dt < \infty$, and if each element of the vector $B(t)u(t)$ is integrable on T, then the differential system

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0, \quad t \in T$$

can be represented as a parameterized family of bounded linear transformations onto a finite dimensional range.

3 DISCUSSION

The intent of this report is not the detailed exploitation of the above representation, for the implications are many and varied. It seems appropriate, however, to mention in passing some of the salient advantages of this approach to systems analysis. First let us note that generalization of the present result to systems of the form

$$\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0$$

$$y(t) = C(t)x(t) + D(t)u(t)$$

can be managed with little modification in the previous arguments. More important is the fact that although this report is concerned with continuous time systems, it can be shown that discrete time and, in fact, any linear dynamic system can be reduced to a representation of the above form [5, 6]. Thus the present approach emphasizes the similarities rather than the differences between the various types of linear systems.

The form of Equation 5 itself is worth comment. Let us inquire into the linear dependence or independence of the functionals $<f_1^t, \ldots, f_n^t>$. Definition: Any operator A of the form

$$A = \sum_{j=1}^n \varphi_j <f_j^t$$

will be called P-normal if the sets $\varphi_1^>, \ldots, \varphi_n^>$ and $<f_1^t, \ldots, f_n^t$ are both linearly independent.

In the present case, the $\varphi_1^>, \ldots, \varphi_n^>$ are the n-linearly independent solutions to the homogeneous differential system and the independence of the set $F = \{<f_1^t, \ldots, f_n^t\}$ is the only issue.
The definition of P-normality has a close relationship to the oft-mentioned general position condition [7] and the practically identical controllability concept [8]. It can be shown that the P-normal condition is both more general and satisfying in that it covers discrete, continuous, and composite systems in a single stroke [9].

Let the input spaces be restricted to being replicas of the Hilbert space $H = L^2(T)$. The space U is also a Hilbert space (with respect to the usual inner product for cartesian spaces) and the functionals $\langle f_j \rangle$ on U are inner products with vectors in U. Let us denote the functional and the vector by the same symbol f_j, $j = 1, \ldots, n$. Then, if $L(f_1, \ldots, f_n)$ is the linear manifold spanned by f_1, \ldots, f_n, we may make the decomposition $U = L \oplus L^\perp$, and from Equation 5 it is clear that the null space N_L of T^t is equal to L^\perp. Since L is n-dimensional, this implies that there are only n-linearly independent input signals which "efficiently" affect the output. Reference 10 presents a thorough discussion of this and other matters in a more general setting.

Finally, let us note that the operators J^t and T^t, defined by Equations 5 and 8, are time varying in nature. If a fixed-arrival-time problem is formulated in the present manner with arrival time $t = t_f$ then $T^{t_f}; V_R^n$. In this case any basis for R^n can be used to decompose T^{t_f}, since the relation between the various decompositions is simply a nonsingular change of variables. If the arrival time t_f is not fixed, but is to be determined (as in the Bolza problem of the calculus of variations), t_f may be considered as a parameter; this case is treated as before.

REFERENCES

PROJECT MICHIGAN DISTRIBUTION LIST 1
1 April 1963 — Effective Date

Copy No. Address

1 Office, Secretary of Defense, Security Services
 Room 31-H, The Pentagon
 Washington 25, D. C.

2-26 Defense Documentation Center, Cameron Station
 Alexandria, Virginia 22314
 ATTN: TBD

27 Director, Weapons Systems Evaluation Group (WSEG)
 Room 1D 847, The Pentagon
 Washington, D. C. 20310
 ATTN: Chief, Physical Sciences Division, ARO

28 Office, Chief of Research and Development
 Department of the Army
 Washington, D. C. 20310
 ATTN: Chief, Physical Sciences Division, ARO

29 The Assistant Chief of Staff for Force Development
 Department of the Army
 Washington, D. C. 20310
 ATTN: Concepts Branch

30 Office, Assistant Chief of Staff for Intelligence, DA
 Systems Development Division
 Washington, D. C. 20310

31 U.S. Army Personnel Research Office
 Washington, D. C. 20315

32-34 Commanding General, U.S. Army Materiel Command
 Washington, D. C. 20315
 (32) ATTN: AMCMR-HR-P-E
 (33-34) ATTN: AMCMR-DM-E

35 Headquarters, United States Combat Developments
 Command
 Fort Belvoir, Virginia 22040

36 Commanding General, U.S. Army Electronics Command
 Fort Monmouth, New Jersey 07703
 ATTN: AMSEL-CL-A

37-38 Redstone Scientific Information Center
 U.S. Army Missile Command
 Redstone Arsenal, Alabama 35809
 ATTN: Chief, Document Section

39-66 Commanding Officer, U.S. Army Electronics R&D
 Laboratories
 Fort Monmouth, New Jersey 07703
 (39) ATTN: SELRA/AD-RHA
 (40-66) ATTN: SELRA/ADT

67-70 Chief, U.S. Army Security Agency
 Arlington Hall Station
 Arlington, Virginia 22212
 (67) ATTN: ACDSD, Developments
 (68) ATTN: IACON
 (69-70) ATTN: ACDSD, Q2

71 Commanding Officer, U.S. Army Combat Developments
 Command
 Fort Belvoir, Virginia 22040

Copy No. Address

72-74 Director, U.S. Army Engineer
 Geodetic, Intelligence & Mapping R&D Agency
 Fort Belvoir, Virginia 22040
 (72) ATTN: Intelligence Division
 (73) ATTN: Chief, Photogrammetry Division
 (74) ATTN: Research and Analysis Division

75 Commanding Officer, U.S. Army Combat Developments
 Command, Infantry Agency
 Fort Benning, Georgia 31905

76 Commanding Officer, U.S. Army Combat Developments
 Command, Air Defense Agency
 Fort Bliss, Texas 79916

77-78 Commanding Officer, U.S. Army Combat Developments
 Command, Intelligence Agency
 Fort Holabird, Maryland 21210

79 U.S. Army Combat Developments Command
 Communications-Electronics Agency
 Fort Huachuca, Arizona 85613
 ATTN: CAGECE-ASD

80 Commanding Officer, U.S. Army Combat Developments
 Command
 Armor Agency
 Fort Knox, Kentucky 40121

81 Commanding Officer, U.S. Army Air Defense Engineering
 Agency
 Fort George G. Meade, Maryland 20755

82 Commanding Officer, U.S. Army Combat Developments
 Command
 Artillery Agency
 Fort Sill, Oklahoma 73504

83-84 Director, U.S. Army Engineer Research and Development
 Laboratories
 Fort Belvoir, Virginia 22040
 ATTN: Administration Services Department

85 Director, U.S. Army Cold Regions Research &
 Engineering Laboratory
 P.O. Box 282
 Hanover, New Hampshire

86-87 Commanding Officer, Harry Diamond Laboratories
 Washington, D. C. 20438
 ATTN: Library

88 Commanding Officer
 Picatinny Arsenal
 Dover, New Jersey 07801
 ATTN: SMUPA-DEWS

89 Commanding Officer, U.S. Army Research Office
 (Darnall)
 Box CM, Duke Station
 Durham, North Carolina 27706
 ATTN: Chief, Information Processing Office

90 U.S. Army Aviation Human Research Unit
 Post Office Box 428
 Fort Rucker, Alabama 36362
<table>
<thead>
<tr>
<th>Copy No.</th>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-92</td>
<td>Commanding General, U.S. Army Combat Developments Command, Experimentation Center Fort Ord, California 93941</td>
<td>ATTN: CDSC-AG</td>
</tr>
<tr>
<td>93</td>
<td>Commanding General, U.S. Army Electronic Proving Ground Fort Huachuca, Arizona 85613</td>
<td>ATTN: AG Technical Library</td>
</tr>
<tr>
<td>94</td>
<td>Commanding Officer Aberdeen Proving Ground, Maryland 21005</td>
<td>ATTN: SCAE-CP-TP</td>
</tr>
<tr>
<td>95</td>
<td>Commandant, U.S. Army War College Carlisle Barracks, Pennsylvania 17013</td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>96</td>
<td>Commandant, U.S. Army Command and General Staff College Fort Leavenworth, Kansas 66027</td>
<td>ATTN: Library Division</td>
</tr>
<tr>
<td>97</td>
<td>Commandant, U.S. Army Engineer School Fort Belvoir, Virginia 22060</td>
<td>ATTN: AEBES-STRY</td>
</tr>
<tr>
<td>98</td>
<td>Commandant, U.S. Army Air Defense School Fort Bliss, Texas 79916</td>
<td>ATTN: AKBAA-DF-R</td>
</tr>
<tr>
<td>99</td>
<td>President, U.S. Army Infantry Board Fort Benning, Georgia 31905</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>President, U.S. Army Artillery Board Fort Sill, Oklahoma 73504</td>
<td>ATTN: SCAE-CD</td>
</tr>
<tr>
<td>101</td>
<td>President, U.S. Army Air Defense Board Fort Bliss, Texas 79916</td>
<td></td>
</tr>
<tr>
<td>102-103</td>
<td>President, U.S. Army Aviation Test Board Fort Rucker, Alabama 35362</td>
<td>ATTN: SCAE-TTP</td>
</tr>
<tr>
<td>104</td>
<td>President, U.S. Army Airborne Electronics and Special Warfare Board Fort Bragg, North Carolina 28307</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>U.S. Army Security Agency Board Arlington Hall Station Arlington, Virginia 22212</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>USAFRL/RL Liaison Office, Rome Development Center Griffiss AFB, New York 13442</td>
<td>ATTN: RAOL</td>
</tr>
<tr>
<td>107-108</td>
<td>U.S. Army Research Liaison Office MIT-Lincoln Laboratory Lexington, Massachusetts 02173</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>Office of Naval Research 17th and Constitution Avenues Washington, D. C. 20360</td>
<td>ATTN: Code 461</td>
</tr>
<tr>
<td>111</td>
<td>Commander, U.S. Naval Oceanographic Office Washington, D. C. 20390</td>
<td>ATTN: Library (Code 1640)</td>
</tr>
<tr>
<td>112-113</td>
<td>Chief, Bureau of Ships, Department of the Navy Washington, D. C. 20360</td>
<td>ATTN: Command and Control Systems Management Office (Code 607)</td>
</tr>
<tr>
<td>113</td>
<td>ATTN: Code 680</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>Bureau of Naval Weapons (RTRE-3) Department of the Navy Washington, D. C. 20360</td>
<td></td>
</tr>
<tr>
<td>115-116</td>
<td>Director, U.S. Naval Research Laboratory Washington, D. C. 20390</td>
<td>ATTN: Code 2027</td>
</tr>
<tr>
<td>117</td>
<td>Commanding Officer U.S. Naval Ordnance Laboratory Corona, California 91720</td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>118</td>
<td>Commanding Officer and Director U.S. Navy Electronic Laboratory San Diego, California 92152</td>
<td>ATTN: Library</td>
</tr>
<tr>
<td>119</td>
<td>Commander, Naval Ordnance Laboratory White Oak, Silver Spring, Maryland</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>Commanding Officer U.S. Naval Photographic Interpretation Center Washington, D. C. 20390</td>
<td></td>
</tr>
<tr>
<td>121-123</td>
<td>Commander U.S. Naval Ordnance Test Station China Lake, California 93557</td>
<td>(121) ATTN: Code 3515 (122) ATTN: Code 753 Technical Library (123) ATTN: Code 40508</td>
</tr>
<tr>
<td>124</td>
<td>Commander, U.S. Naval Missile Center Code N223, Space Research Division Point Mugu, California 90424</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Commander, Strategic Air Command (DICC) Offutt AFB, Nebraska 68112</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Commander, Tactical Air Command (OA) Langley AFB, Virginia 23359</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Commander Tactical Air Command COMM RNG (DCETS) Langley AFB, Virginia 23359</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>APAC (PGAP) Eglin AFB, Florida 32542</td>
<td></td>
</tr>
<tr>
<td>131-132</td>
<td>Commander Tactical Air Reconnaissance Center Director of Intelligence (DI) Shaw AFB, South Carolina 29152</td>
<td></td>
</tr>
<tr>
<td>Copy No.</td>
<td>Addresser</td>
<td>Copy No.</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>133-134</td>
<td>Commander</td>
<td>163</td>
</tr>
<tr>
<td></td>
<td>Rome Air Development Center (EMG)</td>
<td>Battelle Memorial Institute</td>
</tr>
<tr>
<td></td>
<td>Space Defense Systems Laboratory</td>
<td>505 King Avenue</td>
</tr>
<tr>
<td></td>
<td>Griffiss AFB, New York 13442</td>
<td>Columbus, Ohio 43201</td>
</tr>
<tr>
<td>135-140</td>
<td>FTD</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, Ohio 45433</td>
<td>1314 Kinnear Road</td>
</tr>
<tr>
<td>(135-137)</td>
<td>ATTN: TSDOP</td>
<td>Columbus, Ohio 43212</td>
</tr>
<tr>
<td>(138-140)</td>
<td>ATTN: TDA</td>
<td>ATTN: Security Officer for</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assistant Director Antenna Laboratory</td>
</tr>
<tr>
<td>141-145</td>
<td>Air Force Avionics Laboratory</td>
<td>VIA: Headquarters, ASD</td>
</tr>
<tr>
<td></td>
<td>Wright-Patterson AFB, Ohio 45433</td>
<td>Wright-Patterson AFB, Ohio 45433</td>
</tr>
<tr>
<td>(141-143)</td>
<td>ATTN: AFAL (AVR)</td>
<td>ATTN: ASE</td>
</tr>
<tr>
<td>(144-145)</td>
<td>ATTN: AVST</td>
<td></td>
</tr>
<tr>
<td>146</td>
<td>Director, Air University Library</td>
<td>165-166</td>
</tr>
<tr>
<td></td>
<td>Maxwell AFB, Alabama 36112</td>
<td>The George Washington University</td>
</tr>
<tr>
<td></td>
<td>ATTN: AU/LT-7971</td>
<td>300 North Washington Street</td>
</tr>
<tr>
<td>147-148</td>
<td>Commandant of the Marine Corps</td>
<td>Alexandria, Virginia 22314</td>
</tr>
<tr>
<td></td>
<td>Headquarters, U.S. Marine Corps</td>
<td>VIA: Chief of R&D</td>
</tr>
<tr>
<td></td>
<td>Washington, D. C. 20380</td>
<td>Department of the Army ARO</td>
</tr>
<tr>
<td></td>
<td>ATTN: Code A02</td>
<td>Washington, D. C. 20310</td>
</tr>
<tr>
<td>149-150</td>
<td>Marine Corps Landing Force Development Center</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Marine Corps Schools</td>
<td>Systems University Research Corporation</td>
</tr>
<tr>
<td></td>
<td>Quantico, Virginia 22134</td>
<td>P.O. Box 26, University Station</td>
</tr>
<tr>
<td>151-155</td>
<td>Central Intelligence Agency</td>
<td>Syracuse, New York 13210</td>
</tr>
<tr>
<td></td>
<td>Washington, D. C. 20505</td>
<td>VIA: Office of Naval Research</td>
</tr>
<tr>
<td></td>
<td>ATTN: OCR Mailroom</td>
<td>Department of the Navy</td>
</tr>
<tr>
<td>155</td>
<td>National Aeronautics and Space Administration</td>
<td>Washington, D. C. 20340</td>
</tr>
<tr>
<td></td>
<td>Manned Spacecraft Center</td>
<td>ATTN: Library</td>
</tr>
<tr>
<td></td>
<td>Houston, Texas 77001</td>
<td>VIA: NASA Residency - JPL</td>
</tr>
<tr>
<td></td>
<td>ATTN: Chief, Technical Information Division</td>
<td>P.O. Box 205</td>
</tr>
<tr>
<td>157-158</td>
<td>Scientific and Technical Information Facility</td>
<td>Mountain View, California 94042</td>
</tr>
<tr>
<td></td>
<td>P.O. Box 5700</td>
<td>ATTN: Library/Documents</td>
</tr>
<tr>
<td></td>
<td>Bethesda, Maryland 20814</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: NASA Representative (SAK/DIL)</td>
<td></td>
</tr>
<tr>
<td>159-160</td>
<td>Cornell Aeronautical Laboratory, Inc.</td>
<td>169</td>
</tr>
<tr>
<td></td>
<td>4455 Genesee Street</td>
<td>Sylvan Research Laboratories - W</td>
</tr>
<tr>
<td></td>
<td>Buffalo, New York 14221</td>
<td>Electronic Defense Laboratories</td>
</tr>
<tr>
<td></td>
<td>ATTN: Librarian</td>
<td>P.O. Box 205</td>
</tr>
<tr>
<td></td>
<td>VIA: Inspector of Naval Materiel</td>
<td>Mountain View, California 94042</td>
</tr>
<tr>
<td></td>
<td>1021 Main Street</td>
<td>ATTN: Library/Documents</td>
</tr>
<tr>
<td></td>
<td>Buffalo, New York 14203</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1700 Main Street</td>
<td>Rock Island Arsenal</td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California 90406</td>
<td>Rock Island, Illinois 61202</td>
</tr>
<tr>
<td></td>
<td>VIA: Resident Office Headquarters</td>
<td>ATTN: RACIC</td>
</tr>
<tr>
<td></td>
<td>Los Angeles Contract Management District</td>
<td>171</td>
</tr>
<tr>
<td></td>
<td>United States Air Force</td>
<td>Columbus, Ohio</td>
</tr>
<tr>
<td></td>
<td>The RAND Corporation</td>
<td>ATTN: RACIC</td>
</tr>
<tr>
<td></td>
<td>Santa Monica, California 90406</td>
<td>172</td>
</tr>
<tr>
<td></td>
<td>ATTN: Library</td>
<td>1775 Massachusetts Avenue, N. W.</td>
</tr>
<tr>
<td>162</td>
<td>Research Analysis Corporation</td>
<td>Washington, D. C.</td>
</tr>
<tr>
<td></td>
<td>Capital Beltway & Dolley Madison Hwy</td>
<td>ATTN: RACIC</td>
</tr>
<tr>
<td></td>
<td>McLean, Virginia 22101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ATTN: Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VIA: U. S. Army R&D Operations Research Advisory Group</td>
<td>173-174</td>
</tr>
<tr>
<td></td>
<td>Capital Beltway & Dolley Madison Hwy</td>
<td>U.S. Army Liaison Group</td>
</tr>
<tr>
<td></td>
<td>McLean, Virginia 22101</td>
<td>Project Michigan</td>
</tr>
<tr>
<td></td>
<td>ATTN: Library</td>
<td>The University of Michigan</td>
</tr>
<tr>
<td></td>
<td>VIA:</td>
<td>P.O. Box 618</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ann Arbor, Michigan</td>
</tr>
</tbody>
</table>
UNCLASSIFIED

I. Title: Project MICHIGAN
II. Porter, W. A.
III. U. S. Army Electronics Command
IV. Contract DA-36-039 SC-78801
(V) Project No. 3D5801001
VI. U. S. Air Force
VII. Contract AF-33(657)-11501
VIII. National Science Foundation
IX. Contract GP-524

Defense Documentation Center
UNCLASSIFIED

In this report the linear differential system

\[x(t) = A(t) x(t) + B(t)u(t) \quad x(t_0) = x^0 \]

is reduced to a canonical operator theoretic form. This representation consists of a parameterized family of bounded linear transformations into a cartesian product of the underlying scalar field. It gives immediate results for the minimum energy control problem.

(over)

UNCLASSIFIED

I. Title: Project MICHIGAN
II. Porter, W. A.
III. U. S. Army Electronics Command
IV. Contract DA-36-039 SC-78801
(V) Project No. 3D5801001
VI. U. S. Air Force
VII. Contract AF-33(657)-11501
VIII. National Science Foundation
IX. Contract GP-524

Defense Documentation Center
UNCLASSIFIED

In this report the linear differential system

\[x(t) = A(t) x(t) + B(t)u(t) \quad x(t_0) = x^0 \]

is reduced to a canonical operator theoretic form. This representation consists of a parameterized family of bounded linear transformations into a cartesian product of the underlying scalar field. It gives immediate results for the minimum energy control problem.

(over)
UNCLASSIFIED

I. Title: Project MICHIGAN

II. Porter, W. A.

III. U. S. Army Electronics Command

IV. Contract DA-36-039 SC-78801

V. Project No. 3D5801001

VI. U. S. Air Force

VII. Contract AF-33(657)-11501

VIII. National Science Foundation

IX. Contract GP-524

Defense

Documentation Center

UNCLASSIFIED

AD Div. 19/4

Inst. of Science and Technology, U. of Mich., Ann Arbor
AN OPERATOR THEORETIC FORMULATION OF LINEAR DIFFERENTIAL SYSTEMS by W. A. Porter.
Memo, of Project MICHIGAN, Apr. 64. 8 p. 10 refs. (Memorandum No. 2900-458-R)
(Contract DA-36-039 SC-78801)
(Project No. 3D5801001) Unclassified memo.

In this report the linear differential system

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0 \]

is reduced to a canonical operator theoretic form. This representation consists of a parameterized family of bounded linear transformations into a cartesian product of the underlying scalar field. It gives immediate results for the minimum energy control problem.

(over)

UNCLASSIFIED

I. Title: Project MICHIGAN

II. Porter, W. A.

III. U. S. Army Electronics Command

IV. Contract DA-36-039 SC-78801

V. Project No. 3D5801001

VI. U. S. Air Force

VII. Contract AF-33(657)-11501

VIII. National Science Foundation

IX. Contract GP-524

Defense

Documentation Center

UNCLASSIFIED

AD Div. 19/4

Inst. of Science and Technology, U. of Mich., Ann Arbor
AN OPERATOR THEORETIC FORMULATION OF LINEAR DIFFERENTIAL SYSTEMS by W. A. Porter.
Memo, of Project MICHIGAN, Apr. 64. 8 p. 10 refs. (Memorandum No. 2900-458-R)
(Contract DA-36-039 SC-78801)
(Project No. 3D5801001) Unclassified memo.

In this report the linear differential system

\[\dot{x}(t) = A(t)x(t) + B(t)u(t) \quad x(t_0) = x^0 \]

is reduced to a canonical operator theoretic form. This representation consists of a parameterized family of bounded linear transformations into a cartesian product of the underlying scalar field. It gives immediate results for the minimum energy control problem.